初二数学一次函数练习题及答案
- 格式:docx
- 大小:37.13 KB
- 文档页数:4
人教版八年级数学 《一次函数》 单元测试完成时光:120分钟满分:150分姓名成绩一.选择题(本大题10小题,每小题4分,共40分.每小题给出的四个选项中,只有一个选项是相符题意的,请将该选项的标号填入表格内)1.若等腰三角形的周长为60 cm ,底边长为x cm ,一腰长为y cm ,则y 关于x 的函数解析式及自变量x 的取值规模是( )A .y =60-2x(0<x<60)B .y =60-2x(0<x<30)C .y =12(60-x)(0<x<60)D .y =12(60-x)(0<x<30)1.函数y =1x -3+2.x -1的自变量x 的取值规模是( )A .x ≥1B .x ≥1且x ≠3C .x ≠3D .1≤x ≤33.下列各曲线中暗示y 是x 的函数的是( ) A B C D4.李大爷想围成一个如图所示的长方形菜园,已知长方形菜园ABCD 的面积为24平方米,设BC 边的长为x 米,AB 边的长为y 米,则y 与x 之间的函数解析式为( )A .y =24xB .y =-2x +24C .y =2x -24D .y =12x -12第4题图第9题图第10题图5.已知等腰三角形的周长是10,底边长y 是腰长x 的函数,则下列图象中,能准确反应y 与x 之间函数关系的图象是( )A B C D6.已知一次函数y =kx +b,y 跟着x 的增大而减小,且kb <0,则在平面直角坐标系内它的大致图象是( )A B C D7.若正比例函数y =(1-2m)x 的图象经由点A(x 1,y 1)和点B(x 2,y 2),当x 1<x 2时,y 1>y 2,则m 的取值规模是( )A .m <0B .m >0C .m <12D .m >128.若点M(-7,m),N(-8,n)都在函数y =-(k 2+2k +4)x +1(k 为常数)的图象上,则m 和n 的大小关系是( )A .m >nB .m <nC .m =nD .不克不及肯定9.如图,函数y 1=-2x 与y 2=ax +3的图象订交于点A(m,2),则关于x 的不等式-2x >ax +3的解集是( ) A .x >2 B .x <2C .x >-1 D .x <-110.如图是当地区一种产品30天的发卖图象,图1是产品日发卖量y(单位:件)与时光t(单位:天)的函数关系,图2是一件产品的发卖利润z(单位:元)与时光t(单位:天)的函数关系,已知日发卖利润=日发卖量×每件产品的发卖利润,下列结论错误的是( )A.第24天的发卖量为200件B.第10天发卖一件产品的利润是15元C.第12天与第30天这两天的日发卖利润相等D.第30天的日发卖利润是750元二.填空题(每题5分,共20分)11.在函数y=x-1x-2中,自变量x的取值规模是.12.如图,点A的坐标为(-1,0),点B在直线y=x上活动,当线段AB 最短时,点B的坐标为.第12题图第13题图第14题图13.有甲.乙两个长方体的蓄水池,将甲池中的水匀速注入乙池,甲.乙两个蓄水池中水的高度y(米)与灌水时光x(小时)之间的函数图象如图所示,若要使甲.乙两个蓄水池的蓄水深度雷同,则灌水的时光应为小时.14.如图,经由点B(-2,0)的直线y=kx+b与直线y=4x+2订交于点A(-1,-2),则不等式4x+2<kx+b<0的解集为.三.解答题(共90分)15.(8分)已知y=(m+1)x2-|m|+n+4.(1)当m,n取何值时,y是x的一次函数?(2)当m,n取何值时,y是x的正比例函数?16.已知y与x+2 成正比例,当x=4时,y=12.(1)写出y与x之间的函数解析式;(2)求当y=36时x的值;(3)断定点(-7,-10)是否是函数图象上的点.17.(8分)已知正比例函数y=kx经由点A,点A在第四象限,过点A 作AH⊥x轴,垂足为点H,点A的横坐标为3,且△AOH的面积为3.(1)求正比例函数的解析式;(2)在x轴上可否找到一点P,使△AOP的面积为5?若消失,求点P的坐标;若不消失,请解释来由.18.(8分)已知y=y1+y2,y1与x成正比例,y2与x-2成正比例,当x =1时,y=0;当x=-3时,y=4.(1)求y与x的函数解析式,并解释此函数是什么函数;(2)当x=3时,求y的值.19.(10分)某灵活车动身前油箱内有42升油,行驶若干小时后,途中在加油站加油若干升,油箱中余油量Q(升)与行驶时光t(时)之间的函数关系如图所示,答复下列问题.(1)灵活车行驶几小时后加油?(2)求加油前油箱残剩油量Q与行驶时光t的函数关系,并求自变量t的取值规模;(3)半途加油若干升?(4)假如加油站距目标地还有230千米,车速为40千米/时,要到达目标地,油箱中的油是否够用?请解释来由.20.(10分)两摞雷同规格的饭碗整洁地叠放在桌面上,如图,请依据图中给出的数据信息,解答问题:(1)求整洁叠放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式(不请求写出自变量x的取值规模);(2)若桌面上有12个饭碗,整洁叠放成一摞,求出它的高度.21.(12分)为更新果树品种,某果园筹划购进A,B两个品种的果树苗栽植培养.若筹划购进这两种果树苗共45棵,个中A种树苗的单价为7元/棵,购置B种树苗所需费用y(元)与购置数目x(棵)之间消失如图所示的函数关系.求y与x的函数解析式.22.(12分)如图,直线y=2x+3与直线y=-2x-1.(1)求两直线与y轴交点A,B的坐标;(2)求两直线交点C的坐标;(3)求△ABC的面积.23.(14分)为响应绿色出行号令,越来越多市平易近选择租用共享单车出行,已知某共享单车公司为市平易近供给了手机付出和会员卡付出两种付出方法,如图描写了两种方法应付出金额y(元)与骑行时光x(时)之间的函数关系,依据图象答复下列问题:(1)求手机付出金额y(元)与骑行时光x(时)的函数关系式;(2)李先生经常骑行共享单车,请依据不合的骑行时光帮他肯定选择哪种付出方法比较合算.参考答案姓名成绩一.选择题(本大题10小题,每小题4分,共40分.每小题给出的四个选项中,只有一个选项是相符题意的,请将该选项的标号填入表格内)题号 1 2 3 4 5 6 7 8 9 10 答案 B D D A D D A B D C 1.函数y=1x-3+x-1的自变量x的取值规模是( B )A.x≥1 B.x≥1且x≠3 C.x≠3D.1≤x≤32.下列各曲线中暗示y是x的函数的是(D)A B C D3.若等腰三角形的周长为60 cm,底边长为x cm,一腰长为y cm,则y 得分评卷人关于x 的函数解析式及自变量x 的取值规模是( D )A .y =60-2x(0<x<60)B .y =60-2x(0<x<30)C .y =12(60-x)(0<x<60)D .y =12(60-x)(0<x<30)4.李大爷想围成一个如图所示的长方形菜园,已知长方形菜园ABCD 的面积为24平方米,设BC 边的长为x 米,AB 边的长为y 米,则y 与x 之间的函数解析式为( A )A .y =24xB .y =-2x +24C .y =2x -24D .y =12x -12第4题图第9题图第10题图5.已知等腰三角形的周长是10,底边长y 是腰长x 的函数,则下列图象中,能准确反应y 与x 之间函数关系的图象是( D )A B C D6.若正比例函数y =(1-2m)x 的图象经由点A(x 1,y 1)和点B(x 2,y 2),当x 1<x 2时,y 1>y 2,则m 的取值规模是( D )A .m <0B .m >0C .m <12D .m >127.已知一次函数y =kx +b,y 跟着x 的增大而减小,且kb <0,则在平面直角坐标系内它的大致图象是( A )A B C D8.若点M(-7,m),N(-8,n)都在函数y =-(k 2+2k +4)x +1(k 为常数)的图象上,则m 和n 的大小关系是( B )A .m >nB .m <nC .m =nD .不克不及肯定9.如图,函数y 1=-2x 与y 2=ax +3的图象订交于点A(m,2),则关于x 的不等式-2x >ax +3的解集是( D ) A .x >2 B .x <2C .x >-1 D .x <-110.如图是当地区一种产品30天的发卖图象,图1是产品日发卖量y(单位:件)与时光t(单位:天)的函数关系,图2是一件产品的发卖利润z(单位:元)与时光t(单位:天)的函数关系,已知日发卖利润=日发卖量×每件产品的发卖利润,下列结论错误的是( C )A .第24天的发卖量为200件B .第10天发卖一件产品的利润是15元C .第12天与第30天这两天的日发卖利润相等D .第30天的日发卖利润是750元二.填空题(每题5分,共20分)11.在函数y =x -1x -2中,自变量x 的取值规模是x ≥1且x≠2.12.如图,点A 的坐标为(-1,0),点B 在直线y =x 上活动,当线段AB 最短时,点B 的坐标为(-12,-12).第12题图第13题图第14题图13.有甲.乙两个长方体的蓄水池,将甲池中的水匀速注入乙池,甲.乙两个蓄水池中水的高度y(米)与灌水时光x(小时)之间的函数图象如图所示,若要使甲.乙两个蓄水池的蓄水深度雷同,则灌水的时光应为3 5小时.14.如图,经由点B(-2,0)的直线y=kx+b与直线y=4x+2订交于点A(-1,-2),则不等式4x+2<kx+b<0的解集为-2<x<-1.得分评卷人三.解答题(共90分)15.(8分)已知y=(m+1)x2-|m|+n+4.(1)当m,n取何值时,y是x的一次函数?(2)当m,n取何值时,y是x的正比例函数?解:(1)依据一次函数的界说,有m+1≠0且2-|m|=1,解得m=1.∴m=1,n为随意率性实数时,这个函数是一次函数.(2)依据正比例函数的界说,有m+1≠0且2-|m|=1,n+4=0,解得m=1,n=-4.∴当m=1,n=-4时,这个函数是正比例函数.16.(8分)已知y与x+2 成正比例,当x=4时,y=12.(1)写出y与x之间的函数解析式;(2)求当y=36时x的值;(3)断定点(-7,-10)是否是函数图象上的点.解:(1)设y=k(x+2).∵x=4,y=12,∴6k=12.解得k=2.∴y=2(x+2)=2x+4.(2)当y=36时,2x+4=36,解得x=16.(3)当x=-7时,y=2×(-7)+4=-10,∴点(-7,-10)是函数图象上的点.17.(8分)已知正比例函数y=kx经由点A,点A在第四象限,过点A 作AH⊥x轴,垂足为点H,点A的横坐标为3,且△AOH的面积为3.(1)求正比例函数的解析式;(2)在x轴上可否找到一点P,使△AOP的面积为5?若消失,求点P的坐标;若不消失,请解释来由.解:(1)∵点A的横坐标为3,且△AOH的面积为3,∴点A的纵坐标为-2,∴点A的坐标为(3,-2).∵正比例函数y=kx经由点A,∴3k=-2,解得k=-23.∴正比例函数的解析式为y=-23x.(2)消失.∵△AOP的面积为5,点A的坐标为(3,-2),∴OP=5.∴点P的坐标为(5,0)或(-5,0).18.(8分)某灵活车动身前油箱内有42升油,行驶若干小时后,途中在加油站加油若干升,油箱中余油量Q(升)与行驶时光t(时)之间的函数关系如图所示,答复下列问题.