罗店中学初三中考数学模拟卷
- 格式:doc
- 大小:217.00 KB
- 文档页数:5
一、选择题1.(0分)[ID :11130]如图,在矩形、三角形、正五边形、菱形的外边加一个宽度一样的外框,保证外框的边界与原图形对应边平行,则外框与原图不一定相似的是( ) A . B . C . D .2.(0分)[ID :11118]已知线段a 、b ,求作线段x ,使22b x a=,正确的作法是( ) A .B .C .D .3.(0分)[ID :11114]P 是△ABC 一边上的一点(P 不与A 、B 、C 重合),过点P 的一条直线截△ABC,如果截得的三角形与△ABC 相似,我们称这条直线为过点P 的△ABC 的“相似线”.Rt△ABC 中,∠C=90°,∠A=30°,当点P 为AC 的中点时,过点P 的△ABC 的“相似线”最多有几条?( )A .1条B .2条C .3条D .4条4.(0分)[ID :11103]如图,直线12y x b =-+与x 轴交于点A ,与双曲线4(0)y x x=-<交于点B ,若2AOB S ∆=,则b 的值是( )A .4B .3C .2D .15.(0分)[ID:11102]如图,在平行四边形ABCD中,F是边AD上的一点,射线CF和BA的延长线交于点E,如果12C EAFC CDF,那么S EAFS EBC的值是()A.12B.13C.14D.196.(0分)[ID:11083]如果两个相似三角形对应边之比是1:3,那么它们的对应中线之比是()A.1:3B.1:4C.1:6D.1:97.(0分)[ID:11077]如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交CD于点F,交AD的延长线于点E,若AB=4,BM=2,则△DEF的面积为()A.9B.8C.15D.14.58.(0分)[ID:11070]河堤横断面如图所示,堤高BC=5米,迎水坡AB的坡比1:3,则AC的长是( )A.10米B.53米C.15米D.103米9.(0分)[ID:11048]如图所示,在平面直角坐标系中,已知点A(2,4),过点A作AB⊥x轴于点B.将△AOB以坐标原点O为位似中心缩小为原图形的12,得到△COD,则CD的长度是()A.2 B.1 C.4 D.510.(0分)[ID :11047]如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上.已知纸板的两条边DF =50cm ,EF =30cm ,测得边DF 离地面的高度AC =1.5m ,CD =20m ,则树高AB 为( )A .12mB .13.5mC .15mD .16.5m11.(0分)[ID :11046]在△ABC 中,若|sinA-32|+(1-tanB)2=0,则∠C 的度数是( ) A .45° B .60° C .75° D .105°12.(0分)[ID :11039]在反比例函数4y x=的图象中,阴影部分的面积不等于4的是( ) A . B . C . D .13.(0分)[ID :11035]若270x y -=. 则下列式子正确的是( )A .72x y =B .27x y =C .27x y =D .27x y = 14.(0分)[ID :11038]下列变形中:①由方程125x -=2去分母,得x ﹣12=10; ②由方程29x =92两边同除以29,得x =1; ③由方程6x ﹣4=x +4移项,得7x =0;④由方程2﹣5362x x -+=两边同乘以6,得12﹣x ﹣5=3(x +3). 错误变形的个数是( )个. A .4 B .3 C .2 D .115.(0分)[ID :11037]制作一块3m×2m 长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是( )A .360元B .720元C .1080元D .2160元二、填空题16.(0分)[ID :11174]一个4米高的电线杆的影长是6米,它临近的一个建筑物的影长是36米.则这个建筑的高度是_____m .17.(0分)[ID :11169]如图,在直角坐标系中,点(2,0)A ,点(0,1)B ,过点A 的直线l 垂直于线段AB ,点P 是直线l 上在第一象限内的一动点,过点P 作PC x ⊥轴,垂足为C ,把ACP △沿AP 翻折180︒,使点C 落在点D 处,若以A ,D ,P 为顶点的三角形与△ABP 相似,则满足此条件的点P 的坐标为__________.18.(0分)[ID :11168]若△ABC ∽△A’B’C’,且△ABC 与△A’B’C’的面积之比为1:4,则相似比为____.19.(0分)[ID :11138]如图,等腰直角三角形ABC 中, AB=4 cm.点是BC 边上的动点,以AD 为直角边作等腰直角三角形ADE.在点D 从点B 移动至点C 的过程中,点E 移动的路线长为________cm.20.(0分)[ID :11226]如图,l 1∥l 2∥l 3,直线a 、b 与l 1、l 2、l 3分别相交于点A 、B 、C 和点D 、E 、F .若AB =3,DE =2,BC =6,则EF =______.21.(0分)[ID :11221]如图,已知两个反比例函数C 1:y =1x 和C 2:y =13x在第一象限内的图象,设点P 在C 1上,PC ⊥x 轴于点C ,交C 2于点A ,PD ⊥y 轴于点D ,交C 2于点B ,则四边形PAOB 的面积为_____.22.(0分)[ID :11214]如图所示,在Rt △ABC 中,∠C=90°,BC=1,AC=4,把边长分别为1x ,2x ,3x ,…,n x 的n ()1n ≥个正方形依次放入△ABC 中,则第n 个正方形的边长n x =_______________(用含n 的式子表示).23.(0分)[ID :11210]如图,菱形OABC 的顶点O 是原点,顶点B 在y 轴上,菱形的两条对角线的长分别是6和4,反比例函数()y x 0xk =<的图象经过点C ,则k 的值为 .24.(0分)[ID :11182]如图,若点 A 的坐标为 ()1,3 ,则 sin 1∠ =________.25.(0分)[ID :11177]如图,将矩形ABCD 折叠,折痕为EF ,BC 的对应边B'C′与CD 交于点M ,若∠B′MD=50°,则∠BEF 的度数为_____.三、解答题26.(0分)[ID :11318]已知四边形ABCD 中,E ,F 分别是AB ,AD 边上的点,DE 与CF 交于点G.(1)如图①,若四边形ABCD 是矩形,且DE ⊥CF ,求证:DE AD CF CD= ;(2)如图②,若四边形ABCD 是平行四边形,试探究:当∠B 与∠EGC 满足什么关系时,使得DE AD CF CD=成立?并证明你的结论.27.(0分)[ID :11313]如图,∠ABD =∠BCD =90°,AB •CD =BC •BD ,BM ∥CD 交AD 于点M .连接CM 交DB 于点N .(1)求证:△ABD ∽△BCD ;(2)若CD =6,AD =8,求MC 的长.28.(0分)[ID :11287]如图,已知抛物线经过A (﹣2,0),B (﹣3,3)及原点O ,顶点为C .(1)求抛物线的解析式;(2)若点D 在抛物线上,点E 在抛物线的对称轴上,且A 、O 、D 、E 为顶点的四边形是平行四边形,求点D 的坐标;(3)P 是抛物线上的第一象限内的动点,过点P 作PMx 轴,垂足为M ,是否存在点P ,使得以P 、M 、A 为顶点的三角形△BOC 相似?若存在,求出点P 的坐标;若不存在,请说明理由.29.(0分)[ID :11286]如图,在平面直角坐标系中,正方形OABC 的顶点O 与坐标原点重合,其边长为2,点A ,点C 分别在轴,轴的正半轴上.函数2y x =的图象与CB 交于点D ,函数k y x=(k 为常数,0k ≠)的图象经过点D ,与AB 交于点E ,与函数2y x =的图象在第三象限内交于点F ,连接AF 、EF .(1)求函数k y x=的表达式,并直接写出E 、F 两点的坐标. (2)求△AEF 的面积.30.(0分)[ID :11277]已知如图,AD BE CF ,它们依次交直线a ,b 于点A 、B 、C 和点D 、E 、F.(1)如果6AB =,8BC =,21DF =,求DE 的长.(2)如果:2:5DE DF =,9AD =,14CF =,求BE 的长.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题1.C2.C3.C4.D5.D6.A7.A8.B9.A10.D11.C12.B13.A14.B15.C二、填空题16.24米【解析】【分析】先设建筑物的高为h米再根据同一时刻物高与影长成正比列出关系式求出h的值即可【详解】设建筑物的高为h米由题意可得:则4:6=h:36解得:h=24(米)故答案为24米【点睛】本题17.或【解析】【分析】求出直线l的解析式证出△AOB∽△PCA得出设AC=m(m>0)则PC =2m根据△PCA≌△PDA得出当△PAD∽△PBA时根据得出m=2从而求出P点的坐标为(44)(0-4)若△18.1:2【解析】【分析】由△ABC相似△A′B′C′面积比为1:4根据相似三角形的面积比等于相似比的平方即可求解【详解】解:∵△ABC相似△A′B′C′面积比为1:4∴△ABC与△A′B′C′的相似比19.【解析】试题解析:连接CE如图:∵△ABC和△ADE为等腰直角三角形∴AC=ABAE=AD ∠BAC=45°∠DAE=45°即∠1+∠2=45°∠2+∠3=45°∴∠1=∠3∵∴△ACE∽△ABD∴∠20.4【解析】【分析】利用平行线分线段成比例定理列出比例式求出EF结合图形计算即可【详解】∵∥∥∴又DE=2∴EF=4故答案为:4【点睛】本题考查的是平行线分线段成比例定理灵活运用定理找准对应关系是解题21.【解析】【分析】根据反比函数比例系数k的几何意义得到S△AOC=S△BOD=S矩形PCO D=1然后利用矩形面积分别减去两个三角形的面积即可得到四边形PAOB的面积【详解】∵P C⊥x轴PD⊥y轴∴S△22.