三种磁场定向矢量控制技术的比较
- 格式:docx
- 大小:10.76 KB
- 文档页数:2
矢量控制(FOC)基本原理2014、05、15一、基本概念1、1模型等效原则交流电机三相对称得静止绕组 A 、B、C ,通以三相平衡得正弦电流时,所产生得合成磁动势就是旋转磁动势F,它在空间呈正弦分布,以同步转速ω1(即电流得角频率)顺着A-B-C 得相序旋转。
这样得物理模型如图1-1a所示。
然而,旋转磁动势并不一定非要三相不可,单相除外,二相、三相、四相……等任意对称得多相绕组,通以平衡得多相电流,都能产生旋转磁动势,当然以两相最为简单。
图1图1-1b中绘出了两相静止绕组α与β,它们在空间互差90°,通以时间上互差90°得两相平衡交流电流,也产生旋转磁动势F 。
再瞧图1-1c中得两个互相垂直得绕组M 与 T,通以直流电流与,产生合成磁动势 F ,如果让包含两个绕组在内得整个铁心以同步转速旋转,则磁动势 F 自然也随之旋转起来,成为旋转磁动势。
把这个旋转磁动势得大小与转速也控制成与图 1-1a一样,那么这三套绕组就等效了。
三相--两相变换(3S/2S变换)在三相静止绕组A、B、C 与两相静止绕组α、β之间得变换,简称3S/2S 变换。
其电流关系为两相—两相旋转变换(2S/2R变换)同步旋转坐标系中(M、T坐标系中)轴向电流分量与α、β坐标系中轴向电流分量得转换关系为1、2矢量控制简介矢量控制就是指“定子三相电流矢量控制”。
矢量控制理论最早为解决三相异步电机得调速问题而提出。
交流矢量得直流标量化可以使三相异步电机获得与直流电机一样优越得调速性能。
将交流矢量变换为两相直流标量得过程见图2。
图2图2得上图为静止坐标系下得定子三相交流矢量图2得中图为静止坐标系下得等效两相交流矢量图2得下图为旋转坐标系下得等效两相直流标量,就是转矩电流,就是励磁电流。
经图2得变换后,定子三相交流矢量变为了旋转得两相直流标量。
进而可以把异步电机瞧作直流电机,分别控制励磁电流与转矩电流。
变换公式即式(1)与式(2)。
利用一个ARM7处理器对无刷电机实施磁场定向控制电机驱动能效不论提高多少,都会节省大量的电能,这就是市场对先进的电机控制算法的兴趣日浓的部分原因。
三相无刷电机主要指是交流感应异步电机和永磁同步电机。
这些电机以能效高、可靠性高、维护成本低、产品成本低和静音工作而著称。
感应电机已在水泵或风扇等工业应用中得到广泛应用,并正在与永磁同步电机一起充斥家电、空调、汽车或伺服驱动器等市场。
推动三相无刷电机发展的主要原因有:电子元器件的价格降低,实现复杂的控制策略以克服本身较差的动态性能成为可能。
以异步电机为例。
简单的设计需要给定子施加三个120°相移的正弦波电压,这些绕组的排列方式能够产生一种旋转磁通量。
利用变压器效应,这个磁通量在转子笼内感应出一股电流,然后产生转子磁通量。
就是这两种磁通量相互作用产生电磁力矩,使电机旋转。
在转子上感应出电流的条件是,确保转子的转速与定子的磁通量频率不同;如果相同,转子只经历一个恒定的磁通量,不会有感应电流产生(楞次定律)。
通电频率和其产生的机械频率之间的微小差异是异步电机命名的原因。
一个三相交流电机实现转速可调操作的最简单方式是,实现一个所谓的电压/频率控制(或者叫做标量控制),其工作原理是在频率与电机通电电压之间保持恒比。
这种方法产生一个恒定的定子磁通量,然后在转子主轴上得到额定的电机力矩。
对于应用负载特性被大家了解的低成本驱动器,以及控制带宽要求不是很高的驱动器,如数量很少的HP泵和风扇、洗衣机等,这是一个很受欢迎的控制方法。
一个MIPS 不是很高并带有合理的外设接口的8位单片机如ST7MC,即可满足这种应用需求,同时编程也很简单。
这种方法无法在瞬间工作过程中保证最佳的电机特性(力矩、能效)。
而且为防止电机出现临时消磁现象,还必须限制驱动器反作用力的时间。