(1)灵活车行驶几小时后加油?(2)求加油前油箱残剩油量Q与行驶时光t的函数关系,并求自变量t的取值规模;(3)半途加油若干升?(4)假如加油站距目标地还有230千米,车速为40千米/时,要到达目标地,油箱中的油是否够用?请解释来由.解:(1)不雅察函数图象可知:灵活车行驶5小时后加油.(2)灵活车每小时的耗油量为(42-12)÷5=6(升),∴加油前油箱残剩油量Q与行驶时光t的函数关系为Q=42-6t(0≤t≤5).(3)36-12=24(升).∴半途加油24升.(4)油箱中的油够用.来由:∵加油后油箱里的油可供行驶11-5=6(小时),∴剩下的油可行驶6×40=240(千米).∵240>230,∴油箱中的油够用.19.(10分)已知y=y1+y2,y1与x成正比例,y2与x-2成正比例,当x=1时,y=0;当x=-3时,y=4.(1)求y与x的函数解析式,并解释此函数是什么函数;(2)当x=3时,求y的值.解:(1)设y1=k1x,y2=k2(x-2),则y=k1x+k2(x-2),依题意,得⎩⎪⎨⎪⎧k1-k2=0-3k1-5k2=4解得⎩⎪⎨⎪⎧k1=-12k2=-12.∴y=-12x-12(x-2),即y=-x+1.∴y是x的一次函数.(2)把x=3代入y=-x+1,得y=-2.∴当x=3时,y的值为-2.20.(10分)两摞雷同规格的饭碗整洁地叠放在桌面上,如图,请依据图中给出的数据信息,解答问题:(1)求整洁叠放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式(不请求写出自变量x 的取值规模);(2)若桌面上有12个饭碗,整洁叠放成一摞,求出它的高度. 解:(1)设函数解析式为y =kx +b ,依据题意,得⎩⎪⎨⎪⎧4k +b =10.57k +b =15. 解得⎩⎪⎨⎪⎧k =1.5b =4.5.∴y 与x 之间的函数解析式为yx +4.5. (2)当x =12时,y =1.5×12+4.5=22.5.答:它的高度是22.5 cm.21.(12分)为更新果树品种,某果园筹划购进A,B 两个品种的果树苗栽植培养.若筹划购进这两种果树苗共45棵,个中A 种树苗的单价为7元/棵,购置B 种树苗所需费用y(元)与购置数目x(棵)之间消失如图所示的函数关系.求y 与x 的函数解析式.解:∵当0≤x<20时,图象经由(0,0)和(20,160),∴设y =k 1x.把(20,160)代入,得160=20k 1,解得k 1=8.∴y =8x. 当x≥20时,设y =k 2x +b, 把(20,160)和(40,288)代入,得⎩⎪⎨⎪⎧20k2+b =16040k2+b =288.解得⎩⎪⎨⎪⎧k2=6.4b =32.∴y =6.4x +32.∴y =⎩⎪⎨⎪⎧8x (0≤x<20)6.4x +32(x≥20).(个中x 为整数)22.(12分)如图,直线y =2x +3与直线y =-2x -1. (1)求两直线与y 轴交点A,B 的坐标; (2)求两直线交点C 的坐标; (3)求△ABC 的面积.解:(1)对于y =2x +3,令x =0,则y =3,∴点A 的坐标为(0,3).对于y =-2x -1,令x =0,则y =-1,∴点B 的坐标为(0,-1).(2)联立⎩⎪⎨⎪⎧y =2x +3y =-2x -1解得⎩⎪⎨⎪⎧x =-1y =1.∴点C 的坐标为(-1,1). (3)S △ABC =12AB·|x c |=12×4×1=2.23.(14分)为响应绿色出行号令,越来越多市平易近选择租用共享单车出行,已知某共享单车公司为市平易近供给了手机付出和会员卡付出两种付出方法,如图描写了两种方法应付出金额y(元)与骑行时光x(时)之间的函数关系,依据图象答复下列问题:(1)求手机付出金额y(元)与骑行时光x(时)的函数关系式;(2)李先生经常骑行共享单车,请依据不合的骑行时光帮 他肯定选择哪种付出方法比较合算. 解:(1)由图象知:当0≤x,y =0;当x≥,设y =kx +b,⎩⎪⎨⎪⎧0.5k +b =01×k+b =0.5 解得⎩⎪⎨⎪⎧k =1b =-0.5., y =x -0.5.∴手机付出金额y(元)与骑行时光x(时)的函数关系式是y =⎩⎪⎨⎪⎧0(0≤x<0.5)x -0.5(x≥0.5).(2)设会员卡付出对应的函数解析式为y =ax, 则0.75=a×1,, ,,解得x =2,由图象可知,当x =2时,李先生选择两种付出方法一样; 当x >2时,会员卡付出比较合算;当0<x <2时,李先生选择手机付出比较合算.。
初二数学一次函数超经典试题含答案一、信任你肯定能填对!(每小题3分,共30分)1.下列函数中,自变量x 的取值范围是x ≥2的是( )A .y=B .y=C .y=D .2.下面哪个点在函数y=12x+1的图象上( )A .(2,1)B .(-2,1)C .(2,0)D .(-2,0)3.下列函数中,y 是x 的正比例函数的是( )A .y=2x-1B .y=3xC .y=2x 2D .y=-2x+14.一次函数y=-5x+3的图象经过的象限是( )A .一、二、三B .二、三、四C .一、二、四D .一、三、四6.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( )A .k>3B .0<k ≤3C .0≤k<3D .0<k<37.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( )A .y=-x-2B .y=-x-6C .y=-x+10D .y=-x-18.汽车开场行驶时,油箱内有油40升,假如每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的()9.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽搁了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,假如准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t(小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是()10.一次函数y=kx+b的图象经过点(2,-1)与(0,3),•那么这个一次函数的解析式为()A.y=-2x+3 B.y=-3x+2 C.y=3x-2 x-3D.y=12二、你能填得又快又对吗?(每小题3分,共30分)11.已知自变量为x的函数y=mx+2-m是正比例函数,则m=________,•该函数的解析式为_________.12.若点(1,3)在正比例函数y=kx的图象上,则此函数的解析式为________.13.已知一次函数y=kx+b的图象经过点A(1,3)与B(-1,-1),则此函数的解析式为_________.14.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方.15.已知一次函数y=-x+a与y=x+b的图象相交于点(m,8),则a+b=_________.16.若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而削减,•则k____0,b______0.(填“>”、“<”或“=”)17.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________. 18.已知一次函数y=-3x+1的图象经过点(a ,1)与点(-2,b ),则a=________,b=______.19.假如直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为_____. 20.如图,一次函数y=kx+b 的图象经过A 、B 两点,与x 轴交于点C ,则此一次函数的解析式为__________,△AOC 的面积为_________.三、仔细解答,肯定要细心哟!(共60分)21.(14分)依据下列条件,确定函数关系式:(1)y 与x 成正比,且当x=9时,y=16;(2)y=kx+b 的图象经过点(3,2)与点(-2,1).23.(12分)一农夫带了若干千克自产的土豆进城出售,为了便利,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零 钱)的关系如图所示,结合图象答复下列问题:(1)农夫自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?24.(10分)如图所示的折线ABC•表示从甲地向乙地打长途所需的费y(元)与通话时间t(分钟)之间的函数关系的图象(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?25.(12分)已知雅美服装厂现有A种布料70米,B种布料52米,•现安排用这两种布料消费M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料1.•1米,B 种布料0.4米,可获利50元;做一套N型号的时装需用A 种布料0.6米,B种布料0.•9米,可获利45元.设消费M 型号的时装套数为x,用这批布料消费两种型号的时装所获得的总利润为y元.①求y(元)与x(套)的函数关系式,并求出自变量的取值范围;②当M型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?答案:第一份3.B 4.C 5.D 6.A 7.C 8.B 9.C 10.A11.2;y=2x 12.y=3x 13.y=2x+1 14.<2 15.1616.<;< 17.58x y =-⎧⎨=-⎩ 18.0;7 19.±6 20.y=x+2;421.①y=169x ;②y=15x+75 22.y=x-2;y=8;x=1423.①5元;②0.5元;③45千克24.①当0<t ≤3时,y=2.4;当t>3时,y=t-0.6. ②2.4元;6.4元25.①y=50x+45(80-x )=5x+3600.∵两种型号的时装共用A 种布料[1.1x+0.•6(80-x )]米, 共用B 种布料[0.4x+0.9(80-x )]米,∴ 解之得40≤x ≤44,而x 为整数,∴x=40,41,42,43,44,∴y 与x 的函数关系式是y=5x+3600(x=40,41,42,43,44);②∵y 随x 的增大而增大,∴当x=44时,y 最大=3820,即消费M 型号的时装44套时,该厂所获利润最大,最大利润是3820元.。
初二数学一次函数练习题(附答案)查字典数学网小编为大家整理了初二数学一次函数练习题(附答案),希望能对大家的学习带来帮助!一次函数的图象和性质选择题1.已知一次函数 ,若随着的增大而减小,则该函数图象经过:(A)第一,二,三象限(B)第一,二,四象限(C)第二,三,四象限(D)第一,三,四象限2.某市的出租车的收费标准如下:3千米以内的收费6元;3千米到10千米部分每千米加收1.3元;10千米以上的部分每千米加收1.9元。