【解析】【分析】根据正方形的对边平行证明△BDF∽△BCA然后利用相似三角形对应边成比例列出比例式即可求出第1个正方形的边长同理利用前两个小正方形上方的三角形相似根据相似三角形对应边成比例列出比例式23.-6【解析】【分析】分析:∵菱形的两条对角线的长分别是6和4∴A(﹣32)∵点A 在反比例函数的图象上∴解得k=-6【详解】请在此输入详解!24.【解析】【分析】根据勾股定理可得OA的长根据正弦是对边比斜边可得答案【详解】如图由勾股定理得:OA==2sin∠1=故答案为25.70°【解析】【分析】设∠BEF=α则∠EFC=180°﹣α∠DFE=∠BEF=α∠CFE=40°+α依据∠EF C=∠EFC即可得到180°﹣α=40°+α进而得出∠BEF的度数【详解】∵∠C=∠C三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【解析】【分析】根据相似多边形的判定定理对各个选项进行分析,从而确定最后答案.【详解】正五边形相似,因为它们的边长都对应成比例、对应角都相等,符合相似的条件,故A不符合题意;锐角三角形、菱形的原图与外框相似,因为其对应角均相等,对应边均对应成比例,符合相似的条件,故B、D不符合题意;矩形不相似,因为其对应角的度数一定相同,但对应边的比值不一定相等,不符合相似的条件,故A符合题意;故选C.【点睛】本题主要考查了相似图形判定,解决本题的关键是要注意边数相同、各角对应相等、各边对应成比例的两个多边形是相似多边形.2.C解析:C【解析】【分析】对题中给出的等式进行变形,先作出已知线段a、b和2b,再根据平行线分线段成比例定理作出平行线,被截得的线段即为所求线段x.【详解】解:由题意,22b xa =∴2a bb x =,∵线段x没法先作出,根据平行线分线段成比例定理,只有C符合.故选C.3.C解析:C【解析】试题分析:根据相似线的定义,可知截得的三角形与△ABC有一个公共角.①公共角为∠A 时,根据相似三角形的判定:当过点P的角等于∠C时,即图中PD∥BC时,△APD∽△ACB;当过点P的角等于∠B时,即图中当PF⊥AB时,△APF∽△ABC;②公共角为∠C时,根据相似三角形的判定:当过点P的角等于∠A时,即图中P E∥AB时,△CPE∽△CAB;当过点P的角等于∠B时,根据∠CPB<60°,可知此时不成立;③公共角为∠B,不成立.解:①公共角为∠A时:当过点P的角等于∠C时,即图中PD∥BC时,△APD∽△AC B;当过点P的角等于∠B时,即图中当PF⊥AB时,△APF∽△ABC;②公共角为∠C时:当过点P的角等于∠A时,即图中P E∥AB时,△CPE∽△CAB;当过点P的角等于∠B时,∵∠CPB=∠A+∠ABP,∴PB>PC,PC=PA,∴PB>PA,∴∠PBA<∠A,∴∠CPB<60°,可知此时不成立;③公共角为∠B,不成立.综上最多有3条.故选C.4.D解析:D因为直线12y x b =-+与x 轴交于点A ,所以令y =0,可得:1 02x b -+=,解得2x b =, 则OA =2b ,又因为2AOB S ∆=,所以B 点纵坐标是:2b ,因为B 点在4(0)y x x =-<,所以B 点坐标为(-2b ,2b ),又因为B 点在直线12y x b =-+上,所以()2122b b b =-⨯-+,解得1b =±,因为直线12y x b =-+与y 轴交于正半轴,所以0b >,所以1b =,故选D. 5.D解析:D【解析】分析:根据相似三角形的性质进行解答即可.详解:∵在平行四边形ABCD 中,∴AE ∥CD ,∴△EAF ∽△CDF , ∵12EAF CDF C C ,= ∴12AF DF =, ∴11123AF BC ==+, ∵AF ∥BC ,∴△EAF ∽△EBC ,∴21139EAF EBC S S ⎛⎫== ⎪⎝⎭, 故选D.点睛:考查相似三角形的性质:相似三角形的面积比等于相似比的平方.6.A解析:A【解析】∵两个相似三角形对应边之比是1:3,∴它们的对应中线之比为1:3.故选A.点睛: 本题考查相似三角形的性质,相似三角形的对应边、对应周长,对应高、中线、角平分线的比,都等于相似比,掌握相似三角形的性质及灵活运用它是解题的关键.7.A解析:A【解析】由勾股定理可求AM的长,通过证明△ABM∽△EMA,可求AE=10,可得DE=6,由平行线分线段成比例可求DF的长,即可求解.【详解】解:∵AB=4,BM=2,∴AM===,∵四边形ABCD是正方形,∴AD∥BC,∠B=∠C=90°,∴∠EAM=∠AMB,且∠B=∠AME=90°,∴△ABM∽△EMA,∴BM AM AM AE==∴AE=10,∴DE=AE﹣AD=6,∵AD∥BC,即DE∥MC,∴△DEF∽△CMF,∴DE DF MC CF=,∴642DFCF=-=3,∵DF+CF=4,∴DF=3,∴S△DEF=12DE×DF=9,故选:A.【点睛】本题考查了相似三角形的判定与性质,正方形的性质,勾股定理;熟练掌握相似三角形的性质,并能进行推理计算是解决问题的关键.8.B解析:B【解析】【分析】Rt△ABC中,已知了坡比是坡面的铅直高度BC与水平宽度AC之比,通过解直角三角形即可求出水平宽度AC的长.【详解】Rt△ABC中,BC=5米,tanA=1;∴AC=BC÷故选:B.【点睛】此题主要考查学生对坡度坡角的掌握及三角函数的运用能力.9.A解析:A【解析】【分析】直接利用位似图形的性质结合A点坐标可直接得出点C的坐标,即可得出答案.【详解】∵点A(2,4),过点A作AB⊥x轴于点B,将△AOB以坐标原点O为位似中心缩小为原图形的12,得到△COD,∴C(1,2),则CD的长度是2,故选A.【点睛】本题主要考查了位似变换以及坐标与图形的性质,正确把握位似图形的性质是解题关键.10.D解析:D【解析】【分析】利用直角三角形DEF和直角三角形BCD相似求得BC的长后加上小明同学的身高即可求得树高AB.【详解】∵∠DEF=∠BCD=90°,∠D=∠D,∴△DEF∽△DCB,∴BC DC EF DE=,∵DF=50cm=0.5m,EF=30cm=0.3m,AC=1.5m,CD=20m,∴由勾股定理求得DE=40cm,∴20 0.30.4 BC=,∴BC=15米,∴AB=AC+BC=1.5+15=16.5(米).故答案为16.5m.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.11.C解析:C【解析】【分析】先根据非负数的性质求出sinA及tanB的值,再根据特殊角的三角函数值求出∠A及∠B的值,由三角形内角和定理即可得出结论.【详解】∵|sin A B)2=0,∴tanB=1,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=180°-60°-45°=75°.故选C.【点睛】(1)非负数的性质:几个非负数的和等0,这几个非负数都为0;(2)三角形内角和等于180°.12.B解析:B【解析】【分析】根据反比例函数kyx=中k的几何意义,过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|解答即可.【详解】解:A、图形面积为|k|=4;B、阴影是梯形,面积为6;C、D面积均为两个三角形面积之和,为2×(12|k|)=4.故选B.【点睛】主要考查了反比例函数kyx=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=12|k|.13.A解析:A【解析】【分析】直接利用比例的性质分别判断即可得出答案.【详解】∵2x -7y =0,∴2x =7y .A .72x y =,则2x =7y ,故此选项正确; B .27x y=,则xy =14,故此选项错误; C .27x y =,则2y =7x ,故此选项错误; D .27x y =,则7x =2y ,故此选项错误. 故选A .【点睛】 本题考查了比例的性质,正确将比例式变形是解题的关键.14.B解析:B【解析】【分析】根据方程的不同特点,从计算过程是否正确、方法应用是否得当等方面加以分析.【详解】 ①方程125x -=2去分母,两边同时乘以5,得x ﹣12=10,故①正确. ②方程29x =92,两边同除以29,得x =814;要注意除以一个数等于乘以这个数的倒数,故②错误.③方程6x ﹣4=x +4移项,得5x =8;要注意移项要变号,故③错误.④方程2﹣5362x x -+=两边同乘以6,得12﹣(x ﹣5)=3(x +3);要注意去分母后,要把是多项式的分子作为一个整体加上括号,故④错误.故②③④变形错误.故选B .【点睛】 在解方程时,要注意以下问题:(1)去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号;(2)移项时要变号.15.C解析:C【解析】【分析】根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可.【详解】3m×2m=6m2,∴长方形广告牌的成本是120÷6=20元/m2,将此广告牌的四边都扩大为原来的3倍,则面积扩大为原来的9倍,∴扩大后长方形广告牌的面积=9×6=54m2,∴扩大后长方形广告牌的成本是54×20=1080元,故选C.【点睛】本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.二、填空题16.24米【解析】【分析】先设建筑物的高为h米再根据同一时刻物高与影长成正比列出关系式求出h的值即可【详解】设建筑物的高为h米由题意可得:则4:6=h:36解得:h=24(米)故答案为24米【点睛】本题解析:24米.【解析】【分析】先设建筑物的高为h米,再根据同一时刻物高与影长成正比列出关系式求出h的值即可.【详解】设建筑物的高为h米,由题意可得:则4:6=h:36,解得:h=24(米).故答案为24米.【点睛】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键.17.