为了克服这些限制条件,考虑到电机的动态特性,市场上出现了其他的控制策略。
磁场定向控制(也称矢量控制)是应用最广泛的控制算法,目标应用包括带式传输机、大功率水泵、汽车废气排放、工厂自动化。
磁场定向技术(FOC)
磁场定向技术(Field Oriented Control,简称FOC)是直流无刷电机和交流感应电机控制领域所采用的一种纯粹的数学变换方法,因其具有改善控制性能,降低能源消耗的潜力,现已日渐成为运动控制行业的主要关注焦点。
FOC技术优于基于霍尔传感器的无刷直流电机的标准梯形波换相技术,同时可以通过更为复杂而先进的正弦波换相技术为电机提供更为宽泛的速度范围。
对于感应电机而言,FOC技术是对标准变频驱动技术的一种重大改进。
FOC技术与磁通矢量控制技术十分接近,后者可以控制廉价的三相交流感应电机,使其获得类似于昂贵的无刷直流电机的性能,其实,许多供应商都在交替采用这两种方法。
与其他类型的伺服电机相比,比如仍旧应用于不少重要领域的有刷直流电机,无刷直流电机和交流感应电机可以提供更高的功率密度和可靠性,而且交流感应电机也更为便宜。
为充分发挥这些优势,运动控制设计人员都在采用由数字信号处理器(Digital Signal Processors,简称DSP)或专用微处理器构成的高速算法平台,力图改善性能,增进效率。
矢量控制的基本原理
矢量控制是一种电机控制技术,它主要是通过控制电机的电流和电压来实现对电机的精确控制。
相比于传统的直接转速控制方法,矢量控制可以实现更加精确的转矩和速度控制,因此在工业领域得到了广泛的应用。
矢量控制的基本原理是通过将三相交流电机的电流和电压分解为两个独立的分量,即磁场定向分量和电动势分量,然后对这两个分量进行独立控制,从而实现对电机转矩和速度的控制。
在矢量控制中,首先需要进行磁场定向,即确定磁场的方向。
通过改变电机的相位差或者改变电流的相位差,可以实现对电机磁场的定向控制。
这一步的目的是使得电机的磁场始终与旋转磁场同步,从而可以实现高效的电机控制。
接下来是电动势分量的控制,即根据需要控制电机的转速和转矩。
通过改变电动势的大小和相位角度,可以实现对电机转速和转矩的精确控制。
在矢量控制中,通常采用闭环控制系统来实现对电动势分量的精确控制,这需要在电机上安装位置传感器或者使用无位置传感器的技术来实时监测电机的转子位置,从而可以实现对电机的精确控制。
总的来说,矢量控制的基本原理是将电机的电流和电压分解为两个独立的分量,并对这两个分量进行独立控制,从而实现对电机转矩和速度的精确控制。
这种控制方法可以大大提高电机控制的精度和效率,因此在许多高性能的应用中得到广
泛的应用,比如电梯、风力发电、轨道交通等领域。
在实际的矢量控制系统中,通常会采用磁场定向控制和电动势控制两个独立的闭环控制系统来实现对电机的精确控制。
这样的设计可以使得系统更加稳定和可靠,同时也可以实现更高的。
矢量控制基本原理矢量控制(FOC,Field-Oriented Control)是一种电机控制技术,旨在通过控制电机的磁场方向和大小,实现高效、高性能的运动控制。
它广泛应用于交流电机(AC)驱动系统中,如感应电机(IM)和永磁同步电机(PMSM)。
矢量控制的基本原理是将三相交流电机的控制转换为两个独立的控制回路:磁场定向控制回路和磁场强度控制回路。
磁场定向控制回路用于控制电机的磁场方向,使其与转子磁场同步,从而实现高效的转矩产生。
磁场强度控制回路用于控制电机的磁场大小,以实现所需的转矩和速度。
矢量控制的第一步是通过电流传感器或估算方法测量电机的三相电流。
然后,使用Clarke和Park变换将三相电流转换为直角坐标系中的磁场分量。
Clarke变换将三相电流转换为αβ坐标系,其中α轴与电流矢量之和对齐,β轴与电流之差对齐。