那么出租车收费y(元)与行驶的路程x(千米)之间的函数关系用图象表示为3.阻值为和的两个电阻,其两端电压关于电流强度的函数图象如图,则阻值(A) (B) (C) = (D)以上均有可能4.若函数 ( 为常数)的图象如图所示,那么当时,的取值范围是A、 B、 C、 D、5.下列函数中,一次函数是().(A) (B) (C) (D)6.一次函数y=x+1的图象在().(A)第一、二、三象限(B)第一、三、四象限(C)第一、二、四象限(D)第二、三、四象限7.将直线y=2x向上平移两个单位,所得的直线是A.y=2x+2B.y=2x-2C.y=2(x-2)D.y=2(x+2)8.如图,已知点A的坐标为(1,0),点B在直线上运动,当线段AB最短时,点B的坐标为A.(0,0)B.C.D.9.如图,把直线l沿x轴正方向向右平移2个单位得到直线l,则直线l/的解析式为A.y=2x+4B.y=-2x+2C.y=2x-4D.y=-2x-210.直线y=kx+1一定经过点()A.(1,0)B.(1,k)C.(0,k)D.(0,1)11.如图,在△ABC中,点D在AB上,点E在AC上,若ADE=C,且AB=5,AC=4,AD=x,AE=y,则y与x的关系式是()A.y=5xB.y= xC.y= xD.y= x12.下列函数中,是正比例函数的为A.y=B.y=C.y=5x-3D.y=6x2-2x-113如图,△ABC和△DEF是两个形状大小完全相同的等腰直角三角形,DEF=90,点B、C、E、F在同一直线上.现从点C、E重合的位置出发,让△ABC在直线EF上向右作匀速运动,而△DEF的位置不动.设两个三角形重合部分的面积为,运动的距离为 .下面表示与的函数关系式的图象大致是()三、填空题1.若正比例函数y=mx(m0)和反比例函数y= (n0)的图象都经过点(2,3),则m=______,n=_________.2.如果函数,那么3.点A(2,4)在正比例函数的图象上,这个正比例函数的解析式是4.若函数的图象经过点(1,2),则函数的表达式可能是(写出一个即可).5.如图,表示甲骑电动自行车和乙驾驶汽车均行驶90km的过程中,行使的路程与经过的时间之间的函数关系.请根据图象填空:出发的早,早了小时,先到达,先到小时,电动自行车的速度为km/h,汽车的速度为km/h.6.某电信公司推出手机两种收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内打出电话时间t(分钟)与打出电话费s(元)的函数关系如图3,当打出电话150分钟时,这两种方式电话费相差元.7.若一次函数y=ax+1―a中,y随x的增大而增大,且它的图像与y轴交于正半轴,则|a―1|+ =。
初二数学一次函数试题答案及解析1.(2013河北)如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y轴以每秒1个单位长度的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为t 秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.【答案】(1)y=-x+4 (2)4<t<7 (3)t=1【解析】解:(1)直线y=-x+b交y轴于点P(0,b),由题意,得b>0,t≥0,b=1+t.当t=3时,b=4,∴y=-x+4.(2)当直线y=-x+b过点M(3,2)时,2=-3+b,解得b=5.∵b=1+t,∴5=1+t,∴t=4.当直线y=-x+b过点N(4,4)时,4=-4+b,解得b=8.∵b=1+t,∴8=1+t,∴t=7.∴当点M,N位于l的异侧时,4<t<7.(3)t=1时,落在y轴上;t=2时,落在x轴上.2.如图,在平面直角坐标系xOy中,直线y=x+1与交于点,分别交x轴于点B和点C.(1)求点B、C的坐标;(2)求△ABC的面积.【答案】见解析【解析】(1)当y=0时,由x+1=0,解得x=-1,所以点B的坐标是(-1,0).当y=0时,由,解得x=4,所以点C的坐标是(4,0).(2)因为BC=4-(-1)=5,点A到x轴的距离为,所以.3.如图所示,利用函数图象回答下列问题:(1)方程组的解为________.(2)不等式2x>-x+3的解集为________.【答案】(1) (2)x>1【解析】(1)直线y=2x与x+y=3的交点坐标即为方程组的解.(2)不等式2x>-x+3的解集即为直线y=2x在直线y=-x+3上方时所对应的x的取值集合.4. (2014湖北荆门)如图,直线y1=x+b与y2=kx-1相交于点P,点P的横坐标为-1,则关于x的不等式x+b>kx-1的解集在数轴上表示正确的是( )A.B.C.D.【答案】A【解析】从图象上可以看出当x>-1时,直线y1=x+b在直线y2=kx-1的上方,所以不等式x+b>kx-1的解集是x>-1.5.用画函数图象的方法解不等式3x+2>2x-1.【答案】解法一:原不等式可化为x+3>0.画出函数y=x+3的图象(如图1所示).由图象可以看出:当x>-3时,这条直线上的点在x轴上方,即此时y>0.∴不等式3x+2>2x-1的解集为x>-3.解法二:在同一直角坐标系中分别画出函数y=3x+2与函数y=2x-1的图象(如图2所示),可以看出,它们交点的横坐标为-3.当x>-3时,对于同一个x值,直线y=3x+2上的点总在直线y=2x-1上相应点的上方,这时3x+2>2x-1,故不等式的解集为x>-3.【解析】从函数角度看不等式,画出函数的图象,观察图象即可求出不等式的解集.6.如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得关于x、y的二元一次方程组的解是________.【答案】【解析】由图象可知:点P(-4,-2)是两直线的交点,因此(-4,-2)既满足解析式y=ax+b,也满足解析式y=kx,也就是说,是二元一次方程y=ax+b和y=kx的公共解,从而得出的解是7.已知Z市某种生活必需品的年需求量y1(万件)、供应量y2(万件)与价格x(元/件)在一定范围内分别近似满足下列函数解析式:y1=-4x+190,y2=5x-170.当y1=y2时,称该商品的价格为稳定价格,需求量为稳定需求量;当y1<y2时,称该商品的供求关系为供过于求;当y1>y2时,称该商品的供求关系为供不应求.(1)求该商品的稳定价格和稳定需求量.(2)当该商品的价格为45元/件时,该商品的供求关系如何?【答案】(1)40元/件 30件(2)供过于求【解析】(1)当y1=y2时,-4x+190=5x-170,解得x=40.当x=40时,y1=-4×40+190=30.答:稳定价格为40元/件,稳定需求量为30件.(2)当x=45时,y1=-4×45+190=10,y2=5×45-170=55.因为y1<y2,所以供过于求.8.(2013黔东南州)直线y=-2x+m与直线y=2x-1的交点在第四象限,则m的取值范围是()A.m>-1B.m<1C.-1<m<1D.-1≤m≤1【答案】C【解析】联立两直线解析式求出交点坐标,再根据交点在第四象限列出不等式组求解即可.由解得∵交点在第四象限,∴解不等式①,得m>-1,解不等式②,得m<1,∴m的取值范围是-1<m<1.故选C.9.(2013武汉)直线y=2x+b经过点(3,5),求关于x的不等式2x+b≥0的解集.【答案】【解析】解:∵直线y=2x+b经过点(3,5),∴5=2×3+b,∴b=-1.故不等式2x+b≥0即2x-1≥0,解得.10.(2013衢州)“五一”假期,某火车客运站旅客流量不断增大,旅客往往需要长时间排队等候检票.经调查发现,在车站开始检票时,有640人排队检票.检票开始后,仍有旅客继续前来排队检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的.检票时,每分钟候车室新增排队检票进站16人,每分钟每个检票口检票14人.已知检票的前a分钟只开放了两个检票口.某一天候车室排队等候检票的人数y(人)与检票时间x(分)之间的关系如图所示.(1)求a的值.(2)求检票到第20分钟时,候车室排队等候检票的旅客人数.(3)若要在开始检票后15分钟内让所有排队的旅客都能检票进站,以便后来到站的旅客随到随检,问:检票一开始至少需要同时开放几个检票口?【答案】(1)10 (2)260 (3)5【解析】解:(1)由图象知,640+16a-2×14a=520,∴a=10.(2)设当10≤x≤30时,y与x之间的函数关系式为y=kx+b(k≠0),由题意得解得∴y=-26x+780.当x=20时,y=260,即检票到第20分钟时,候车室排队等候检票的旅客有260人.(3)设需同时开放n个检票口,则由题意知14n×15≥640+16×15,解得,∵n为整数,∴n=5.答:至少需要同时开放5个检票口.11.如图所示,设函数y=x+4的图象与y轴交于A点,函数y=-3x-6的图象与y轴交于B点,两个函数的图象交于点C.(1)求经过线段AB的中点D及点C的直线的解析式;(2)根据图象回答:当x取什么值时,y=-3x-6的值小于y=x+4的值?【答案】见解析【解析】(1)由题意,得解得,所以C点坐标是.在y=x+4中,令x=0,得y=4,所以A点的坐标是(0,4),在y=-3x-6中,令x=0,得y=-6,点B的坐标为(0,-6),线段AB的中点D的坐标为(0,-1).设直线CD的解析式为y=kx+b(k≠0),把C,D(0,-1)的坐标代入y=kx+b得解得因此,过C,D两点的直线的解析式为y=-x-1.(2)由图象可以看出,当时,x+4>-3x-6,即y=-3x-6的值小于y=x+4的值.12.已知直线y=x-3与y=2x+2的交点坐标为(-5,-8),则方程组的解是________.【答案】【解析】两直线的交点坐标(-5,-8)就是方程组的解.13.(2013四川成都)已知点(3,5)在直线y=ax+b(a,b为常数,且a≠0)上,则的值为________.【答案】【解析】将点(3,5)的坐标代入y=ax+b得,5=3a+b,即b-5=-3a,∴.14.(2013绥化)某地发生地震,某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时).图中的折线、线段分别表示甲、乙两组所走路程y(千米)、y甲(千米)与时间x(时)之间的函数关系对应的图象.请根据图象所提供的信息,解决下列问题:乙(1)由于汽车发生故障,甲组在途中停留了________小时.(2)甲组的汽车排除故障后,立即提速赶往灾区.请问:甲组的汽车在排除故障时,距出发点的路程是多少千米?(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过25千米,请通过计算说明,按图象所表示的走法是否符合约定?【答案】解:(1)1.9=kx+b.(2)设直线EF的解析式为y乙∵点E(1.25,0)、点F(7.25,480)均在直线EF上,∴解得∴直线EF的解析式是y乙=80x-100.∵点C在直线EF上,且点C的横坐标为6,∴点C的纵坐标为80×6-100=380,∴点C的坐标是(6,380).设直线BD的解析式为y甲=mx+n.