或【解析】【分析】求出直线l的解析式证出△AOB∽△PCA得出设AC=m (m>0)则PC=2m根据△PCA≌△PDA得出当△PAD∽△PBA时根据得出m=2从而求出P点的坐标为(44)(0-4)若△解析:5,12⎛⎫⎪⎝⎭或(4,4)【解析】【分析】求出直线l的解析式,证出△AOB∽△PCA,得出12BO ACAO PC==,设AC=m(m>0),则PC=2m,根据△PCA≌△PDA,得出12AD ACPD PC==,当△PAD∽△PBA时,根据12AD BA PD PA ==,22225,(2)(25)AP m m =+=,得出m=2,从而求出P 点的坐标为(4,4)、(0,-4),若△PAD ∽△BPA ,得出12PA AD BA PD ==,求出52PA =,从而得出2225(2)2m m ⎛⎫+= ⎪ ⎪⎝⎭,求出12m =,即可得出P 点的坐标为5,12⎛⎫ ⎪⎝⎭. 【详解】∵点A (2,0),点B (0,1),∴直线AB 的解析式为y=-12x+1 ∵直线l 过点A (4,0),且l ⊥AB ,∴直线l 的解析式为;y=2x-4,∠BAO+∠PAC=90°,∵PC ⊥x 轴,∴∠PAC+∠APC=90°,∴∠BAO=∠APC ,∵∠AOB=∠ACP ,∴△AOB ∽△PCA ,∴BO AO CA PC =, ∴12BO AC AO PC ==, 设AC=m (m >0),则PC=2m ,∵△PCA ≌△PDA ,∴AC=AD ,PC=PD ,∴12AD AC PD PC ==, 如图1:当△PAD ∽△PBA 时,则AD PD BA PA=,则12AD BA PD PA ==, ∵AB=22152=+,∴AP=25, ∴222(2)(25)m m +=,∴m=±2,(负失去) ∴m=2, 当m=2时,PC=4,OC=4,P 点的坐标为(4,4), 如图2,若△PAD ∽△BPA ,则12PA AD BA PD ==, ∴152PA AB ==, 则2225(2)m m +=⎝⎭,∴m=±12,(负舍去)∴m=12, 当m=12时,PC=1,OC=52, ∴P 点的坐标为(52,1), 故答案为:P (4,4),P (52,1). 【点睛】 此题考查了一次函数的综合,用到的知识点是相似三角形和全等三角形的判定与性质、勾股定理、一次函数等,关键是根据题意画出图形,注意点P 在第一象限有两个点. 18.1:2【解析】【分析】由△ABC 相似△A′B′C′面积比为1:4根据相似三角形的面积比等于相似比的平方即可求解【详解】解:∵△ABC 相似△A′B′C′面积比为1:4∴△ABC 与△A′B′C′的相似比解析:1:2【解析】【分析】由△ABC 相似△A ′B ′C ′,面积比为1:4,根据相似三角形的面积比等于相似比的平方,即可求解.【详解】解:∵△ABC 相似△A ′B ′C ′,面积比为1:4,∴△ABC 与△A ′B ′C ′的相似比为:1:2,故答案为: 1:2.【点睛】本题主要考查的是相似三角形的性质,解决本题的关键是要熟知相似三角形面积的比等于相似比的平方.19.【解析】试题解析:连接CE 如图:∵△ABC 和△ADE 为等腰直角三角形∴AC=ABAE=AD ∠BAC=45°∠DAE=45°即∠1+∠2=45°∠2+∠3=45°∴∠1=∠3∵∴△ACE ∽△ABD ∴∠ 解析:42【解析】试题解析:连接CE ,如图:∵△ABC 和△ADE 为等腰直角三角形,∴2AB ,2AD ,∠BAC=45°,∠DAE=45°,即∠1+∠2=45°,∠2+∠3=45°, ∴∠1=∠3,∵2AC AE AB AD== ∴△ACE ∽△ABD , ∴∠ACE=∠ABC=90°,∴点D 从点B 移动至点C 的过程中,总有CE ⊥AC ,即点E 运动的轨迹为过点C 与AC 垂直的线段,22, 当点D 运动到点C 时,2,∴点E 移动的路线长为2cm .20.4【解析】【分析】利用平行线分线段成比例定理列出比例式求出EF 结合图形计算即可【详解】∵∥∥∴又DE=2∴EF=4故答案为:4【点睛】本题考查的是平行线分线段成比例定理灵活运用定理找准对应关系是解题解析:4【解析】【分析】利用平行线分线段成比例定理列出比例式,求出EF,结合图形计算即可.【详解】∵1l∥2l∥3l,∴36 DE ABEF BC==又DE=2,∴EF=4,故答案为:4.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.21.【解析】【分析】根据反比函数比例系数k的几何意义得到S△AOC=S△BOD=S矩形PCOD=1然后利用矩形面积分别减去两个三角形的面积即可得到四边形PAOB的面积【详解】∵PC⊥x轴PD⊥y轴∴S△解析:2 3【解析】【分析】根据反比函数比例系数k的几何意义得到S△AOC=S△BOD=111236⨯=,S矩形PCOD=1,然后利用矩形面积分别减去两个三角形的面积即可得到四边形P AOB的面积.【详解】∵PC⊥x轴,PD⊥y轴,∴S△AOC=S△BOD=11||23⋅=111236⨯=,S矩形PCOD=1,∴四边形P AOB的面积=1﹣2×16=23.故答案为:23.【点睛】本题考查了反比函数比例系数k的几何意义.掌握反比函数比例系数k的几何意义是解答本题的关键.反比函数比例系数k的几何意义:在反比例函数kyx=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.22.【解析】【分析】根据正方形的对边平行证明△BDF∽△BCA 然后利用相似三角形对应边成比例列出比例式即可求出第1个正方形的边长同理利用前两个小正方形上方的三角形相似根据相似三角形对应边成比例列出比例式 解析:4()5n 【解析】【分析】根据正方形的对边平行证明△BDF ∽△BCA ,然后利用相似三角形对应边成比例列出比例式即可求出第1个正方形的边长,同理利用前两个小正方形上方的三角形相似,根据相似三角形对应边成比例列出比例式即可求出前两个小正方形的边长的关系,以此类推,找出规律便可求出第n 个正方形的边长.【详解】解:如下图所示,∵四边形DCEF 是正方形,∴DF ∥CE ,∴△BDF ∽△BCA ,∴DF :AC=BD :BC ,即x 1:4=(1-x 1):1解得x 1= 45, 同理,前两个小正方形上方的三角形相似,112121-=-x x x x x 解得x 2=x 12同理可得,113231,-=-x x x x x 解得:33121==x x x x以此类推,第n 个正方形的边长1n 45=⎛⎫= ⎪⎝⎭n n x x . 故答案为:4()5n【点睛】本题考查了正方形的性质,相似三角形的判定与性质,解题的关键是根据相似三角形对应边成比例找出后面正方形的边长与第一个正方形的边长的关系.23.-6【解析】【分析】分析:∵菱形的两条对角线的长分别是6和4∴A (﹣32)∵点A 在反比例函数的图象上∴解得k=-6【详解】请在此输入详解!解析:-6【解析】【分析】分析:∵菱形的两条对角线的长分别是6和4,∴A (﹣3,2).∵点A 在反比例函数()y x 0x k =<的图象上, ∴23k =-,解得k=-6. 【详解】请在此输入详解! 24.【解析】【分析】根据勾股定理可得OA 的长根据正弦是对边比斜边可得答案【详解】如图由勾股定理得:OA==2sin ∠1=故答案为解析:32【解析】 【分析】根据勾股定理,可得OA 的长,根据正弦是对边比斜边,可得答案.【详解】如图,由勾股定理,得:OA =22OB AB +=2.sin ∠1=32AB OA =,故答案为32. 25.70°【解析】【分析】设∠BEF=α则∠EFC=180°﹣α∠DFE=∠BEF=α∠CFE=40°+α依据∠EFC=∠EFC 即可得到180°﹣α=40°+α进而得出∠BEF 的度数【详解】∵∠C=∠C解析:70°【解析】【分析】设∠BEF=α,则∠EFC=180°﹣α,∠DFE=∠BEF=α,∠C'FE=40°+α,依据∠EFC=∠EFC',即可得到180°﹣α=40°+α,进而得出∠BEF 的度数.【详解】∵∠C'=∠C=90°,∠DMB'=∠C'MF=50°,∴∠C'FM=40°,设∠BEF=α,则∠EFC=180°﹣α,∠DFE=∠BEF=α,∠C'FE=40°+α,由折叠可得,∠EFC=∠EFC',∴180°﹣α=40°+α,∴α=70°,∴∠BEF=70°,故答案为:70°.【点睛】本题考查了矩形的性质、折叠的性质,熟练掌握相关的性质是解题的关键.三、解答题26.(1)详见解析;(2)当∠B+∠EGC=180°时,DE ADCF DC=成立,理由详见解析.【解析】【分析】(1)根据矩形的性质可得∠A=∠ADC=90°,由DE⊥CF可得∠ADE=∠DCF,即可证得△ADE∽△DCF,从而证得结论;(2)在AD的延长线上取点M,使CM=CF,则∠CMF=∠CFM.根据平行线的性质可得∠A=∠CDM,再结合∠B+∠EGC=180°,可得∠AED=∠FCB,进而得出∠CMF=∠AED即可证得△ADE∽△DCM,从而证得结论;【详解】解:(1)∵四边形ABCD是矩形,∴∠A=∠ADC=90°,∵DE⊥CF,∴∠ADE=∠DCF,∴△ADE∽△DCF,∴DE AD CF DC=(2)当∠B+∠EGC=180°时,DE ADCF DC=成立,证明如下:在AD的延长线上取点M,使CM=CF,则∠CMF=∠CFM.∵AB∥CD.∴∠A=∠CDM.∵AD∥BC,∴∠CFM=∠FCB.∵∠B+∠EGC=180°,∴∠AED=∠FCB,∴∠CMF=∠AED,∴△ADE∽△DCM,∴DE ADCM DC=,即DE ADCF DC=.【点睛】本题是相似形综合题目,考查了相似三角形的判定与性质、等腰三角形的性质以及平行线的性质,熟练掌握等腰三角形的性质,证明三角形相似是解决问题的关键.27.(1)见解析;(2)MC=27.【解析】【分析】(1)由两组边成比例,夹角相等来证明即可;(2)由相似三角形的性质得边成比例,进而利用勾股定理求得BC,再判定∠MBC=90°,最后由勾股定理求得MC的值即可.【详解】(1)证明:∵AB•CD=BC•BD∴ABBC=BDCD在△ABD和△BCD中,∠ABD=∠BCD=90°∴△ABD∽△BCD;(2)∵△ABD∽△BCD∴ADBD=BDCD,∠ADB=∠BDC又∵CD=6,AD=8∴BD2=AD•CD=48∴BC=22BD CD-=4836-=23∵BM∥CD∴∠MBD=∠BDC,∠MBC=∠BCD=90°∴∠ADB=∠MBD,且∠ABD=90°∴BM=MD,∠MAB=∠MBA∴BM=MD=AM=4∴MC=22BC BM+=1216+=27.