Park变换将αβ坐标系转换为dq坐标系,其中d轴对齐于转子磁场方向,q轴垂直于d轴。
在磁场定向控制回路中,通过控制q轴电流为零,使电机的磁场与转子磁场同步。
这样,电机的转子磁场就可以有效地与定子磁场相互作用,从而产生所需的转矩。
磁场定向控制通常使用PID控制器来控制q轴电流,并根据速度和转矩需求调整PID控制器的参数。
在磁场强度控制回路中,通过控制d轴电流来控制电机的磁场大小。
磁场强度控制可以通过PID控制器来实现,其中PID控制器的输出是d轴电流的参考值。
根据转矩需求和电压限制,可以调整PID控制器的参数。
为了实现矢量控制,需要使用电机控制器来计算和控制磁场定向和磁场强度。
电机控制器通常使用高性能数字信号处理器(DSP)或微控制器来执行复杂的计算和控制算法。
电机控制器还需要与电机驱动器和其他外部设备进行通信,以接收传感器反馈和发送控制信号。
矢量控制的优点是能够实现高效的电机控制,提供高转矩和高响应性能。
它还可以通过控制电机的磁场方向和大小来实现高精度的位置和速度控制。
矢量控制还可以在低速和零速时提供高转矩,提高电机的起动和停止性能。
矢量控制(FOC)基本原理一、基本概念1.1模型等效原则交流电机三相对称的静止绕组 A 、B 、C ,通以三相平衡的正弦电流时,所产生的合成磁动势是旋转磁动势F ,它在空间呈正弦分布,以同步转速ω1(即电流的角频率)顺着 A-B-C 的相序旋转。
这样的物理模型如图1-1a 所示。
然而,旋转磁动势并不一定非要三相不可,单相除外,二相、三相、四相…… 等任意对称的多相绕组,通以平衡的多相电流,都能产生旋转磁动势,当然以两相最为简单。
图1图1-1b 中绘出了两相静止绕组α 和 β ,它们在空间互差90°,通以时间上互差90°的两相平衡交流电流,也产生旋转磁动势F 。
再看图1-1c 中的两个互相垂直的绕组M 和 T ,通以直流电流M i 和T i ,产生合成磁动势F ,如果让包含两个绕组在内的整个铁心以同步转速旋转,则磁动势F 自然也随之旋转起来,成为旋转磁动势。
把这个旋转磁动势的大小和转速也控制成与图 1-1a 一样,那么这三套绕组就等效了。
三相--两相变换(3S/2S 变换)在三相静止绕组A 、B 、C 和两相静止绕组α、β之间的变换,简称3S/2S 变换。
其电流关系为111221022A B C i i i i i αβ⎡⎤⎡⎤--⎢⎥⎡⎤⎢⎥⎢=⎢⎥⎢⎥⎢⎣⎦⎢⎥-⎣⎦⎢⎦⎣() 两相—两相旋转变换(2S/2R 变换) 同步旋转坐标系中(M 、T 坐标系中)轴向电流分量与α、β坐标系中轴向电流分量的转换关系为cos sin 2sin cos M T i i i i αβϕϕϕϕ⎡⎤⎡⎡⎤⎤=⎢⎥⎢⎢⎥⎥-⎦⎣⎦⎣⎣⎦ ()1.2矢量控制简介矢量控制是指“定子三相电流矢量控制”。
矢量控制理论最早为解决三相异步电机的调速问题而提出。
交流矢量的直流标量化可以使三相异步电机获得和直流电机一样优越的调速性能。
将交流矢量变换为两相直流标量的过程见图2。
图2图2的上图为静止坐标系下的定子三相交流矢量图2的中图为静止坐标系下的等效两相交流矢量图2的下图为旋转坐标系下的等效两相直流标量,T i 是转矩电流,M i 是励磁电流。
(一) PMSM 的数学模型交流电机是一个非线性、强耦合的多变量系统;永磁同步电机的三相绕组分布在定子上,永磁体安装在转子上;在永磁同步电机运行过程中,定子与转子始终处于相对运动状态,永磁体与绕组,绕组与绕组之间相互影响,电磁关系十分复杂,再加上磁路饱和等非线性因素,要建立永磁同步电机精确的数学模型是很困难的;为了简化永磁同步电机的数学模型,我们通常做如下假设:1) 忽略电机的磁路饱和,认为磁路是线性的;2) 不考虑涡流和磁滞损耗;3) 当定子绕组加上三相对称正弦电流时,气隙中只产生正弦分布的磁势,忽略气隙中的高次谐波;4) 