∵点C(6,380)、点D(7,480)在直线BD上,∴解得.∴直线BD的解析式y甲=100x-220.∵B点在直线BD上且点B的横坐标为4.9,∴点B的纵坐标为100×4.9-220=270,∴甲组在排除故障时,距出发点的路程是270千米.(3)由图象可知:甲、乙两组第一次相遇后,在B处,乙超过甲最远,在D处,甲超过乙最远.在点B处,有y乙-y甲=80×4.9-100-(100×4.9-220)=22,22千米<25千米,在点D处,有y甲-y乙=100×7-220-(80×7-100)=20,20千米<25千米.∴按图象所表示的走法符合约定.【解析】(1)由于线段AB与x轴平行,故自3时到4.9时这段时间内甲组停留在途中,所以停留的时间为1.9时;(2)观察图象可知点B的纵坐标就是甲组的汽车在排除故障时距出发点的路程的千米数,所以求得点B的坐标是解答(2)题的关键,这就需要求得直线EF和直线BD的解析式,而EF过点(1.25,0),(7.25,480),利用这两点的坐标即可求出该直线的解析式,然后令x=6,即可求出点C的纵坐标,又因点D(7,480),这样就可求出CD即BD的解析式,从而求出B点的坐标;(3)由图象可知:甲、乙两组第一次相遇后在B和D相距最远,在点B处时,x=4.9,求出此时的y乙-y甲,在点D有x=7,也求出此时的y甲-y乙,分别同25比较即可.15. (2014湖南娄底)一次函数y=kx-k(k<0)的图象大致是( ) A.B.C.D.【答案】A【解析】∵k<0,∴-k>0,∴一次函数y=kx-k(k<0)的图象经过第一、二、四象限,故选A.16. (2014山东东营)直线y=-x+1经过的象限是( )A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限【答案】B【解析】因k=-1<0,所以y随x的增大而减小,又因为b=1,所以直线与y轴的交点在y轴正半轴上,所以直线y=-x+1经过第一、二、四象限.17.在同一平面直角坐标系中画出下列函数的图象.(1)y=2x与y=2x+3;(2)y=2x+1与.【答案】(1)列表:(2)列表:描点、连线,图象如图②所示.【解析】所给函数的自变量x可以是任意实数,列表表示两组对应值,描出两个点,连成直线即可.18.(2013绍兴)图是我国古代计时器“漏壶”的示意图,在壶内盛一定量的水,水从壶底的小孔漏出,壶壁内画有刻度,人们根据壶中水面的位置计时,用x表示时间,y图表示壶底到水面的高度,则y与x之间的函数的图象是()A.B.C.D.【答案】C【解析】由题意知,开始时,壶内盛一定量的水,所以y的初始位置应该大于0,可以排除A、B;由于漏壶漏水的速度不变,所以所对应的函数应该是一次函数,可以排除D选项.19.有下列函数:①y=-8x,②,③y=8x2,④y=8x+1,⑤.其中是一次函数的有()A.0个B.1个C.2个D.3个【答案】D【解析】题中所给函数是一次函数的有①④⑤,共3个.20.如图所示,直线l沿x轴正方向向右平移2个单位,得到直线l′,则直线l′的解析式为()A.y=2x+4B.y=-2x+4C.y=2x-4D.y=-2x-2【解析】由图知直线l的解析式为y=2x,将l向右平移2个单位后所得直线的解析式为y=2x+b,图象过点(2,0),所以b=-4,故y=2x-4.21.(2013遵义)P1(x1,y1),P2(x2,y2)是正比例函数图象上的两点,下列判断中正确的是()A.y1>y2B.y1<y2C.当x1<x2时,y1<y2D.当x1<x2时,y1>y2【答案】D【解析】根据正比例函数图象的性质“当k<0时,y随x的增大而减小”即可求解.∵,,∴y随x的增大而减小.故选D.22.当m________时,正比例函数y=(1-m)x的图象过二、四象限.【答案】>1【解析】由题意得1-m<0,解得m>1.23.(2013广东珠海)已知函数y=3x的图象经过点A(-1,y1),点B(-2,y2),则y 1________y2(填“>”“<”或“=”).【答案】>【解析】分别把点A(-1,y1),点B(-2,y2)的坐标代入函数y=3x,求出点y1,y2的值,并比较出其大小即可.∵点A(-1,y1),点B(-2,y2)是函数y=3x的图象上的点,∴y1=-3,y2=-6,∵-3>-6,∴y1>y2.24.一个正比例函数的图象过点(2,-3),它的表达式为( )A.B.C.D.【答案】A【解析】设正比例函数的解析式为y=kx(k≠0),将(2,-3)代入,得-3=2k,所以.25. (2014陕西)若点A(-2,m)在正比例函数的图象上,则m的值是( )A.B.C.1D.-1【解析】将(-2,m)代入中,得m=1,故选C.26. (2010广西玉林、防城港)对于函数y=k2x(k是常数,k≠0)的图象,下列说法不正确的是( ) A.是一条直线B.过点(,k)C.经过一、三象限或二、四象限D.y随着x的增大而增大【答案】C【解析】y=k2x是正比例函数,且系数为正数,故图象是一条经过第一、三象限的直线,y随x的增大而增大.当时,y=k.27. (2014云南)写出一个图象经过一、三象限的正比例函数y=kx(k≠0)的解析式(关系式):________.【答案】y=3x(答案不唯一)【解析】对于正比例函数y=kx(k≠0),只要k>0,其图象都经过第一、三象限,所以答案不唯一,如y=3x.28.根据要求,解答下列问题:(1)已知直线l1的函数表达式为y=x,请直接写出过原点且与l1垂直的直线l2的函数表达式;(2)①如图,过原点的直线l3向上的方向与x轴的正方向所成的角为30°,求直线l3的函数表达式;②若过原点的直线l4向上的方向与y轴的正方向所成的角为30°,求直线l4的函数表达式;(3)分别观察(1)、(2)中的两个函数表达式,请猜想:当两直线互相垂直时,它们的函数表达式中自变量的系数之间有何关系.请根据猜想结论直接写出过原点且与直线垂直的直线l5的函数表达式.【答案】见解析【解析】(1)y=-x.(2)①如图,在直线l3上任取一点M,作MN⊥x轴,垂足为N.设MN的长为1,∵∠MON=30°,∴OM=2,.设直线l3的函数表达式为y=kx(k≠0),把(,1)代入y=kx,得,∴.∴直线l3的两数表达式为.②如图,作出直线l4,且在l4上任取一点P,使OP=OM,作PQ⊥y轴于Q,由∠POQ=30°,PO=2,得PQ=1,∴,设直线l4的函数表达式为y=k'x(k'≠0),把(-1,)代入y=k'x,得,∴.∴直线l4的函数表达式为.(3)猜想:当两直线互相垂直时,它们的函数表达式中自变量的系数互为负倒数,即两系数的乘积等于-1.由猜想得过原点且与直线垂直的直线l的函数表达式为y=5x.529.已知正比例函数y=(3k-1)x的图象经过第一、三象限,则k的取值范围是()A.k>0B.k<0C.D.【答案】D【解析】由正比例函数y=(3k-1)x的图象经过第一、三象限,得比例系数3k-1>0,解得,故选D.30.已知y-3与x成正比例,当x=2时,y=7,求y与x之间的函数解析式.【答案】∵y-3与x成正比例,∴设y-3=kx(k≠0).∵当x=2时,y=7,∴7-3=k·2,解得k=2.∴y与x的函数解析式为y=2x+3.【解析】把“y-3”当作“y=kx”里面的y,设函数解析式求解.。
初二数学一次函数试题答案及解析1.(2013河北)如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y轴以每秒1个单位长度的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为t 秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.【答案】(1)y=-x+4 (2)4<t<7 (3)t=1【解析】解:(1)直线y=-x+b交y轴于点P(0,b),由题意,得b>0,t≥0,b=1+t.当t=3时,b=4,∴y=-x+4.(2)当直线y=-x+b过点M(3,2)时,2=-3+b,解得b=5.∵b=1+t,∴5=1+t,∴t=4.当直线y=-x+b过点N(4,4)时,4=-4+b,解得b=8.∵b=1+t,∴8=1+t,∴t=7.∴当点M,N位于l的异侧时,4<t<7.(3)t=1时,落在y轴上;t=2时,落在x轴上.2. (2012广西桂林)如图,已知函数y=ax-1的图象过点(1,2),则不等式ax-1>2的解集是________.【答案】x>1【解析】解法一:ax-1>2的解集就是函数y=ax-1的图象在直线y=2上面的部分所对应的x 的取值集合,所以不等式ax-1>2的解集是x>1.解法二:根据一次函数y=ax-1的图象过点(1,2)可得a=3,不等式ax-1>2即3x-1>2,解之得x>1.3.一次函数y=-2x+4的图象与x轴交点的坐标是________.【答案】(2,0)【解析】当y=0时,-2x+4=0,解得x=2,所以函数图象与x轴交点的坐标为(2,0).4.如图,直线y=kx+b经过A(3,1)和B(6,0)两点,则的解集为________.【答案】3<x<6【解析】将(3,1),(6,0)代入y=kx+b,得解得∴,即解得3<x<6.5.一次函数y=kx+b(k≠0)的图象如图所示,则方程kx+b=0的解是________,方程kx+b=1的解是________.【答案】x=-2;x=0【解析】观察图象发现:当x=-2时,y=0;当x=0时,y=1.所以方程kx+b=0的解是x=-2,方程kx+b=1的解是x=0.6.对于一次函数y=-2x+4,下列结论错误的是()A.函数值随自变量的增大而减小B.函数的图象不经过第三象限C.函数的图象向下平移4个单位长度得函数y=-2x的图象D.函数的图象与x轴的交点坐标是(0,4)【答案】D【解析】A.∵一次函数y=-2x+4中k=-2<0,∴函数值y随x的增大而减小,故本选项正确,不符合题意;B.∵一次函数y=-2x+4中k=-2<0,b=4>0,∴此函数的图象经过第一、二、四象限,不经过第三象限,故本选项正确,不符合题意;C.由“上加下减”的原则可知,函数的图象向下平移4个单位长度得y=-2x的图象,故本选项正确,不符合题意;D.∵令y=0,得x=2,∴函数的图象与x轴的交点坐标是(2,0),故本选项错误,符合题意.故选D.7.直线y=3x+6与x轴的交点的横坐标x是方程2x+a=0的解,则a的值是________.【答案】4【解析】y=3x+b,令y=0,则x=-2.把x=-2代入2x+a=0,得2×(-2)+a=0,∴a=4.8.(2013黔西南州)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x <ax+4的解集为()A.B.x<3C.D.x>3【答案】A【解析】先根据函数y=2x和y=ax+4的图象相交于点A(m,3),求出m的值,从而得出点A的坐标,再根据函数的图象即可得出不等式2x<ax+4的解集.∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,,∴点A的坐标(,3),∴不等式2x<ax+4的解集为.故选A9.