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知相似三角形的判定定理与勾股定理的运用.28.(1)抛物线的解析式为y=x2+2x;(2)D1(-1,-1),D2(-3,3),D3(1,3);(3)存在,P(,)或(3,15).【解析】【分析】(1)根据抛物线过A(2,0)及原点可设y=a(x-2)x,然后根据抛物线y=a(x-2)x过B(3,3),求出a的值即可;(2)首先由A的坐标可求出OA的长,再根据四边形AODE是平行四边形,D在对称轴直线x=-1右侧,进而可求出D横坐标为:-1+2=1,代入抛物线解析式即可求出其横坐标;(3)分△PMA∽△COB和△PMA∽△BOC表示出PM和AM,从而表示出点P的坐标,代入求得的抛物线的解析式即可求得t的值,从而确定点P的坐标.【详解】解:(1)根据抛物线过A(-2,0)及原点,可设y=a(x+2)(x-0),又∵抛物线y=a(x+2)x过B(-3,3),∴-3(-3+2)a=3,∴a=1,∴抛物线的解析式为y=(x+2)x=x2+2x;(2)①若OA为对角线,则D点与C点重合,点D的坐标应为D(-1,-1);②若OA为平行四边形的一边,则DE=OA,∵点E在抛物线的对称轴上,∴点E横坐标为-1,∴点D的横坐标为1或-3,代入y=x2+2x得D(1,3)和D(-3,3),综上点D坐标为(-1,-1),(-3,3),(1,3).(3)∵点B(-3,3)C(-1,-1),∴△BOC为直角三角形,∠COB=90°,且OC:OB=1:3,①如图1,若△PMA∽△COB,设PM=t,则AM=3t,∴点P(3t-2,t),代入y=x2+2x得(-2+3t)2+2(-2+3t)=t,解得t1=0(舍),t2=79,∴P(13,79);②如图2,若△PMA∽△BOC,设PM=3t,则AM=t,点P(t-2,3t),代入y=x2+2x得(-2+t)2+2(-2+t)=3t,解得t1=0(舍),t2=5,∴P(3,15)综上所述,点P的坐标为(13,79)或(3,15).考点:二次函数综合题29.(1)2y x =,E (2,1),F (-1,-2);(2)32. 【解析】【分析】(1)先得到点D 的坐标,再求出k 的值即可确定反比例函数解析式;(2)过点F 作FG ⊥AB ,与BA 的延长线交于点G .由E 、F 两点的坐标,得到AE=1,FG=2-(-1)=3,从而得到△AEF 的面积.【详解】解:(1)∵正方形OABC 的边长为2,∴点D 的纵坐标为2,即y=2,将y=2代入y=2x ,得到x=1,∴点D 的坐标为(1,2). ∵函数k y x=的图象经过点D ,∴21k =,∴k=2, ∴函数k y x =的表达式为2y x =. (2)过点F 作FG ⊥AB ,与BA 的延长线交于点G .根据反比例函数图象的对称性可知:点D 与点F 关于原点O 对称∴点F 的坐标分别为(-1,-2),把x=2代入2y x=得,y=1; ∴点E 的坐标(2,1);∴AE=1,FG=2-(-1)=3,∴△AEF 的面积为:12AE•FG=131322⨯⨯= .30.(1)DE 的长为9;(2)BE 的长为11;【解析】【分析】(1)由果6AB =,8BC =,可得AC=14,然后根据平行线等分线段定理得到6=14DE AB DF AC =,然后将已知条件代入即可求解; (2)过D 作DH∥AC,分别交BE,CF 于H ,说明四边形ABGD 和四边形BCHG 是平行四边形,然后根据平行四边形的性质得CH=BG=AD=9;进一步说明FH=CF-DH=5,然后再按照平行线等分线段定理得到:2:5DE DF =,最后代入已知条件求解即可.【详解】(1)∵6AB =,8BC =,∴AC=AB+BC=14∵ADBE CF ∴6=14DE AB DF AC = ∴662191414DE DF ==⨯= (2)过D 作DH∥AC,分别交BE,CF 于H.∵AD BE CF∴四边形ABGD 和四边形BCHG 是平行四边形,∴CH=BG=AD=9∴FH=CF -DH=5∵:2:5DE DF =∴:2:5GE HF =∴225255GE HF ==⨯= ∴BE=BG+GE=9+2=11.【点睛】本题主要考查平行线分线段成比例的知识,关键是掌握三条平行线截两条直线,所得的对应线段成比例.。
中考数学模拟考试试卷(附含参考答案)1.本试题分第I卷(选择题)和第II卷(非选择题)两部分、第1卷满分为40分:第II卷满分为110分,本试题共8页,满分150分,考试时间为120分钟2.答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并同时将考点、姓名、准考证号和座号填写在试卷规定的位置上,考试结束后,将本试卷和答题卡一并交回,本考试不允许使用计算器.第I卷(选择题共40分)注意事项:第1卷为选择题,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑:如需改动,用橡皮擦干净后,再选涂其他答案标号,答案写在试卷上无效.一.选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.-3的相反数是()A.3B.-3C.﹣13D.132.图中立体图形的俯视图是( )3.从济南市文化和旅游局获悉,截至2月17日14时,2024年春节假期全市28家重点监测景区共接待游客4705000人次,可比增长55.6%,实现营业收入1.1亿元。
可比增长92.7%,把数字"4705000"用科学记数法表示为( )A.47.05x105B.4.705x106C.4.705x105D.0.4705x1064.已知直线m∥n,将一块含45°角的直角三角板ABC按如图方式放置,若∠1=20°,则∠2的度数为()A.20°B.30°C.15°D.25°5.下列四个著名数学图形中,既是轴对称图形,又是中心对称图形的是()6.已知a、b在数轴上对应的点如图所示,则下列结论正确的是()A.a>bB.|a|>|b|C.b>-aD.a+b<0(第6题图) (第7题图)(第9题图)7.如图随机闭合开关K1、K2、K3中的两个,能让灯泡L1、L2至少一盏发光的概率为()A.16B.13C.12D.238.反比例函数y=kbx的图象如图所示,则一次函数y=kx+b的图象可能是()9.如图,在平行四边形ABCD中,BC=2AB=8,连接BD,分别以点B、D为国心,大于12BD长为半径作弧,两弧交于点E和点F,作直线EF交AD于点I,交BC于点H、点H恰为BC的中点,连接AH,则AH的长为()A.4√3B.6C.7D.4√510.设二次函数y=ax2+c(a,e是常数,a<0),已知函数值y和自变量x的三对对应值如表所示,若方程ax2+c﹣m=0的一个正实数根为5.则下列结论正确的是()A.m>p>0B.m<q<0C.p>m>0D.q<m<0第II卷(非选择题共110分)注意事项:1.第1卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上:如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效.2.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.二.填空题(本大题共6个小题,每小题4分,共24分)11.分解因式:a2-14= .12.如图,在边长为2的正方形内有一边长为1的小正方形,一只青蛙在该图案内任意跳动,则这只青蛙跳入阴影部分的概率是.(第12题图) (第14题图) (第15题图)(第16题图)13.已知整数m满足√3<m<√15,则m的最大值是。
一、选择题1.据网络统计,某品牌手机2020年一月份销售量为400万部,二月份、三月份销售量连续增长,三月份销售量达到900万部,求二月份、三月份销售量的月平均增长率?若设月平均增长率为x ,根据题意列方程为( ).A .()40012900x +=B .()40021900x ⨯+=C .()24001900x +=D .()()240040014001900x x ++++= 2.一个大正方形内放入两个同样大小的小正方形纸片,按如图1放置,两个小正方形纸片的重叠部分面积为4;按如图2放置(其中一小张正方形居大正方形的正中),大正方形中没有被小正方形覆盖的部分(阴影部分)的面积为44,则把两张小正方形按如图3放置时,两个小正方形重叠部分的面积为( )A .10B .12C .14D .163.若x=0是关于x 的一元二次方程(a+2)x 2a-2x+a 2+a-6=0的一个根,则a 的值是( )A .a ≠2B .a=2C .a=-3D .a=-3或a=2 4.下列一元二次方程中,有两个不相等实数根的是( )A .2104x x -+=B .2390x x ++=C .2250x x -+=D .25130x x -= 5.下列一元二次方程中,没有实数根的是( )A .(2)(2)0x x -+=B .220x -=C .2(1)0x -=D .2(1)20x ++= 6.一元二次方程2304y y +-=,配方后可化为( ) A .21()12y += B .21()12y -= C .211()22y += D .213()24y -= 7.设m 、n 是一元二次方程2430x x -+=的两个根,则23m m n -+=( ) A .1- B .1 C .17- D .178.某中学举办篮球友谊赛,参赛的每两个队之间只比赛1场,共比赛10场,则参加此次比赛的球队数是( )A .4B .5C .6D .7 9.若关于x 的一元二次方程260x x c -+=有两个相等的实数根,则常数c 的值为( )A .3B .6C .8D .9 10.已知关于x 的一元二次方程()22210x m x m -+=-有实数根,则m 的取值范围是( )A .0m ≠B .14mC .14m <D .14m > 11.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( )A .290x +=B .24410x x -+=C .210x x ++=D .210x x +-= 12.已知关于x 的二次方程()21210--+=k x kx (k ≠1),则方程根的情况是( )A .