驱动开关管和续流二极管为理想元件;5) 忽略齿槽、换向过程和电枢反应等影响;永磁同步电机的数学模型由电压方程、磁链方程、转矩方程和机械运动方程组成,在两相旋转坐标系下的数学模型如下:l 电机在两相旋转坐标系中的电压方程如下式所示:其中,Rs 为定子电阻;ud 、uq 分别为d 、q 轴上的两相电压;id 、iq 分别为d 、q 轴上对应的两相电流;Ld 、Lq 分别为直轴电感和交轴电感;ωc 为电角速度;ψd 、ψq 分别为直轴磁链和交轴磁链;若要获得三相静止坐标系下的电压方程,则需做两相同步旋转坐标系到三相静止坐标系的变换,如下式所示;2d/q 轴磁链方程:其中,ψf 为永磁体产生的磁链,为常数,0f r e ωψ=,而c r pωω=是机械角速度,p 为同步电机的极对数,ωc 为电角速度,e0为空载反电动势,其值为每项绕组反电动倍;3转矩方程:把它带入上式可得:对于上式,前一项是定子电流和永磁体产生的转矩,称为永磁转矩;后一项是转 子突极效应引起的转矩,称为磁阻转矩,若Ld=Lq,则不存在磁阻转矩,此时,转矩方程为:这里,t k 为转矩常数,32t f k p ψ=; 4机械运动方程:其中,m ω是电机转速,L T 是负载转矩,J 是总转动惯量包括电机惯量和负载惯量,B 是摩擦系数;(二) 直线电机原理永磁直线同步电机是旋转电机在结构上的一种演变,相当于把旋转电机的定子和动子沿轴向剖开,然后将电机展开成直线,由定子演变而来的一侧称为初级,转子演变而来的一侧称为次级;由此得到了直线电机的定子和动子,图1为其转变过程;直线电机不仅在结构上是旋转电机的演变,在工作原理上也与旋转电机类似;在旋转的三相绕组中通入三相正弦交流电后,在旋转电机的气隙中产生旋转气隙磁场,旋转磁场的转速又叫同步转速为:60(/min)s f n r p= 1-1 其中,f —交流电源频率,p —电机的极对数;如果用v 表示气隙磁场的线速度,则有:22(/)60s p v n f mm s ττ== 1-2 其中,τ为极距;当旋转电机展开成直线电机形式以后,如果不考虑铁芯两端开断引起的纵向边端效应,此气隙磁场沿直线运动方向呈正弦分布,当三相交流电随时间变化时,气隙磁场由原来的圆周方向运动变为沿直线方向运动,次级产生的磁场和初级的磁场相互作用从而产生电磁推力;在直线电机当中我们把运动的部分称为动子,对应于旋转电机的转子;这个原理和旋转电机相似,二者的差异是:直线电机的磁场是平移的,而不是旋转的,因此称为行波磁场;这时直线电机的同步速度为v=2f τ,旋转电机改变电流方向后,电机的旋转方向发生改变,同样的方法可以使得直线电机做往复运动;图1永磁直线同步电机的演变过程 图2 直线电机的基本工作原理对永磁同步直线电机,初级由硅钢片沿横向叠压而成,次级也是由硅钢片叠压而成,并且在次级上安装有永磁体;根据初级,次级长度不同,可以分为短初级-长次级结构和长初级-短次级的结构;对于运动部分可以是电机的初级,也可以是电机的次级,要根据实际的情况来确定;基本结构如图3所示,永磁同步直线电机的速度等于电机的同步速度:2s v v f τ== 1-3图3 PMLSM 的基本结构(三) 矢量控制磁场定向控制技术矢量控制技术是磁场定向控制技术是应用于永磁同步伺服电机的电流力矩控制,使得其可以类似于直流电机中的电流力矩控制;矢量控制技术是通过坐标变换实现的;坐标变换需要坐标系,变化整个过程给出三个坐标系:1) 静止坐标系a,b,c :定子三相绕组的轴线分别在此坐标系的a,b,c 三轴上;2) 静止坐标系α,β:在a,b,c 平面上的静止坐标系,且α轴与a 轴重合,β轴绕α轴逆时针旋转90度;3) 旋转坐标系d,q:以电源角频率旋转的坐标系;矢量控制技术对电流的控制实际上是对合成定子电流矢量s i的控制,但是对合成定子电流矢量s