如图,直线y=kx+b经过点A(-1,-2)和点B(-2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为________.【答案】-2<x<-1【解析】由题意知,当kx+b<0时,x>-2;当kx+b>2x时,直线y=kx+b在直线y=2x上方,所以x<-1.所以不等式2x<kx+b<0的解集为-2<x<-1.10.直线y=kx-1一定经过点()A.(1,0)B.(1,k)C.(0,k)D.(0,-1)【答案】D【解析】将x=0代入y=kx-1中,得y=-1.故选D.11.点A、B、C、D的坐标如图所示,求直线AB与直线CD的交点坐标.【答案】(-2,2)【解析】解:由已知得,直线AB的解析式为y=2x+6,直线CD的解析式为.解方程组得所以直线AB,CD的交点坐标为(-2,2).12.已知两直线和y=2x-1,求它们与y轴所围成的三角形的面积.【答案】3【解析】解:直线和y轴的交点坐标为(0,3),直线y=2x-1和y轴的交点坐标为(0,-1).联立y=2x-1,得方程组解得故两直线的交点坐标为(,2).∴所围成的三角形的面积为.13.(2013四川成都)已知点(3,5)在直线y=ax+b(a,b为常数,且a≠0)上,则的值为________.【答案】【解析】将点(3,5)的坐标代入y=ax+b得,5=3a+b,即b-5=-3a,∴.14.(2013绥化)某地发生地震,某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.乙组由于要携带一些救灾物资,比甲组迟出发1.25小(千米)、y时(从甲组出发时开始计时).图中的折线、线段分别表示甲、乙两组所走路程y甲(千米)与时间x(时)之间的函数关系对应的图象.请根据图象所提供的信息,解决下列问题:乙(1)由于汽车发生故障,甲组在途中停留了________小时.(2)甲组的汽车排除故障后,立即提速赶往灾区.请问:甲组的汽车在排除故障时,距出发点的路程是多少千米?(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过25千米,请通过计算说明,按图象所表示的走法是否符合约定?【答案】解:(1)1.9(2)设直线EF的解析式为y乙=kx+b.∵点E(1.25,0)、点F(7.25,480)均在直线EF上,∴解得∴直线EF的解析式是y乙=80x-100.∵点C在直线EF上,且点C的横坐标为6,∴点C的纵坐标为80×6-100=380,∴点C的坐标是(6,380).设直线BD的解析式为y甲=mx+n.∵点C(6,380)、点D(7,480)在直线BD上,∴解得.∴直线BD的解析式y甲=100x-220.∵B点在直线BD上且点B的横坐标为4.9,∴点B的纵坐标为100×4.9-220=270,∴甲组在排除故障时,距出发点的路程是270千米.(3)由图象可知:甲、乙两组第一次相遇后,在B处,乙超过甲最远,在D处,甲超过乙最远.在点B处,有y乙-y甲=80×4.9-100-(100×4.9-220)=22,22千米<25千米,在点D处,有y甲-y乙=100×7-220-(80×7-100)=20,20千米<25千米.∴按图象所表示的走法符合约定.【解析】(1)由于线段AB与x轴平行,故自3时到4.9时这段时间内甲组停留在途中,所以停留的时间为1.9时;(2)观察图象可知点B的纵坐标就是甲组的汽车在排除故障时距出发点的路程的千米数,所以求得点B的坐标是解答(2)题的关键,这就需要求得直线EF和直线BD的解析式,而EF过点(1.25,0),(7.25,480),利用这两点的坐标即可求出该直线的解析式,然后令x=6,即可求出点C的纵坐标,又因点D(7,480),这样就可求出CD即BD的解析式,从而求出B点的坐标;(3)由图象可知:甲、乙两组第一次相遇后在B和D相距最远,在点B处时,x=4.9,求出此时的y乙-y甲,在点D有x=7,也求出此时的y甲-y乙,分别同25比较即可.15. (2014四川攀枝花)当kb<0时,一次函数y=kx+b的图象一定经过( )A.第一、三象限B.第一、四象限C.第二、三象限D.第二、四象限【答案】B【解析】因为kb<0,所以k>0,b<0或k<0,b>0.当k>0,b<0时,一次函数y=kx+b 的图象经过第一、三、四象限;当k<0,b>0时,一次函数y=kx+b的图象经过第一、二、四象限,所以其图象一定经过第一、四象限.16.有下列函数:①y=-8x,②,③y=8x2,④y=8x+1,⑤.其中是一次函数的有()A.0个B.1个C.2个D.3个【答案】D【解析】题中所给函数是一次函数的有①④⑤,共3个.17.点P(3,-1)、Q(-3,-1)、R(,0)、S(,4)中,在函数y=-2x+5的图象上的点有()A.1个B.2个C.3个D.4个【答案】C【解析】题目中所给的点中在函数y=-2x+5的图象上的有点P、R、S,共3个.18.要使函数y=(m-2)x n-1+n是一次函数,则m,n应满足()A.m≠2,n=0B.m=2,n=2C.m≠2,n=2D.m=2,n=0【答案】C【解析】由一次函数的定义知,n-1=1,m-2≠0,可得n=2,m≠2.19.(2013眉山)若实数a,b,c满足a+b+c=0,且a<b<c,则函数y=cx+a的图象可能是()A.B.C.D.【答案】C【解析】根据题中所给条件可判断c>0,a<0.20.如图所示的计算程序中,y与x之间的函数关系的图象应为()A.B.C.D.【答案】D【解析】根据题意可得y=-2x+4,此函数图象呈下降趋势,与y轴交于正半轴,故选D.21.如图,正比例函数y=kx的图象经过点A(2,4),AB⊥x轴于点B.(1)求该正比例函数的解析式.(2)将△ABO绕点A逆时针旋转90°得到△ADC,写出点C的坐标,试判断点C是否在直线上,并说明理由.【答案】见解析【解析】解:(1)∵正比例函数y=kx(k≠0)的图象经过点A(2,4),∴4=2k,∴k=2,∴y=2x.(2)∵A(2,4),AB⊥x轴于点B,∴OB=2,AB=4.∵△ABO绕点A逆时针旋转90°得到△ADC,∴DC=OB=2,AD=AB=4,∴C(6,2).∵当x=6时,.∴点C不在直线上.22.(2013陕西)“五一”期间,申老师一家自驾游去了离家170千米的某地,图是他们离家的距离y(千米)与汽车行驶时间x(时)之间的函数图象.(1)他们出发半小时时,离家多少千米?(2)求出AB段图象的函数表达式.(3)他们出发2小时时,离目的地还有多少千米?【答案】解:(1)由图象可设OA段图象的函数表达式为y=kx(k≠0).当x=1.5时,y=90,所以1.5k=90,解得k=60,即y=60x(0≤x≤1.5).当x=0.5时,y=60×0.5=30.答:他们出发半小时时,离家30千米.(2)由图象可设AB段图象的函数表达式为y=k′x+b,将A(1.5,90),B(2.5,170)的坐标代入,得解得所以y=80x-30(1.5≤x≤2.5).(3)当x=2时,y=80×2-30=130.170-130=40(千米).答:他们出发2小时时,离目的地还有40千米.【解析】此题主要是将实际问题转化为函数的问题来解决,利用待定系数法来确定一次函数的表达式,给出自变量的值来求出相应的函数值.23.已知函数y=(k-2)x|k|-1是正比例函数,则k的值为________.【答案】-2【解析】由正比例函数的定义知|k|-1=1,且k-2≠0,所以k=-2.24.(2013浙江湖州)若正比例函数y=kx的图象经过点(1,2),则k的值为()A.B.-2C.D.2【答案】D【解析】已知某点在函数的图象上,则这点的坐标满足函数解析式.本题把点(1,2)的坐标代入已知函数解析式,解方程可以求得k的值.25.(2013广东珠海)已知函数y=3x的图象经过点A(-1,y1),点B(-2,y2),则y 1________y2(填“>”“<”或“=”).【答案】>【解析】分别把点A(-1,y1),点B(-2,y2)的坐标代入函数y=3x,求出点y1,y2的值,并比较出其大小即可.∵点A(-1,y1),点B(-2,y2)是函数y=3x的图象上的点,∴y1=-3,y2=-6,∵-3>-6,∴y1>y2.26.已知y=y1+y2,y1与x2成正比例,y2与x-2成正比例,当x=1时,y=0,当x=-3时,y=4.求x=3时,y的值.【答案】10【解析】解:∵y1与x2成正比例,∴y1=k1x2(k1≠0).∵y2与x-2成正比例,∴y2=k2(x-2)(k2≠0).∵y=y1+y2,∴y=k1x2+k2(x-2).由当x=1时,y=0,x=-3时,y=4,得解得∴y=x2+x-2,∴当x=3时,y=32+3-2=10.27.已知正比例函数y=kx(k≠0),当x=-1时,y=-3,则它的图象大致是( ) A.B.C.D.【答案】C【解析】将x=-1,y=-3代入正比例函数解析式y=kx(k≠0),得-3=-k,即k=3>0,∴函数图象过原点和第一、三象限,故选C.28.对于正比例函数y=(1-k)x,若y随x的增大而减小,则k的值可以是( )A.-1B.3C.0D.-3【答案】B【解析】∵y随x的增大而减小,∴1-k<0,∴k>1.选项中符合条件的数只有3.故选B.29.根据要求,解答下列问题:(1)已知直线l1的函数表达式为y=x,请直接写出过原点且与l1垂直的直线l2的函数表达式;(2)①如图,过原点的直线l3向上的方向与x轴的正方向所成的角为30°,求直线l3的函数表达式;②若过原点的直线l4向上的方向与y轴的正方向所成的角为30°,求直线l4的函数表达式;(3)分别观察(1)、(2)中的两个函数表达式,请猜想:当两直线互相垂直时,它们的函数表达式中自变量的系数之间有何关系.请根据猜想结论直接写出过原点且与直线垂直的直线l5的函数表达式.【答案】见解析【解析】(1)y=-x.(2)①如图,在直线l3上任取一点M,作MN⊥x轴,垂足为N.设MN的长为1,∵∠MON=30°,∴OM=2,.设直线l3的函数表达式为y=kx(k≠0),把(,1)代入y=kx,得,∴.∴直线l3的两数表达式为.②如图,作出直线l4,且在l4上任取一点P,使OP=OM,作PQ⊥y轴于Q,由∠POQ=30°,PO=2,得PQ=1,∴,设直线l4的函数表达式为y=k'x(k'≠0),把(-1,)代入y=k'x,得,∴.∴直线l4的函数表达式为.(3)猜想:当两直线互相垂直时,它们的函数表达式中自变量的系数互为负倒数,即两系数的乘积等于-1.由猜想得过原点且与直线垂直的直线l5的函数表达式为y=5x.30.下列函数中,哪些是正比例函数?(1);(2);(3)y=8x2+x(1-8x);(4)y=1+8x.【答案】(1),即,其中.∴是正比例函数.(2)∵正比例函数都是常数与自变量积的形式,而是商的形式,∴不是正比例函数.(3)y=8x2+x(1-8x)经过恒等变形转化为y=x,其中k=1.∴y=8x2+x(1-8x)是正比例函数.(4)y=1+8x,即y=8x+1,不符合y=kx(k≠0)的形式.∴y=1+8x不是正比例函数.综上所述,,y=8x2+x(1-8x)是正比例函数.【解析】看每个函数解析式能否通过恒等变形转化为y=kx(k≠0)的形式.。