没有实数根B .有两不等实数根C .有两相等实数根D .无法确定 13.下列方程中,有两个不相等的实数根的是( ) A .x 2=0 B .x ﹣3=0 C .x 2﹣5=0 D .x 2+2=0 14.不解方程,判断方程2x 2+3x ﹣4=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根 15.已知方程2202030x x +-=的根分别为a 和b ,则代数式2a a 2020a b ++的值为( )A .0B .2020C .1D .-2020 二、填空题16.将方程2630x x +-=化为()2x h k +=的形式是______.17.若关于x 的一元二次方程240x x k ++=有两个相等的实数根,则k =______. 18.关于x 的方程()210x k x x -++=有两个相等的实数根,则k =_______. 19.已知实数α,β满足α2+3α﹣1=0,β2﹣3β﹣1=0,且αβ≠1,则21a+3β的值为________. 20.已知一元二次方程2x 2+3x ﹣1=0的两个根是x 1,x 2,则x 1•x 2=_____. 21.一元二次方程()422x x x +=+的解为__.22.已知()0n n ≠是一元二次方程240x mx n ++=的一个根,则m n +的值为______. 23.已知(x 2+y 2)(x 2+y 2﹣5)=6,则x 2+y 2=_____.24.已知x =1是一元二次方程(m -2)x 2+4x -m 2=0的一个根,则m 的值是_____. 25.若m 是方程210x x +-=的根,则2222018m m ++的值为__________26.为解决民生问题,国家对某药品价格分两次降价,该药品的原价是48元,降价后的价格是30元,若平均每次降价的百分率均为x ,可列方程.为____________.三、解答题27.关于x 的一元二次方程()2220x k x k -++=. (1)判断方程根的情况,并说明理由.(2)若1x =是方程的一个根,求k 的值和方程的另一根.28.已知关于x 的方程()22120x k x k ---=,求证:不论k 取何值,这个方程都有两个实数根.29.解方程:(1) 2890x x --=(2)(x+1)2=6x+630.回答下列问题.(1(2|1-. (3)计算:102(1)-++. (4)解方程:2(1)90x +-=.。
一、选择题1.在ABC 中,90,4,3C AC BC ∠=︒==,把它绕AC 旋转一周得一几何体,该几何体的表面积为( )A .24πB .21πC .16.8πD .36π 2.如图,一块直角三角板的30°角的顶点P 落在O 上,两边分别交圆O 于A ,B 两点,若O 的直径为6,则弦AB 的长为( )A .3B .2C .2D .33.如图,AB 是半圆O 的直径,20BAC =︒∠,则D ∠的度数是( )A .70°B .100°C .110°D .120° 4.如图,在三角形ABC 中,AB=22,∠B=30°,∠C=45°,以A 为圆心,以AC 长为半径作弧与AB 相交于点E ,与BC 相交于点F ,则弧EF 的长为( )A .6πB .2π C .23π D .π 5.如图,在O 中,AB ,AC 为互相垂直且相等的两条弦,⊥OD AB ,OE AC ⊥,垂足分别为D ,E ,若4AB =,则O 的半径是( )A .22B .2C .3D .42 6.已知⊙O 的直径为6,圆心O 到直线l 的距离为3,则能表示直线l 与⊙O 的位置关系的图是( ) A . B .C .D .7.如图,AB 为O 的弦,半径OC 交AB 于点D ,AD DB =,5OC =,3OD =,则AB 的长为( )A .8B .6C .4D .28.如图,在⊙O 中,OA BC ⊥,35ADB ∠=︒.则AOC ∠的度数为( )A .40︒B .55︒C .70︒D .65︒9.《九章算术》是东方数学思想之源,该书中记载:“今有勾八步,股一十五步,同勾中 容圆径几何.”其意思为:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形内切圆的直径是多少步?”该问题的答案是( )A .8.5B .17C .3D .610.如图,⊙O 的半径为2,四边形ADBC 为⊙O 的内接四边形,AB =AC ,∠D =112.5°,则弦BC 的长为( )A .2B .2C .22D .23 11.如图,四边形ABCD 内接于⊙O ,AB 为⊙O 的直径,点C 为BD 的中点.若50A ∠=︒,则B 的度数是( )A .50︒B .55︒C .60︒D .65︒ 12.如图,在菱形ABCD 中,60A ∠=︒ ,3AB = ,A ,B 的半径分别为2和1,P ,E ,F 分别是CD 边、A 和B 上的动点,则PE PF +的最小值是( )A .333-B .2C .3D .33 13.如图,MN 是半径为1的⊙O 的直径,点A 在⊙O 上,∠AMN=30°,点B 为劣弧AN 的中点,P 是直径MN 上一动点,则PA+PB 的最小值为( )A 2B .1C .2D .2214.如图,⊙O 是四边形 ABCD 的内切圆,连接 OA 、OB 、OC 、OD .若∠AOB =110°,则∠COD 的度数是( )A .60°B .70°C .80°D .45° 15.如图,P 与y 轴交于点()0,4M -,()0,10N -,圆心P 的横坐标为4-,则P 的半径为( )A .3B .4C .5D .6二、填空题16.如图,用一张半径为10cm 的扇形纸板做一个圆锥形帽子(接缝忽略不计),如果做成的圆锥形帽子的高为8cm ,那么这张扇形纸板的弧长是_______cm ,制作这个帽子需要的纸板的面积为_______cm 2.17.如图,AB 、AC 、BD 是O 的切线,P 、C 、D 为切点,如果8AB =,5AC =,则BD 的长为_______.18.如图,点A 、D 、G 、M 在半圆上,四边形ABOC 、DEOF 、HMNO 均为矩形,设BC a =,EF b =,NH c =,则a ,b ,c 之间的大小关系是_________________.(用“>”、“<”、“=”连接)19.如图,⊙O 的直径16AB =,半径OC AB ⊥,E 为OC 的中点, DE OC ⊥,交⊙O 于点D ,过点D 作DF AB ⊥于点F .若 P 为直径AB 上一动点,则PC PD +的最小值为 ________ .20.已知半径为5的圆O 中,弦AB =8,则以AB 为底边的等腰三角形腰长为___________.21.如图所示,在平面直角坐标系中,正六边形OABCDE 边长是6,则它的外接圆圆心P 的坐标是______.22.如图,已知正方形ABCD 的边长为2,点M 和N 分别从B 、C 同时出发,以相同的速度沿BC 、CD 方向向终点C 和D 运动.连接AM ,BN 交于点P ,则PC 长的最小值为____________.23.如图,在Rt △ABC 中,∠C =90°,AC =3cm ,BC =4cm ,若以C 为圆心,r 为半径所作的圆与斜边AB 相切,则r 的值是________24.如图,若∠BOD =140°,则∠BCD=___________ .25.如图,AB 是O 的直径,CD 是O 的弦,AB 、CD 的延长线交于点E ,已知2AB DE =,若COD ∆为直角三角形,则E ∠的度数为______︒.26.扇形 的半径为6cm ,弧长为10cm ,则扇形面积是________.三、解答题27.如图,以Rt ABC 的AC 边为直径作O 交斜边AB 于点E ,连接EO 并延长交BC 的延长线于点D ,点P 为BC 的中点,连接EP ,AD .(1)求证:PE 是O 的切线; (2)若O 的半径为3,30B ∠=︒,求P 点到直线AD 的距离.28.如图,已知直线l 与⊙O 相离,过圆心O 画OA ⊥l 于点A ,交⊙O 于点P 且OA =5,点B 为⊙O 上一点BP 的延长线交直线l 于点C 且AB=AC .(1)判断AB 与⊙O 有怎样的位置关系,并说明理由;(2)若5PC =⊙O 的半径.29.已知△ABC,请按以下要求完成本题:(1)请作出△ABC的外接圆⊙O(尺规作图,保留作图痕迹);(2)若在△ABC中,∠ABC=70°,∠ACB=40°,⊙O的直径AD交CB于E,则∠DEC= .30.如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠CAE=∠ADC.(1)求证:AE是⊙O的切线;(2)若⊙O的半径为2,∠B=60°,求图中阴影部分的面积.(结果保留根号和π)。