i的控制的控制存在以下三个方面的问题:1)s i是时变量,如何转换为时不变量2)如何保证定子磁势和转子磁势之间始终保持垂直3)s i是虚拟量,力矩T的控制最终还是要落实到三相电流的控制上,如何实现这个转换s i从静止坐标系a,b,c看是以电源角频率旋转的,而从旋转坐标系d,q上看是静止的,也就是从时变量转化为时不变量,交流量转化为直流量;所以,通过Clarke和Park坐标变换即3/2变换,实现了对励磁电流id和转矩电流iq的解耦;在旋转坐标系d,q中,s i已经成为了一个标量;令s i在q轴上即让id=0,使转子的磁极在d轴上;这样,在旋转坐标系d,q中,我们就可以象直流电机一样,通过控制电流来改变电机的转矩;且解决了以上三个问题中的前两个;但是,id、iq不是真实的物理量,电机的力矩控制最终还是由定子绕组电流ia、ib、ic或者定子绕组电压ua、ub、uc实现,这就需要进行Clarke和Park坐标逆变换;且解决了以上三个问题中的第三个;力矩回路控制的实现:1)图中电流传感器测量出定子绕组电流ia,ib作为clarke变换的输入,ic可由三相电流对称关系ia+ib+ic=0求出;2)clarke变换的输出iα,iβ,与由编码器测出的转角Θ作为park变换的输入,其输出id与iq作为电流反馈量与指令电流idref及iqref比较,产生的误差在力矩回路中经PI运算后输出电压值ud,uq;3)再经逆park逆变换将这ud,uq变换成坐标系中的电压u α,uβ;4)SVPWM算法将uα,uβ转换成逆变器中六个功放管的开关控制信号以产生三相定子绕组电流;(四)电流环控制交流伺服系统反馈分为电流反馈、速度反馈和位置反馈三个部分;其中电流环的控制是为了保证定子电流对矢量控制指令的准确快速跟踪;电流环是内环,SVPWM控制算法的实现主要集中在电流环上,电流环性能指标的好坏,特别是动态特性,将全面影响速度、位置环;PI调节器不同于P调节器的特点:1)P调节器的输出量总是正比于其输入量;2)而PI调节器输出量的稳态值与输入无关, 而是由它后面环节的需要决定的;后面需要PI调节器提供多么大的输出值, 它就能提供多少, 直到饱和为止;电流环常采用PI控制器,目的是把P控制器不为0 的静态偏差变为0;电流环控制器的作用有以下几个方面:3)内环;在外环调速的过程中,它的作用是使电流紧跟其给定电流值即外环调节器的输出;4)对电网电压波动起及时抗干扰作用;5)在转速动态过程中起动、升降速中,保证获得电机允许的最大电流-即加速了动态过程;6)过载或者赌转时,限制电枢电流的最大值,起快速的自动保护作用;电流环的控制指标主要是以跟随性能为主的;在稳态上,要求无静差;在动态上,不允许电枢电流在突加控制作用时有太大的超调,以保证电流电流在动态过程中不超过允许值;双闭环电机调速过程中所希望达到的目标:1)起动过程中: 只有电流负反馈, 没有转速负反馈;2)达到稳态后: 转速负反馈起主导作用; 电流负反馈仅为电流随动子系统;双闭环电机具体工作过程:根据检测模块得到的速度值和电流值实现电机转速控制;当测量的实际转速低于设定转速时,速度调节器的积分作用使速度环输出增加,即电流给定上升,并通过电流环调节使PWM占空比增加,电动机电流增加,从而使电机获得加速转矩,电机转速上升;当测量的实际转速高于设定转速时,转速调节器速度环的输出减小,电流给定下降,并通过电流环调节使PWM占空比减小,电机电流下降,从而使电机因电磁转矩的减小而减速;当转速调节器处于饱和状态时,速度环输出达到限幅值,电流环即以最大限制电流实现电机加速,使电机以最大加速度加速;电流环的主要影响因素有:电流调节器参数、反电动势、电流调节器零点漂移;电流调节器的参数中,比例参数Kp越大,动态响应速度越快,同时超调也大,因此,在调节过程中应该根据动态性能指标来选择Kp;而积分系数Ti越大,电流响应稳