初二数学一次函数试题答案及解析1.对于正比例函数,y的值随x的值减小而减小,则m的值为。
【答案】-2.【解析】根据正比例函数的意义,可得答案.试题解析:∵y的值随x的值减小而减小,∴m<0,∵正比例函数,∴m2-3=1,∴m=-2,【考点】正比例函数的定义.2.某饮料厂开发了A、B两种新型饮料,主要原料均为甲和乙,每瓶饮料中甲、乙的含量如下表所示.现用甲原料和乙原料各2800克进行试生产,计划生产A、B两种饮料共100瓶.设生产A种饮料x瓶,解析下列问题:原料名称饮料名称甲乙(1)有几种符合题意的生产方案写出解析过程;(2)如果A种饮料每瓶的成本为2.60元,B种饮料每瓶的成本为2.80元,这两种饮料成本总额为y元,请写出y与x之间的关系式,并说明x取何值会使成本总额最低?【答案】(1)21种.(2)y=-0.2x+280.x=40时成本总额最低.【解析】(1)设生产A种饮料x瓶解出不等式方程组即可.(2)如图可得x与y的关系式,可知道x与y的关系.试题解析:(1)根据题意得:,解这个不等式组,得20≤x≤40.因为其中正整数解共有21个,所以符合题意的生产方案有21种.(2)根据题意,得y=2.6x+2.8(100-x),整理,得y=-0.2x+280.∵k=-0.2<0,∴y随x的增大而减小.∴当x=40时成本总额最低.【考点】一元一次不等式组的应用.3.如图,直线y=kx﹣2与x轴交于点A(1,0),与y轴交于点B,若直线AB上的点C在第一象限,且S △BOC =3,求点C 的坐标.【答案】(﹣3,﹣8)【解析】先把A 点坐标代入y=kx ﹣2求出k=2,得到直线解析式为y=2x ﹣2,再确定B 点坐标为(0,﹣2),设C 点坐标为(x ,y )(x <0,y <0),然后根据三角形面积公式得到×2×(﹣x )=3,解得x=﹣3,再求出自变量为﹣3所对应的函数值即可得到C 点坐标. 试题解析:把A (1,0)代入y=kx ﹣2得k ﹣2=0,解得k=2, ∴直线解析式为y=2x ﹣2,把x=0代入y=2x ﹣2得y=﹣2, ∴B 点坐标为(0,﹣2),设C 点坐标为(x ,y )(x <0,y <0), ∵S △BOC =3,∴×2×(﹣x )=3,解得x=﹣3, 把x=﹣3代入y=2x ﹣2得y=﹣8,∴C 点坐标为(﹣3,﹣8).【考点】一次函数图象上点的坐标特征.4. 一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,假设每分的进水量和出水量是两个常数,容器内的水量y (单位:升)与时间x(单位:分)之间的关系如图.则每分钟的进水量与出水量分别是( )A .5、2.5B .20、10C .5、3.75D .5、1.25【答案】C .【解析】∵t=4时,y=20, ∴每分钟的进水量==5(升);∴4到12分钟,8分钟的进水量=8×5=40(升),而容器内的水量只多了30升-20升=10升,∴8分钟的出水量=40升-10升=30升,∴每分钟的进水量==3.75(升).故选C.【考点】一次函数的应用.5.已知一次函数y=kx+b,当x=2时,y=﹣3,当x=1时,y=﹣1.(1)求一次函数的解析式;(2)若该一次函数的图形交x轴y轴分别于A、B两点,求△ABO的面积.【答案】(1这个函数的解析式为:y=﹣2x+1;(2)△ABO的面积是.【解析】(1)根据一次函数解析式的特点,可得出方程组,求k,b的值,从而得出这个函数的解析式;(2)根据函数的解析式,先分别求出函数与x轴、y轴分别相交于A、B两点的坐标,再运用三角形的面积公式求解.试题解析:(1)把(2,﹣3)与(1,﹣1),代入y=kx+b,得:,解得:,所以这个函数的解析式为:y=﹣2x+1;(2)当x=0时,y=1;当y=0时,x=,即与x轴、y轴分别相交于A、B两点的坐标是A(,0),B(0,1),所以△ABO的面积是S△ABO=×1×=.【考点】1.待定系数法求一次函数解析式2.一次函数图象上点的坐标特征.6.已知一次函数y=kx+b的图象如图所示,则k、b的符号是()A.k<0,b<0B.k>0,b<0C.k<0,b>0D.k>0,b>0【答案】A.【解析】一次函数的图象有四种情况:①当,时,函数的图象经过第一、二、三象限;②当,时,函数的图象经过第一、三、四象限;③当,时,函数的图象经过第一、二、四象限;④当,时,函数的图象经过第二、三、四象限.∵由图得,函数y=kx+b的图象图象经过第二、三、四象限,∴k、b的符号是k<0,b<0.故选A.【考点】一次函数图象与系数的关系.7.设直线kx+(k+1)y-1=0(为正整数)与两坐标所围成的图形的面积为Sk(k=1,2,3…….,2008),那么S1+S2+….+S2008=_________A.B.C.D.【答案】D.【解析】令x=0,y=;令y=0,x=;则直线kx+(k+1)y﹣1=0(k为正整数)与x轴的交点坐标为(,0),与y轴的交点坐标为(0,);∴直线与两坐标轴所围成的图形的面积为Sk=••=(﹣),当k=1,S1=(1﹣);当k=2,S2=(﹣);…当k=2008,S2008=(﹣).∴S1+S2+…+S2008=(1﹣+﹣+…+﹣)=(1﹣)=×=.故选D.【考点】一次函数的性质.8.现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂有A、B 两种不同规格的货车车厢共40节,使用A型车厢每节费用为6000元,使用B型车厢每节费用为8000元。
一次函数综合题选讲及练习例1.(2014秋•海曙区期末)如图①所示,直线L:y=mx+5m与x轴负半轴,y轴正半轴分别交于A、B两点.(1)当OA=OB时,求点A坐标及直线L的解析式;(2)在(1)的条件下,如图②所示,设Q为AB延长线上一点,作直线OQ,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=,求BN的长;(3)当m取不同的值时,点B在y轴正半轴上运动,分别以OB、AB为边,点B为直角顶点在第一、二象限内作等腰直角△OBF和等腰直角△ABE,连EF交y轴于P点,如图③.问:当点B在y轴正半轴上运动时,试猜想PB的长是否为定值?若是,请求出其值;若不是,说明理由.变式练习:1.(2014秋•常熟市校级期末)已知:如图1,一次函数y=mx+5m的图象与x轴、y轴分别交于点A、B,与函数y=﹣x的图象交于点C,点C的横坐标为﹣3.(1)求点B的坐标;(2)若点Q为直线OC上一点,且S△QAC=3S△AOC,求点Q的坐标;(3)如图2,点D为线段OA上一点,∠ACD=∠AOC.点P为x轴负半轴上一点,且点P 到直线CD和直线CO的距离相等.①在图2中,只利用圆规作图找到点P的位置;(保留作图痕迹,不得在图2中作无关元素.)②求点P的坐标.例2.(2014秋•宝安区期末)如图1,已知一次函数y=﹣x+6分别与x、y轴交于A、B两点,过点B的直线BC交x轴负半轴与点C,且OC=OB.(1)求直线BC的函数表达式;(2)如图2,若△ABC中,∠ACB的平分线CF与∠BAE的平分线AF相交于点F,求证:∠AFC=∠ABC;(3)在x轴上是否存在点P,使△ABP为等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.变式练习:2.(2013秋•靖江市校级期末)如图,直线l:y=x+6交x、y轴分别为A、B两点,C点与A点关于y轴对称.动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO.(1)点A坐标是,BC=.(2)当点P在什么位置时,△APQ≌△CBP,说明理由.(3)当△PQB为等腰三角形时,求点P的坐标.课后作业:1.(2015春•宁城县期末)已知,如图直线y=2x+3与直线y=﹣2x﹣1相交于C点,并且与两坐标轴分别交于A、B两点.(1)求两直线与y轴交点A,B的坐标及交点C的坐标;(2)求△ABC的面积.2.如图①,直线y=﹣x+1分别与坐标轴交于A,B两点,在y轴的负半轴上截取OC=OB(1)求直线AC的解析式;(2)如图②,在x轴上取一点D(1,0),过D作DE⊥AB交y轴于E,求E点坐标.3.(2014秋•雨城区校级期中)如图,直线L:y=﹣x+2与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),动点M从A点以每秒1个单位的速度沿x轴向左移动.(1)求A、B两点的坐标;(2)当M在x轴正半轴移动并靠近0点时,求△COM的面积S与M的移动时间t之间的函数关系式;当M在O点时,△COM的面积如何?当M在x轴负半轴上移动时,求△COM 的面积S与M的移动时间t之间的函数关系式;请写出每个关系式中t的取值范围;(3)当t为何值时△COM≌△AOB,并求此时M点的坐标.参考答案:例1.【考点】一次函数综合题.【分析】(1)当y=0时,x=﹣5;当x=0时,y=5m,得出A(﹣5,0),B(0,5m),由OA=OB,解得:m=1,即可得出直线L的解析式;(2)由勾股定理得出OM的长,由AAS证明△AMO≌△ONB,得出BN=OM,即可求出BN的长;(3)作EK⊥y轴于K点,由AAS证得△ABO≌△BEK,得出对应边相等OA=BK,EK=OB,得出EK=BF,再由AAS证明△PBF≌△PKE,得出PK=PB,即可得出结果.【解答】解:(1)∵对于直线L:y=mx+5m,当y=0时,x=﹣5,当x=0时,y=5m,∴A(﹣5,0),B(0,5m),∵OA=OB,∴5m=5,解得:m=1,∴直线L的解析式为:y=x+5;(2)∵OA=5,AM=,∴由勾股定理得:OM==,∵∠AOM+∠AOB+∠BON=180°,∠AOB=90°,∴∠AOM+∠BON=90°,∵∠AOM+∠OAM=90°,∴∠BON=∠OAM,在△AMO和△OBN中,,∴△AMO≌△ONB(AAS)∴BN=OM=;(3)PB的长是定值,定值为;理由如下:作EK⊥y轴于K点,如图所示:∵点B为直角顶点在第一、二象限内作等腰直角△OBF和等腰直角△ABE,∴AB=BE,∠ABE=90°,BO=BF,∠OBF=90°,∴∠ABO+∠EBK=90°,∵∠ABO+∠OAB=90°,∴∠EBK=∠OAB,在△ABO和△BEK中,,∴△ABO≌△BEK(AAS),∴OA=BK,EK=OB,∴EK=BF,在△PBF和△PKE中,,∴△PBF≌△PKE(AAS),∴PK=PB,∴PB=BK=OA=×5=.【点评】本题是一次函数综合题目,考查了一次函数解析式的求法、等腰直角三角形的性质、勾股定理、全等三角形的判定与性质等知识;本题综合性强,难度较大,特别是(3)中,需要通过作辅助线两次证明三角形全等才能得出结果.变式练习:1.【考点】一次函数综合题.【分析】(1)把点C的横坐标代入正比例函数解析式,求得点C的纵坐标,然后把点C的坐标代入一次函数解析式即可求得m的值,则易求点B的坐标;(2)由S△QAC=3S△AOC得到点Q到x轴的距离是点C到x轴距离的3倍或点Q到x轴的距离是点C到x轴距离的2倍;(3)①如图2,以点A为圆心,AC长为半径画弧,该弧与x轴的交点即为P;②如图3,作P1F⊥CD于F,P1E⊥OC于E,作P2H⊥CD于H,P2G⊥OC于G.