一、选择题1.欧几里得在《几何原本》中,记载了用图解法解方程22x ax b +=的方法,类似地可以用折纸的方法求方程210x x +-=的一个正根,如图,裁一张边长为1的正方形的纸片ABCD ,先折出BC 的中点E ,再折出线段AE ,然后通过折叠使EB 落在线段EA 上,折出点B 的新位置F ,因而EF EB =,类似地,在AB 上折出点M 使AMAF =,表示方程210x x +-=的一个正根的线段是( )A .线段BMB .线段AMC .线段AED .线段EM 2.方程2240x x --=经过配方后,其结果正确的是( ) A .()215x -= B .()217x -= C .()214x -= D .()215x += 3.用配方法解下列方程时,配方错误的是( )A .x 2﹣2x ﹣99=0化为(x ﹣1)2=100B .x 2+8x+9=0化为(x+4)2=25C .2x 2﹣7x ﹣4=0化为(x ﹣74)2=8116 D .3x 2﹣4x ﹣2=0化为(x ﹣23)2=109 4.某超市今年1月份的营业额为50万元,已知2月至3月营业额的月增长率是1月至2月营业额的月增长率的2倍,3月份的营业额是66万元,设该超市1月至2月营业额的月增长率为x ,根据题意,可列出方程( )A .()50166x +=B .()250166x +=C .()2501266x += D .()()5011266x x ++= 5.若关于x 的一元二次方程2(2)210m x x --+=有实数根,则m 的取值范围是( ) A .3m < B .3m C .3m <且2m ≠ D .3m 且2m ≠ 6.若x=0是关于x 的一元二次方程(a+2)x 2a-2x+a 2+a-6=0的一个根,则a 的值是( )A .a ≠2B .a=2C .a=-3D .a=-3或a=27.方程23x x =的解为( ) A .3x =B .3x =-C .10x =,23x =D .10x =,23x =- 8.有1人患了流感,经过两轮传染后共有81人患流感,则每轮传染中平均一个人传染了( )人.A .40B .10C .9D .8 9.一元二次方程x 2﹣4x ﹣1=0配方后正确的是( ) A .(x ﹣2)2=1B .(x ﹣2)2=5C .(x ﹣4)2=1D .(x ﹣4)2=5 10.已知a 、b 、m 、n 为互不相等的实数,且(a +m )( a +n )=2,(b +m )( b +n )=2,则ab ﹣mn 的值为( )A .4B .1C .﹣2D .﹣1 11.已知一元二次方程x 2﹣6x+c =0有一个根为2,则另一根及c 的值分别为( ) A .2,8B .3,4C .4,3D .4,8 12.一元二次方程(x ﹣3)2﹣4=0的解是( )A .x =5B .x =1C .x 1=5,x 2=﹣5D .x 1=1,x 2=5 二、填空题13.把方程2230x x --=化为2()x h k +=的形式来求解的方法我们叫配方法,其中h ,k 为常数,那么本题中h k +的值是_________.14.已知 12,x x 是一元二次方程()23112x -=的两个解,则12x x +=_______. 15.一元二次方程x 2-10x+25=2(x ﹣5)的解为____________.16.将一元二次方程x 2﹣8x ﹣5=0化成(x +a )2=b (a ,b 为常数)的形式,则b =_____.17.一元二次方程x 2=2x 的解为__________18.一件商品原价300元,连续两次降价后,现售价是243元,若每次降价的百分率相同,那么这个百分率为______.19.已知等腰三角形的边长是方程213360x x -+=的两个根,则这个等腰三角形的周长是______.20.参加足球联赛的每两队之间都进行两场比赛,共要比赛90场,共有________个队参加比赛. 三、解答题21.解方程:(1)x 2+10x +9=0;(2)x 2=14. 22.已知关于x 的方程()22120x k x k ---=,求证:不论k 取何值,这个方程都有两个实数根.23.已知:关于x 的一元二次方程()232220-+++=tx t x t (0t >). (1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为1x ,2x (其中12x x <).若y 是关于t 的函数,且221=⋅+y t x x ,求这个函数的解析式.24.用适当的方法解方程:(l )2(3)26x x +=+(2)2810x x -+=.25.小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元:如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买了这种服装x 件.(1)填空:26.若关于x 的一元二次方程x 2-6x +m +1=0的两根是x 1,x 2,且x 12+x 22=24,求m 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】设正方形的边长为1,AF =AM =x ,根据勾股定理即可求出答案.【详解】解:设正方形的边长为1,AF =AM =x ,则BE =EF =12,AE =x+12, 在Rt △ABE 中,∴AE 2=AB 2+BE 2,∴(x +12)2=1+(12)2, ∴x 2+x -1=0,∴AM 的长为x 2+x -1=0的一个正根,故选:B .【点睛】本题考查一元二次方程,解题的关键是根据勾股定理列出方程,本题属于中等题型. 2.A解析:A【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【详解】解:∵x2﹣2x﹣4=0,∴x2﹣2x=4,∴x2﹣2x+1=4+1,∴(x﹣1)2=5.故选:A.【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.3.B解析:B【分析】将常数项移到方程的右边,然后将二次项系数化为1,继而两边都加上一次项系数一半的平方配成完全平方式后即可得出答案.【详解】解:A、由x2﹣2x﹣99=0得x2﹣2x=99,则x2﹣2x+1=100,即(x﹣1)2=100,故本选项正确,不符合题意;B、由x2+8x+9=0得x2+8x=-9,则x2+8x+16=-9+16即(x+4)2=7此选项错误,符合题意;C、由2x2﹣7x﹣4=0得2x2﹣7x=4,则x2﹣72x=2,∴x2﹣72x+4916=2+4916,即274x⎛⎫-⎪⎝⎭=8116,故本选项正确,不符合题意;D、由3x2﹣4x﹣2=0,得3x2﹣4x=2,则x2﹣43x=23,∴故x2﹣43x+49=23+49,即(x﹣23)2=109,故本选项正确,不符合题意;故选:B.【点睛】本题主要考查解一元二次方程−配方法,用配方法解一元二次方程的步骤:①把原方程化为a2x+bx+c=0(a≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.4.D解析:D【分析】根据2月份的营业额=1月份的营业额×(1+x),3月份的营业额=2月份的营业额×(1+2x),把相关数值代入即可得到相应方程.【详解】解:∵1月份的营业额为50万元,2月份的营业额比1月份增加x,∴2月份的营业额=50×(1+x),∴3月份的营业额=50×(1+x)×(1+2x),∴可列方程为:50(1+x)(1+2x)=66.故选:D.【点睛】本题考查了由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.注意先求得2月份的营业额.5.D解析:D【分析】根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac的意义得到m-2≠0且△≥0,即(-2)2-4×(m-2)×1≥0,然后解不等式组即可得到m的取值范围.【详解】解:∵关于x的一元二次方程(m-2)x2-2x+1=0有实数根,∴m-2≠0且△≥0,即(-2)2-4×(m-2)×1≥0,解得m≤3,∴m的取值范围是m≤3且m≠2.故选:D.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.6.B解析:B【分析】将x=0代入方程中,可得关于a的一元二次方程方程,然后解方程即可,注意a≥2这一隐含条件.【详解】解:将x=0代入(a+2)x2- 2+a-6=0中,得: a2+a-6=0,解得:a1=﹣3,a2=2,∵a+2≠0且a﹣2≥0,即a≥2,故选:B.【点睛】本题考查一元二次方程方程的解、解一元二次方程、二次根式有意义的条件,理解方程的解的意义,熟练掌握一元二次方程的解法是解答的关键,注意隐含条件a≥0.7.C解析:C【分析】方程变形后分解因式,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【详解】解:方程变形得:x2-3x=0,分解因式得:x(x-3)=0,可得x=0或x-3=0,解得:x1=3,x2=0.故选:C.【点睛】此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.8.D解析:D【分析】设每轮传染中平均一个人传染了x人,则一轮传染后共有(1+x)人被传染,两轮传染后共有[(1+x)+x(1+x)]人被传染,由题意列方程计算即可.【详解】解:设每轮传染中平均一个人传染了x人,由题意,得:(1+x)+x(1+x)=81,即x2+2x﹣80=0,解得:x1=8,x2=﹣10(不符合题意,舍去),故每轮传染中平均一个人传染了8人,故选:D.【点睛】本题考查了一元二次方程的应用,解一元二次方程,理解题意,正确列出方程是解答的关键.9.B解析:B【分析】根据一元二次方程的配方法即可求出答案.【详解】解:x2﹣4x﹣1=0x2-4x+4=1+4(x-2)2=5,故选:B.【点睛】本题考查了解一元二次方程-配方法,解题的关键是会用配方法解答方程.10.C解析:C【分析】先把已知条件变形得到a2+(m+n) a+mn﹣2=0,b2+( m+n) b+mn﹣2=0,则可把a、b看作方程x2+( m+n) x+mn﹣2=0的两实数根,利用根与系数的关系得到ab=mn﹣2,从而得到ab﹣mn的值.【详解】解:∵(a+m)( a+n)=2,(b+m)( b+n)=2,∴a2+( m+n)a+mn﹣2=0,b2+( m+n)b+mn﹣2=0,而a、b、m、n为互不相等的实数,∴可以把a、b看作方程x2+(m+n)x+mn﹣2=0的两个实数根,∴ab=mn﹣2,∴ab﹣mn=﹣2.故选:C.【点睛】本题考查一元二次方程根与系数的关系及整式的乘法,理解代数思想,把“a、b看作方程x2+(m+n)x+mn﹣2=0的两实数根”是解题关键.11.D解析:D【分析】设方程的另一个根为t,根据根与系数的关系得到t+2=6,2t=c,然后先求出t,再计算c 的值.【详解】解:设方程的另一个根为t,根据题意得t+2=6,2t=c,解得t=4,c=8.故选:D.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-ba,x1x2=ca.12.D 解析:D利用直接开平方法求解即可.【详解】解:∵(x ﹣3)2﹣4=0,∴(x ﹣3)2=4,则x ﹣3=2或x ﹣3=﹣2,解得x 1=5,x 2=1,故选:D .【点睛】本题考查了用直接开平方法解一元二次方程,掌握解法是关键.二、填空题13.3【分析】首先把常数项移到等号右边经配方h 和k 即可求得进而通过计算即可得到答案【详解】根据题意移项得配方得:即∴∴故答案是:3【点睛】本题考查了配方法解一元二次方程的知识;解题的关键是熟练掌握配方法 解析:3【分析】首先把常数项移到等号右边,经配方,h 和k 即可求得,进而通过计算即可得到答案.