态精度就越高;(五)弱磁控制所谓弱磁控制和强磁控制是指通过对电动机或发电机的励磁电流进行的控制;“弱磁”就是励磁电流小于额定励磁电流;“强磁”则是比额定励磁电流大的励磁电流;强磁控制又称为强励控制,主要用在发电机短路保护或欠电压保护方面;当发电机端电压接近于0或下降太多,此时需要通过强行励磁,可使发电机的端电压升高,输出电流增大,触发保护装置动作跳闸,实现保护;弱磁控制则主要是电动机进行弱磁调速用,发电机弱磁控制则主要是指由直流发电机-直流电动机构成的G-M拖动系统,为了得到软的或下坠的机械特性时才使用;(六)电流传感器霍尔传感器是一种磁传感器;用它可以检测磁场及其变化,可在各种与磁场有关的场合中使用;霍尔传感器以霍尔效应为其工作基础,是由霍尔元件和它的附属电路组成的集成传感器;霍尔传感器在工业生产、交通运输和日常生活中有着非常广泛的应用;霍尔效应:如图1所示,在半导体薄片两端通以控制电流I ,并在薄片的垂直方向施加磁感应强度为B 的匀强磁场,则在垂直于电流和磁场的方向上,将产生电势差为U H 的霍尔电压,它们之间的关系为:dIB k U H 式中d 为薄片的厚度,k 称为霍尔系数,它的大小与薄片的材料有关;电流传感器:由于通电螺线管内部存在磁场,其大小与导线中的电流成正比,故可以利用霍尔传感器测量出磁场,从而确定导线中电流的大小;利用这一原理可以设计制成霍尔电流传感器;其优点是不与被测电路发生电接触,不影响被测电路,不消耗被测电源的功率,特别适合于大电流传感;霍尔电流传感器工作原理如图6所示,标准圆环铁芯有一个缺口,将霍尔传感器插入缺口中,圆环上绕有线圈,当电流通过线圈时产生磁场,则霍尔传感器有信号输出;。
矢量控制与V/F控制详解
一、矢量控制
1、矢量控制简介
矢量控制是一种电机的磁场定向控制方法:以异步电动机的矢量控制为例:它首先通过电机的等效电路来得出一些磁链方程,包括定子磁链,气隙磁链,转子磁链,其中气息磁链是连接定子和转子的.一般的感应电机转子电流不易测量,所以通过气息来中转,把它变成定子电流.然后,有一些坐标变换,首先通过3/2变换,变成静止的d-q坐标,然后通过前面的磁链方程产生的单位矢量来得到旋转坐标下的类似于直流机的转矩电流分量和磁场电流分量,这样就实现了解耦控制,加快了系统的响应速度.最后再经过2/3变换,产生三相交流电去控制电机,这样就获得了良好的性能。
综合以上:矢量控制无非就四个知识:等效电路、磁链方程、转矩方程、坐标变换(包括静止和旋转)。
矢量控制可以根据客户的需要微调电机,可以做伺服电机用。
不是以电机效率为最高追求,而是以工程要求,时刻跟踪反馈控制。
2、矢量控制详解
矢量控制概念:矢量控制目的是设法将交流电机等效为直流电机,从而获得较高的调速性能。
矢量控制方法就是将交流三相异步电机定子电流矢量分解为产生磁场的电流分量(励磁电流)和产生转矩的电流分量(转矩电流)分别加以控制,并同时控制两分量间的幅值和相位,这样即可等效于直流电机。
矢量控制方式又有基于转差频率控制的矢量控制方式、无速度传感器矢量控制方式和有速度传感器的矢量控制方式等。
矢量控制特点:变频器矢量控制,按照是否需要转速反馈环节,一般分为无反馈矢量控制和有反馈矢量控制。
1)无反馈矢量控制。
无反馈矢量控制方式优点是:
a)、使用方便,用户不需要增加任何附加器件。
矢量控制VC 磁场定向控制FOC 直接转矩控制DTC对于上述三种概念一直分不清楚,这次找了些资料区分了下。
矢量控制Vector control具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量(励磁电流) 和产生转矩的电流分量(转矩电流) 分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。