利用△CAO ∽△DAC,求出AD的长,进而求出D点坐标,再用待定系数法求出CD解析式,利用点到直线的距离公式求出公式,=,解出a的值即可.【解答】解:(1)把x=﹣3代入y=﹣x得到:y=2.则C(﹣3,2).将其代入y=mx+5m,得:2=﹣3m+5m,解得m=1.则该直线方程为:y=x+5.令x=0,则y=5,即B(0,5);(2)由(1)知,C(﹣3,2).如图1,设Q(a,﹣a).∵S△QAC=3S△AOC,∴S△QAO=4S△AOC,或S△QAO=2S△AOC,①当S△QAO=4S△AOC时,OA•y Q=4×OA•y C,∴y Q=4y C,即|﹣a|=4×2=8,解得a=﹣12(正值舍去),∴Q(﹣12,8);②当S△QAO=2S△AOC时,OA•y Q=2×OA•y C,∴y Q=2y C,即|﹣a|=2×2=4,解得a=6(舍去负值),∴Q′(6,﹣4);综上所述,Q(﹣12,8)或(6,﹣4).(3)①如图2,以点A为圆心,AC长为半径画弧,该弧与x轴的交点即为P;②如图3,作P1F⊥CD于F,P1E⊥OC于E,作P2H⊥CD于H,P2G⊥OC于G.∵C(﹣3,2),A(﹣5,0),∴AC==2,∵∠ACD=∠AOC,∠CAO=∠DAC,∴△CAO∽△DAC,∴=,∴AD=,∴OD=5﹣=,则D(﹣,0).设CD解析式为y=kx+b,把C(﹣3,2),D(﹣,0)分别代入解析式得,解得,函数解析式为y=5x+17,设P点坐标为(a,0),根据点到直线的距离公式,=,两边平方得,(5a+17)2=2×4a2,解得a=﹣5±2,∴P1(﹣5﹣2,0),P2(﹣5+2,0).【点评】本题考查了一次函数综合题,涉及坐标与图象的关系、待定系数法求函数解析式、角平分线的性质、点到直线的距离、三角形的面积公式等知识,综合性较强,值得关注.法二:例2.【考点】一次函数综合题.【分析】(1)根据自变量与函数值的对应关系,可得A、B、C点的坐标,根据待定系数法,可得函数解析式;(2)根据角平分线的性质,可得∠FCA=∠BCA,∠FAE=∠BAE,根据三角形外角的关系,可得∠BAE=∠ABC+∠BCA,∠FAE=∠F+∠FCA,根据等式的性质,可得答案;(3)根据等腰三角形的定义,分类讨论:AB=AP=10,AB=BP=10,BP=AP,根据线段的和差,可得AB=AP=10时P点坐标,根据线段垂直平分线的性质,可得AB=BP=10时P点坐标;根据两点间的距离公式,可得BP=AP时P点坐标.【解答】解:(1)当x=0时,y=6,即B(0,6),当y=0时,﹣x+6=0,解得x﹣8,即A (8,0);由OC=OB,得OC=3,即C(﹣3,0);设BC的函数解析式为,y=kx+b,图象过点B、C,得,解得,直线BC的函数表达式y=2x+6;(2)证明:∵∠ACB的平分线CF与∠BAE的平分线AF相交于点F,∴∠FCA=∠BCA,∠FAE=∠BAE.∵∠BAE是△ABC的外角,∠FAE是△FAC的外角,∴∠BAE=∠ABC+∠BCA,∠FAE=∠F+∠FCA.∴∠ABC+∠BCA=∠F+∠BCA,∠ABC=∠F;(3)当AB=AP=10时,8﹣10=﹣2,P1(﹣2,0),8+10=18,P2(18,0);当AB=BP=10时,AO=PO=8,即P3(﹣8,0);设P(a,0),当BP=AP时,平方,得BP2=AP2,即(8﹣a)2=a2+62化简,得16a=28,解得a=,P4(,0),综上所述:P1(﹣2,0),P2(18,0),P3(﹣8,0);P4(,0).【点评】本题考查了一次函数综合题,(1)利用了函数值与自变量的关系求出A、B、C的值又利用了待定系数法求函数解析式;(2)利用了角平分线的性质,三角形外角的性质,(3)利用了等腰三角形的定义,分类讨论是解题关键.变式练习:2.【考点】一次函数综合题。
一次函数试卷1一、相信你一定能填对!(每小题3分,共30分)1.下列函数中,自变量x的取值范围是x≥2的是()C.y=A.y=B.y=D.x+1的图象上()A.(2,1)B.(-2,2.下面哪个点在函数y=121)C.(2,0)D.(-2,0)3.下列函数中,y是x的正比例函数的是()x C.y=2x2 D.y=-2x+1A.y=2x-1 B.y=34.一次函数y=-5x+3的图象经过的象限是()A一、二、三B.二、三、四C.一、二、四6.若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是()A.k>3 B.0<k≤3 C.0≤k<3 D.0<k<37.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为() A.y=-x-2 B.y=-x-6 C.y=-x+10 D.y=-x-18.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y(升)与行驶时间t(时)的函数关系用图象表示应为下图中的()9.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t(小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是()10.一次函数y=kx+b的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为()x-3A.y=-2x+3 B.y=-3x+2 C.y=3x-2 D.y=12二、你能填得又快又对吗(每小题3分,共30分)11.已知函数y=mx+2-m是正比例函数,则m=________,•该函数的解析式为_________.12.若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为________.13.已知一次函数y=kx+b 的图象经过点A (1,3)和B (-1,-1),则此函数的解析式为_________.14.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方.15.已知一次函数y=-x+a 与y=x+b 的图象相交于点(m ,8),则a+b=_________.16.若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)17.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________. 18.已知一次函数y=-3x+1的图象经过点(a ,1)和点(-2,b ),则a=________,b=______.19.如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为_____. 20.如图,一次函数y=kx+b 的图象经过A 、B 两点,与x 轴交于点C ,则此一次函数的解析式为__________,△AOC 的面积为_________.三、认真解答,一定要细心哟!(共60分)21.(14分)根据下列条件,确定函数关系式:(1)y与x成正比,且当x=9时,y=16;(2)y=kx+b的图象经过点(3,2)和点(-2,1).22.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少(2)降价前他每千克土豆出售的价格是多少(3)降价后他按每千克元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆23.(10分)如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元通话7分钟呢24.(12分)已知雅美服装厂现有A种布料70米,B种布料52米,•现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料1.•1米,B种布料米,可获利50元;做一套N型号的时装需用A种布料米,B种布料0.•9米,可获利45元.设生产M型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为y元.①求y(元)与x(套)的函数关系式,并求出自变量的取值范围;②当M型号的时装为多少套时,能使该厂所获利润最大最大利润是多一次函数试卷1答案3.B 4.C 5.D 6.A 7.C 8.B 9.C 10.A11.2;y=2x 12.y=3x 13.y=2x+1 14.<2 15.1616.<;< 17.58xy=-⎧⎨=-⎩18.0;7 19.±6 20.y=x+2;421.①y=169x;②y=15x+7522.y=x-2;y=8;x=1422.①5元;②元;③45千克23.①当0<t≤3时,y=;当t>3时,y=.②元;元24.①y=50x+45(80-x)=5x+3600.∵两种型号的时装共用A种布料[+0.•6(80-x)]米,共用B种布料[+(80-x)]米,∴解之得40≤x≤44,而x为整数,∴x=40,41,42,43,44,∴y与x的函数关系式是y=5x+3600(x=40,41,42,43,44);②∵y随x的增大而增大,∴当x=44时,y最大=3820,即生产M型号的时装44套时,该厂所获利润最大,最大利润是3820元.。
一次函数例题精讲一、函数的相关概念1.常量与变量在某一变化过程中,可以取不同数值的量叫做变量,取值始终保持不变的量叫做常量.如在圆的面积公式2πS R =中,π是常数,是一个常量,而S 随R 的变化而变化,所以S 、R 是变量. 2.自变量、因变量与函数在某一变化过程中,有两个量,例如x 和y ,对于x 的每一个值,y 都有唯一的值与之对应,其中x 是自变量,y 是因变量,此时也称y 是x 的函数.函数不是数,它是指在一个变化过程中两个变量之间的关系,函数本质就是变量间的对应关系. 注意:⑴对于每一个给定的x 值,y 有一个唯一确定的值与之对应,否则y 就不是x 的函数.例如2y x =就不是函数,因为当4x =时,2y =±,即y 有两个值与x 对应.⑵对于每一个给定的y 值,x 可以有一个值与之对应,也可以有多个值与之对应.例如在函数2(3)y x =-中,2x =时,1y =;4x =时,1y =.二、函数自变量的取值范围函数自变量的取值范围是指是函数有意义的自变量的取值的全体.求自变量的取值范围通常从两方面考虑,一是要使函数的解析式有意义;二是符合客观实际.在初中阶段,自变量的取值范围考虑下面几个方面: ⑴整式:自变量的取值范围是任意实数.⑵分式:自变量的取值范围是使分母不为零的任意实数. ⑶根式:当根指数为偶数时,被开方数为非负数. ⑷零次幂或负整数次幂:使底数不为零的实数.注意:在一个函数关系式中,同时有各种代数式,函数自变量的取值范围是各种代数式中自变量取值范围的公共部分.在实际问题中,自变量的取值范围应该符合实际意义,通常往往取非负数,整数之类.三、函数的表示方法1.函数的三种表示方法:⑴列表法:通过列表表示函数的方法.⑵解析法:用数学式子表示函数的方法叫做解析法.譬如:30S t =,2S R π=. ⑶图象法:用图象直观、形象地表示一个函数的方法. 2.对函数的关系式(即解析式)的理解:⑴函数关系式是等式.