【详解】根据题意,移项得223x x -=,配方得:22131x x -+=+,即2(1)4x -=,∴1h =-,4k =∴143h k +=-+=故答案是:3.【点睛】本题考查了配方法解一元二次方程的知识;解题的关键是熟练掌握配方法的性质,从而完成求解. 14.2【分析】先将方程整理为x2-2x-3=0再根据根与系数的关系可得出x1+x2即可【详解】解:一元二次方程整理为∵x1x2是一元二次方程x2-2x-3=0的两个根∴x1+x2=2故答案为:2【点睛】解析:2【分析】先将方程整理为x 2-2x-3=0,再根据根与系数的关系可得出x 1+x 2即可.【详解】解:一元二次方程()23112x -=整理为2230x x --=,∵x 1、x 2是一元二次方程x 2-2x-3=0的两个根,∴x 1+x 2=2.故答案为:2.【点睛】本题考查了根与系数的关系,牢记两根之和等于ba是解题的关键.15.x1=5x2=7【分析】移项后分解因式即可得出两个一元一次方程求出方程的解即可;【详解】解:∵(x﹣5)2﹣2(x﹣5)=0∴(x﹣5)(x﹣7)=0则x﹣5=0或x﹣7=0解得x1=5x2=7故答解析:x1=5,x2=7【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可;【详解】解:∵(x﹣5)2﹣2(x﹣5)=0,∴(x﹣5)(x﹣7)=0,则x﹣5=0或x﹣7=0,解得x1=5,x2=7,故答案为:x1=5,x2=7.【点睛】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.16.21【分析】先把常数项移到等号的右边再等号两边同时加上16即可【详解】解:∵x2﹣8x=5∴x2﹣8x+16=5+16即(x﹣4)2=21故答案为:21【点睛】本题主要考查一元二次方程的配方掌握完全解析:21【分析】先把常数项移到等号的右边,再等号两边同时加上16,即可.【详解】解:∵x2﹣8x=5,∴x2﹣8x+16=5+16,即(x﹣4)2=21,故答案为:21.【点睛】本题主要考查一元二次方程的配方,掌握完全平方公式,是解题的关键.17.0或2【分析】移项后分解因式即可得出两个一元一次方程求出方程的解即可【详解】解:x2=2xx2-2x=0x(x-2)=0x=0x-2=0x=0或2故答案为:0或2【点睛】本题考查了解一元二次方程的应解析:0或2.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】解:x2=2x,x 2-2x=0,x (x-2)=0,x=0,x-2=0,x=0或2.故答案为:0或2.【点睛】本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程,难度适中.18.10【分析】设这个百分率为x 然后根据题意列出一元二次方程最后求解即可【详解】解:设这个百分率为x 由题意得:300(1-x )2=243解得x=10或x=190(舍)故答案为10【点睛】本题主要考查了一解析:10%【分析】设这个百分率为x%,然后根据题意列出一元二次方程,最后求解即可.【详解】解:设这个百分率为x%,由题意得:300(1-x%)2=243,解得x=10或x=190(舍).故答案为10%.【点睛】本题主要考查了一元二次方程的应用—百分率问题,弄清题意、设出未知数、列出一元二次方程成为解答本题的关键.19.22【分析】先利用因式分解法求出方程的两个根从而可得等腰三角形的两边长再根据等腰三角形的定义三角形的三边关系定理可得这个等腰三角形的三边长然后利用三角形的周长公式即可得【详解】因式分解得解得等腰三角 解析:22【分析】先利用因式分解法求出方程的两个根,从而可得等腰三角形的两边长,再根据等腰三角形的定义、三角形的三边关系定理可得这个等腰三角形的三边长,然后利用三角形的周长公式即可得.【详解】213360x x -+=,因式分解,得(4)(9)0x x --=,解得124,9x x ==,等腰三角形的边长是方程213360x x -+=的两个根,∴这个等腰三角形的两边长为4,9,(1)当边长为4的边为腰时,这个等腰三角形的三边长为4,4,9,此时449+<,不满足三角形的三边关系定理,舍去;(2)当边长为9的边为腰时,这个等腰三角形的三边长为4,9,9,此时499+>,满足三角形的三边关系定理,则这个等腰三角形的周长为49922++=;综上,这个等腰三角形的周长为22,故答案为:22.【点睛】本题考查了解一元二次方程、等腰三角形的定义、三角形的三边关系定理等知识点,熟练掌握一元二次方程的解法是解题关键.20.10【分析】设共有x 个队参加比赛根据每两队之间都进行两场比赛结合共比了90场即可得出关于x 的一元二次方程解之即可得出结论【详解】解:设共有x 个队参加比赛根据题意得:2×x (x-1)=90整理得:x2解析:10.【分析】设共有x 个队参加比赛,根据每两队之间都进行两场比赛结合共比了90场即可得出关于x 的一元二次方程,解之即可得出结论.【详解】解:设共有x 个队参加比赛,根据题意得:2×12x (x-1)=90, 整理得:x 2-x-90=0,解得:x=10或x=-9(舍去).故答案为:10.【点睛】本题考查了一元二次方程的应用,根据每两队之间都进行两场比赛结合共比了90场列出关于x 的一元二次方程是解题的关键.三、解答题21.(1)121,9x x =-=-;(2)1222,22x x == 【分析】(1)运用因式分解法求解即可(2)运用公式法求解即可.【详解】解:(1)∵x 2+10x +9=0,∴(x +1)(x +9)=0,则x +1=0或x +9=0,解得x 1=﹣1,x 2=﹣9;(2)x 2=14整理,得:x 2﹣14=0, ∵a =1,b c =﹣14, ∴△2﹣4×1×(﹣14)=4>0,则x =2b a-±=22,即x 1=22,x 2=22-. 【点睛】此题考查了一元二次方程的解法,熟练掌握一元二次方程的解法是解答此题的关键. 22.见解析.【分析】根据方程的系数结合根的判别式,可得出△=4k 2+4k+1≥0,进而即可证出:不论k 取何值方程都有两个不相等的实数根.【详解】证明:()()()2224124412211k k k k k -⨯⨯-∆=--⎡⎤⎣=+=+⎦+. ∵()2210k +≥,即0∆≥, ∴不论k 取何值,这个方程都有两个实数根.【点睛】本题主要考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.23.(1)证明见解析;(2)222 1.y t t =++【分析】(1)先求解()2242b ac t =-=+,再证明>0,即可得出结论; (2)把原方程化为:()()1220,x tx t ---=再解方程,根据0t >,12x x <,确定12,x x ,最后代入函数解析式即可得到答案.【详解】(1)证明: ()232220-+++=tx t x t , (),32,22,a t b t c t ∴==-+=+()()22=43242+2b ac t t t ∴-=-+-⎡⎤⎣⎦ 22912488t t t t =++--244t t =++()22t =+, t >0,()22t ∴=+>0,所以原方程有两个不相等的实数根.(2) ()232220-+++=tx t x t , ()()1220,x tx t ∴---=10x ∴-=或220,tx t --=1x ∴=或22,x t=+ 0t >,22t∴+>1,12x x <,1221,2,x x t∴==+ ∴ 221=⋅+y t x x2221t t ⎛⎫=++ ⎪⎝⎭ 222 1.t t =++【点睛】本题考查的一元二次方程根的判别式,利用因式分解法解一元二次方程,不等式的性质,列函数关系式,掌握以上知识是解题的关键.24.(1)13x =-,21x =-;(2)1x =,24x =【分析】(1)用因式分解法求解可得;(2)用配方法求解即可.【详解】解:(1)∵(x+3)2-2(x+3)=0,∴(x+3)(x+1)=0,∴x+3=0或x+1=0,解得:x=-3或x=-1;(2)2810x x -+=281x x -=-28+1615x x -=2(4)15x -=4x -=∴1x =,24x =【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.25.(1)①80;②74;③25x ≥(2)20件【分析】(1)①如果一次性购买不超过10件,单价为80元;②用单价80元减去(13-10)×2,得出答案即可;③求出单价恰好是50元时的购买件数,即可分析得到;(2)根据一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,表示出每件服装的单价,进而得出等式方程求出即可.【详解】解:(1)①∵如果一次性购买不超过10件,单价为80元,故填:80;②80-(13-10)×2=74,故填:74;③设购买a 件时,单价恰好是50元,80-(a -10)×2=50,解得:a =25,而题目中“单价不得低于50元”,∴25x ≥时,单价是50元,故填:25x ≥;(2)因为1200>800,所以一定超过了10件,设购买了x 件这种服装且多于10件,根据题意得出:[80-2(x -10)]x =1200,解得:x 1=20,x 2=30,当x =20时,80-2(20-10)=60元>50元,符合题意;当x =30时,80-2(30-10)=40元<50元,不合题意,舍去;答:购买了20件这种服装.【点睛】此题主要考查了一元二次方程的应用,根据已知得出每件服装的单价是解题关键. 26.m =5.【分析】先根据根与系数的关系求得x 1+x 2=6、x 1x 2=m +1,再对x 12+x 22=24变形,然后将x 1+x 2=6、x 1x 2=m +1代入得到关于m 的方程,最后求解即可.【详解】解:∵x1,x2是关于x的一元二次方程x2-6x+m+1=0的两根,∴x1+x2=6,x1x2=m+1,∴x12+x22=(x1+x2)2-2x1x2=24,∴62-2(m+1)=24,解得:m=5.【点睛】本题主要考查了一元二次方程根与系数的关系和完全平方公式的应用,正确应用完全平方公式成为解答本题的关键.。