具体实现方式见/view/4a305c4bc850ad02de804197.html磁场定向控制Field-Oriented Control磁场定向控制是变频驱动或变速驱动领域使用的一种方法,可通过控制电流来控制三相AC电动机的扭矩。
因此,磁场定向控制往往与矢量控制组合使用。
磁场定向控制有三种类型,一是气隙磁场定向系统、二是定子磁场定向系统;三是转子磁场定向系统。
目前常采用转子磁场定向矢量控制时,缺点是磁链闭环控制系统中转子磁通的检测精度受转子时间常数的影响较大,降低了系统性能。
但它达到了完全的解耦控制,无需增加解耦器,并且不存在静态稳定性限制的条件,控制方式简单,具有较好动态性能和控制精度,故应用最为广泛。
因此在很多场合讲矢量控制与FOC混为一谈。
直接转矩控制Direct Torque Control直接转矩控制也称之为“直接自控制”,这种“直接自控制”的思想是以转矩为中心来进行磁链、转矩的综合控制。
和矢量控制不同,直接转矩控制不采用解耦的方式,从而在算法上不存在旋转坐标变换,简单地通过检测电机定子电压和电流,借助瞬时空间矢量理论计算电机的磁链和转矩,并根据与给定值比较所得差值,实现磁链和转矩的直接控制。
直接转矩控制技术,是利用空间矢量、定子磁场定向的分析方法,直接在定子坐标系下分析异步电动机的数学模型,计算与控制异步电动机的磁链和转矩,采用离散的两点式调节器(Band—Band控制),把转矩检测值与转矩给定值作比较,使转矩波动限制在一定的容差范围内,容差的大小由频率调节器来控制,并产生PWM脉宽调制信号,直接对逆变器的开关状态进行控制,以获得高动态性能的转矩输出。
三种磁场定向矢量控制技术的比较
磁场定向矢量控制技术是一种利用磁场控制机械运动的新技术,其应用范围广泛,包括磁悬浮列车、磁共振成像、磁力驱动机械装置等领域。
本文将介绍三种磁场定向矢量控制技术:PID算法控制、模糊控制和神经网络控制,并对其进行比较
分析。
1. PID算法控制
PID算法控制是磁场定向矢量控制技术中最常用的一种。
PID算法通过对磁场
定向矢量的大小和方向进行控制,来实现机械运动的精确控制。
PID控制器由三个
部分组成:比例部分、积分部分和微分部分。
比例部分控制机械的位置,积分部分控制机械位置的变化率,微分部分控制机械位置变化率的变化率。
PID算法控制具
有响应速度快、控制精度高、易于实现等优点。
2. 模糊控制
模糊控制是一种以模糊逻辑为基础的控制方法,其特点是通过定义一系列模糊
规则来实现机械运动的控制。
模糊控制可以适应各种不确定因素,能够有效地处理机械系统中的误差和干扰,具有很好的鲁棒性。
同时,模糊控制能够处理复杂系统,并且不需要过多的数学模型,因此能够快速实现机械运动的控制。
3. 神经网络控制
神经网络控制是一种利用神经网络方法,通过对输入信号进行加权和处理,得
到输出信号,来实现机械运动的控制。
神经网络控制具有非线性、自适应、强鲁棒性的特点,能够处理复杂系统和多变量系统。
神经网络控制需要大量的训练数据和时间,在实际应用中需要对系统进行控制分析和建模。
4. 比较分析
三种磁场定向矢量控制技术各有优劣,具体比较如下:
1.控制精度方面:PID算法控制精度最高,模糊控制次之,神经网络控
制较差。
2.响应速度方面:PID算法控制响应速度最快,神经网络控制次之,模
糊控制最慢。
3.鲁棒性方面:模糊控制和神经网络控制具有良好的鲁棒性,PID控制
较差。
4.实现难度方面:PID算法控制易于实现,模糊控制稍显复杂,神经网
络控制非常复杂。
综合考虑,根据具体应用场景选择合适的磁场定向矢量控制技术是非常重要的。
在控制精度要求较高的场合,建议使用PID算法控制;在对控制精度要求相对较低,但需要处理不确定因素的场合,建议使用模糊控制;在对非线性系统进行控制,处理复杂系统的场合,建议使用神经网络控制。