例如4y x =就是一个函数关系式. ⑵函数关系式中指明了那个是自变量,哪个是函数.通常等式右边代数式中的变量是自变量,等式左边的一个字母表示函数.例如:y =x 是自变量,y 是x 的函数.⑶函数关系式在书写时有顺序性.例如:31y x =-+是表示y 是x 的函数,若写成13yx -=就表示x 是y 的函数.求y 与x 的函数关系时, 必须是只用变量x 的代数式表示y ,得到的等式右边只含x 的代数式.四、函数的图象1.函数图象的概念:对于一个函数,如果把自变量x 和函数y 的每对值分别作为点的横坐标与纵坐标,在平面直角坐标系内描出相应的点,这些点所组成的图形,就是函数的图象. 2.函数图象的画法⑴列表; ⑵描点; ⑶连线. 3.函数解析式与函数图象的关系:由函数图象的定义可知,图象上任意一点(),P x y 中的x ,y 都是解析式方程的一个解.反之,以解析式方程的任意一个解为坐标的点一定在函数的图象上.判断一个点是否在函数图象上的方法是:将这个点的坐标值代入函数的j 解析式,如果满足函数解析式,这个店就在函数的图象上,否则就不在这个函数的图象上.板块一、函数及其自变量取值范围【例1】 下列关系式中不是函数关系的是( )A.y =0x >)B.y x =(0x >)C.y =0x >)D.y =(x <【答案】A【例2】 在函数y =中,自变量x 的值取值范围是( )A.3x <-B.3x ≤-C.3x ≤D.3x >【答案】D【例3】 函数y 的自变量的取值范围是( )A.22x -<≤B.22x -≤≤C.2x ≤且2x ≠D.22x -<<【答案】A【例4】 求下列各函数中自变量x 的取值范围;⑴y =y;⑶0y x =;⑷y =+【答案】⑴32x ≤且1x ≠-;⑵1x ≥且x ≠40x -≤<或04x <≤;⑷102x ≤<或122x <≤【例5】 等腰三角形的周长为30,写出它的底边长y 与腰长x 之间的函数关系,并写出自变量的取值范围?【答案】⑴302y x =-,由三角形的三边关系可得:2x y >,0x >,0y >,可得15152x <<. 【例6】 如图,周长为24的凸五边形ABCDE 被对角线BE 分为等腰ABE ∆及矩形BCDE ,AE DE =,设AB 的长为x ,CD 的长为y ,求y 与x 之间的函数关系式,写出自变量的取值范围.【答案】244y x =-,在ABE ∆中,2244x x >-, 所以4x >,故46x <<.【例7】 小高从家门口骑车去单位上班,先走平路到达点A ,再走上坡路到达点B ,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是( ) A .12分钟 B .15分钟 C .25分钟 D .27分钟【答案】B【例8】 李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校。
初二数学一次函数超经典试题含答案一、相信你一定能填对!(每小题3分,共30分)1.下列函数中,自变量x 的取值范围是x ≥2的是( ) A .y=2x - B .y=2x - C .y=24x - D .y=2x +·2x - 2.下面哪个点在函数y=12x+1的图象上( ) A .(2,1) B .(-2,1) C .(2,0) D .(-2,0) 3.下列函数中,y 是x 的正比例函数的是( ) A .y=2x-1 B .y=3xC .y=2x 2D .y=-2x+1 4.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四6.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k>3 B .0<k ≤3 C .0≤k<3 D .0<k<3 7.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( )A .y=-x-2B .y=-x-6C .y=-x+10D .y=-x-18.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )9.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )10.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( ) A .y=-2x+3 B .y=-3x+2 C .y=3x-2 D .y=12x-3 二、你能填得又快又对吗?(每小题3分,共30分)11.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________.12.若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为________.13.已知一次函数y=kx+b的图象经过点A(1,3)和B(-1,-1),则此函数的解析式为_________.14.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方.15.已知一次函数y=-x+a与y=x+b的图象相交于点(m,8),则a+b=_________.16.若一次函数y=kx+b交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)17.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x yx y--=⎧⎨-+=⎩的解是________.18.已知一次函数y=-3x+1的图象经过点(a,1)和点(-2,b),则a=________,b=______.19.如果直线y=-2x+k与两坐标轴所围成的三角形面积是9,则k的值为_____.20.如图,一次函数y=kx+b的图象经过A、B两点,与x轴交于点C,则此一次函数的解析式为__________,△AOC的面积为_________.三、认真解答,一定要细心哟!(共60分)21.(14分)根据下列条件,确定函数关系式:(1)y与x成正比,且当x=9时,y=16;(2)y=kx+b的图象经过点(3,2)和点(-2,1).23.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?24.(10分)如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?25.(12分)已知雅美服装厂现有A种布料70米,B种布料52米,•现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料1.•1米,B种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0.•9米,可获利45元.设生产M型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为y元.①求y(元)与x(套)的函数关系式,并求出自变量的取值范围;②当M型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?答案:第一份3.B 4.C 5.D 6.A 7.C 8.B 9.C 10.A11.2;y=2x 12.y=3x 13.y=2x+1 14.<2 15.1616.<;< 17.58xy=-⎧⎨=-⎩18.0;7 19.±6 20.y=x+2;421.①y=169x;②y=15x+7522.y=x-2;y=8;x=1423.①5元;②0.5元;③45千克24.①当0<t≤3时,y=2.4;当t>3时,y=t-0.6.②2.4元;6.4元25.①y=50x+45(80-x)=5x+3600.∵两种型号的时装共用A种布料[1.1x+0.•6(80-x)]米,共用B种布料[0.4x+0.9(80-x)]米,∴解之得40≤x≤44,而x为整数,∴x=40,41,42,43,44,∴y与x的函数关系式是y=5x+3600(x=40,41,42,43,44);②∵y随x的增大而增大,∴当x=44时,y最大=3820,即生产M型号的时装44套时,该厂所获利润最大,最大利润是3820元.。
初二数学一次函数练习题及答案
一、选择题
1.下列函数中,是一次函数的是()
A. y = 3x^2 + 4x - 2
B. y = 2x + 5
C. y = 5/x
D. y = √x
答案:B
2.已知一次函数y = kx - 3的图象与x轴交于点(-4, 0),则k的值为()
A. 4
B. 3
C. 2
D. 1
答案:D
3.已知函数y = -2x + 5与直线y = x + 3相交于点P,点P的坐标是()
A. (2, 3)
B. (-2, 1)
C. (-2, 5)
D. (2, 1)
答案:A
二、填空题
1.若一次函数y = -3x + b过点(4, 11),则b的值为_______。
答案:23
2.若函数y = kx + 2经过点(3, -1),则k的值为_______。
答案:-3
3.若直线y = 2x + a与函数y = kx - 3的图象交于点(-2, 1),则a的值为_______。
答案:-5
三、计算题
1.某商品的售价y与进价x之间的关系可用一次函数模型y = 0.8x + 200表示。
如果进价为600元,那么售价是多少?
答案:售价为680元。
解析:将进价x代入函数模型y = 0.8x + 200中,得到售价y = 0.8 * 600 + 200 = 480 + 200 = 680元。
2.一辆汽车以每小时60公里的速度行驶,已经行驶2小时。
如果继续以相同的速度行驶,总共行驶的路程是多少公里?
答案:行驶路程为120公里。
解析:车速为60公里/小时,行驶2小时,则行驶的路程为60 * 2 = 120公里。
3.已知函数y = 4x - 5,求使得y = 0的x的值。
答案:x = 5/4。
解析:将y = 0代入函数中,得到0 = 4x - 5,解方程得x = 5/4。
四、应用题
小明去超市买牛奶,一瓶牛奶售价为y元,购买x瓶牛奶的总花费
C(x)与购买数量x之间的关系可以表示为一次函数C(x)= 5x + 10。
1.如果小明购买3瓶牛奶,他需要支付多少钱?
答案:小明需要支付25元。
解析:将购买数量x = 3代入总花费函数C(x)中,得到C(3) = 5 * 3
+ 10 = 15 + 10 = 25元。
2.当总花费为60元时,小明购买了多少瓶牛奶?
答案:小明购买了10瓶牛奶。
解析:将总花费C = 60代入总花费函数C(x)中,得到60 = 5x + 10,解方程得x = 10。
3.如果小明购买10瓶牛奶,他需要支付多少钱?
答案:小明需要支付60元。
解析:将购买数量x = 10代入总花费函数C(x)中,得到C(10) = 5 * 10 + 10 = 50 + 10 = 60元。
总结:
本文介绍了一次函数的基本概念和应用,并给出了相关的练习题及答案。
通过练习题的解答,读者可以对一次函数的性质和求解有更深入的理解。
一次函数在数学中应用广泛,通过掌握一次函数的知识,可以更好地解决实际生活中的问题。