一、选择题1.从﹣2,0,1,2,3中任取一个数作为a ,既要使关于x 一元二次方程ax 2+(2a ﹣4)x+a ﹣8=0有实数解,又要使关于x 的分式方程211x a ax x++--=3有正数解,则符合条件的概率是( ) A .15B .25C .35D .45B 解析:B 【分析】先利用判别式的意义得到a≠0且△=(2a ﹣4)2﹣4a (a ﹣8)>0,再解把分式方程化为整式方程得到x =34a+,利用分式方程有正数解可得到关于a 的不等式组,则可求得a 的取值范围,则可求得满足条件的整数a 的个数. 【详解】解:∵方程ax 2+(2a ﹣4)x+a ﹣8=0有两个不相等的实数根, ∴a≠0且△=(2a ﹣4)2﹣4a (a ﹣8)>0, 解得:a >﹣1且a≠0,分式方程2311x a ax x++=--, 去分母得x+a ﹣2a =﹣3(x ﹣1),解得x =34a+, ∵分式方程2311x a ax x++=--有正数解, ∴34a +>0且34a+≠1, 解得a >﹣3且a≠1,∴a 的范围为﹣1<a 且a≠0,a≠1,∴从﹣2,0,1,2,3中任取一个数作为a ,符合条件的整数a 的值是2,3,即符合条件的a 只有2个, 故符合条件的概率是25. 故选:B . 【点睛】本题主要考查概率,掌握一元二次方程根的判别式,分式方程的解法是解题的关键. 2.下列说法中正确的是( )A .通过多次试验得到某事件发生的频率等于这一事件发生的概率B .某人前9次掷出的硬币都是正面朝上,那么第10次掷出的硬币反面朝上的概率一定大于正面朝上的概率C.不确定事件的概率可能等于1D.试验估计结果与理论概率不一定一致D解析:D【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果,故选D.【详解】A. 错,应为:多次试验得到某事件发生的频率可以估计这一事件发生的概率;B. 错,反面朝上的概率仍为0.5;C. 错,概率等于1即为必然事件;D. 正确.故答案选D.【点睛】本题考查了概率的意义,解题的关键是熟练的掌握概率的意义.3.某班四个小组进行辩论比赛,赛前三位同学预测比赛结果如下:甲说:“第二组得第一,第四组得第三”;乙说:“第一组得第四,第三组得第二”;丙说:“第三组得第三,第四组得第一”;赛后得知,三人各猜对一半,则冠军是()A.第一组B.第二组C.第三组D.第四组B解析:B【解析】试题分析:因为三人都猜对了一半,假设甲说的前半句正确,来看看后面的说法有没有矛盾,有矛盾就是错误的没矛盾就是正确的.假设甲说的“第二组得第一”是正确的,那么丙说的“第四组得第一”是错误的,“第三组得第三”就是正确的,那么乙说的“第三组得第二”是错误的,“第一组得第四”是正确的,这样三人都猜对了一半,且没矛盾.故猜测是正确的.故选B.考点:推理与论证点评:此类问题是初中数学的难点,解题关键往往假设一个正确或错误,来推看看有没有矛盾.4.下列事件中,属于必然事件的是()A.掷一枚硬币,正面朝上B.三角形任意两边之差小于第三边C.一个三角形三个内角之和大于180°D.在只有红球的盒子里摸到白球B解析:B【分析】直接利用随机事件与必然事件的定义求解即可求得答案.【详解】A、掷一枚硬币,正面朝上,是随机事件,故A错误;B、三角形任意两边之差小于第三边是必然事件;C、一个三角形三个内角之和大于180°,是不可能事件,故C错误;D、在只有红球的盒子里摸到白球是不可能事件.故选B.【点睛】本题考查了随机事件与确定事件的定义,解题关键是注熟记三角形任意两边之差小于第三边.5.下列说法:①“明天的降水概率为80%”是指明天有80%的时间在下雨;②连续抛一枚硬币50次,出现正面朝上的次数一定是25次()A.只有①正确B.只有②正确C.①②都正确D.①②都错误D解析:D【分析】概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,机会小也有可能发生.【详解】①“明天的降水概率为80%”是指是指明天下雨的可能性是80%,不是有80%的时间在下雨,故①错误;②“连续抛一枚硬币50次,出现正面朝上的次数一定是25次”,这是一个随机事件,抛一枚硬币,出现正面朝上或者反面朝上都有可能,但事先无法预料,故②错误;①和②都是错误的.故选D.【点睛】本题考查概率的相关概念.不确定事件是可能发生也可能不发生的事件.正确理解随机事件、不确定事件的概念是解决本题的关键.6.如图是一个圆形的地板图案,其中大圆直径恰好等于两个小圆直径的和.若在地板上任意扔一颗小玻璃珠,则小玻璃珠静止后,滚落在阴影部分的概率是().A.12B.13C.14D.1πA解析:A 【分析】小玻璃珠滚落在阴影部分的概率为该阴影部分的面积与总面积的比值. 【详解】解:设小圆的半径为r ,则大圆半径为2r ∴大圆面积为:π(2r )2=4πr 2阴影部分的面积为:大圆面积-2个小圆的面积=4πr 2-2πr 2=2πr 2∴滚落在阴影部分的概率是222142r r ππ=. 故答案为A . 【点睛】本题考查几何概率的求法,确定大圆面积和阴影部分的面积是解答本题的关键. 7.如图,小明随意向水平放置的大正方形内部区域抛一个小豆子,则小豆子落在小正方形内部及边界(阴影)区域的概率为( )A .34B .13C .12D .14C 解析:C 【分析】算出阴影部分的面积及大正方形的面积,这个比值就是所求的概率. 【详解】解:设小正方形的边长为1,则其面积为1. 圆的直径正好是大正方形边长,∴根据勾股定理,其小正方形对角线为2,即圆的直径为2, ∴大正方形的边长为2,则大正方形的面积为222⨯=,则小球停在小正方形内部(阴影)区域的概率为12. 故选:C . 【点睛】概率=相应的面积与总面积之比,本题实质是确定圆的内接正方形和外切正方形的边长比.设较小吧边长为单位1是在选择填空题中求比的常见方法.8.四张质地、大小相同的卡片上,分别画上如图所示的四种汽车标志,在看不到图形的情况下从中任意抽出一张,则抽出的卡片既是中心对称图形,又是轴对称图形的概率是( )A .12B .14C .34D .1B解析:B 【分析】从四个图形中找到中心对称图形的个数,然后利用概率公式求解即可. 【详解】∵四种汽车标志中,既是中心对称图形,又是轴对称图形的有1个, ∴既是中心对称图形,又是轴对称图形的概率为14; 故选B . 【点睛】本题考查概率的求法与运用,一般方法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率()P A =m n. 9.下列事件发生的可能性为0的是( ) A .掷两枚骰子,同时出现数字“6”朝上B .小明从家里到学校用了10分钟,从学校回到家里却用了15分钟C .今天是星期天,昨天必定是星期六D .小明步行的速度是每小时50千米D 解析:D 【分析】事件发生的可能性是0,说明这件事情不可能发生.据此解答即可. 【详解】解:A 、掷两枚骰子,同时出现数字“6”朝上,是可能事件;B 、小明从家里到学校用了10分钟,从学校回到家里却用了15分钟,是可能事件;C 、今天是星期天,昨天必定是星期六,是必然事件,概率为1;D 、小明步行的速度是每小时50千米,是不可能事件,概率为0. 故选:D . 【点睛】此题主要考查可能性的判断.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件发生的可能性为1,即P (必然事件)=1;不可能事件发生的可能性为0,即P (不可能事件)=0;如果A 为不确定事件,那么0<P (A )<1. 10.下列事件属于不可能事件的是() A .太阳从东方升起 B .1+1>3C .1分钟=60秒D .下雨的同时有太阳B解析:B 【分析】不可能事件就是一定不会发生的事件,依据定义即可判断. 【详解】A . 太阳从东方升起,是必然事件,故本选项错误;B . 1+1=2<3,故原选项是不能事件,故本选项正确;C . 1分钟=60秒,是必然事件,故本选项错误;D . 下雨的同时有太阳,是随机事件,故本选项错误. 故选:B . 【点睛】本题考查了不可能事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.二、填空题11.从1-,0,1,2,3这五个数中,随机取出一个数,记为a ,那么使关于x 的方程21x ax+=有解,且使关于的一元二次方程230x x a -+=有两个不相等的实数根的概率为___________.【分析】由题意得使关于x 的方程有解且使关于x 的一元二次方程有两个不相等的实数根的a 的值有3个由概率公式即可得出答案【详解】解:∴∴要使有解其化成的整式方程有解且此解不为增根故取123∵一元二次方程有解析:35【分析】由题意得使关于x 的方程21x ax+=有解,且使关于x 的一元二次方程230x x a -+=有两个不相等的实数根的a 的值有3个,由概率公式即可得出答案. 【详解】解:21x ax+=, ∴2x a x +=, ∴x a =,要使21x ax+=有解,其化成的整式方程有解且此解不为增根,故0a ≠, a ∴取1-,1,2,3,∵一元二次方程230x x a -+=有两个不相等的实数根,2(3)41940a a ∴∆=--⨯⨯=->,解得:94a <, 即 2.225a <,a ∴取1-,1,2三个数,故所求概率为:35.故答案为:35.【点睛】此题考查了概率公式的应用、根的判别式以及分式方程的解.用到的知识点为:概率=所求情况数与总情况数之比.12.下表显示了在同样条件下对某种小麦种子进行发芽实验的部分结果.①随着试验次数的增加,此种小麦种子发芽的频率总在0.95附近摆动,显示出一定的稳定性,可以估计此种小麦种子发芽的概率是0.95;②当试验种子数为500粒时,发芽频率是476,所以此小麦种子发芽的概率是0.952;③若再次试验,则当试验种子数为1000时,此种小麦种子发芽的频率一定是0.951;其中合理的是____________(填序号)①【分析】根据表中信息当随着小麦种子粒数的增加小麦的发芽率越来越稳定可以用频率估计概率【详解】解:①随着试验次数的增加从第500粒开始此种小麦种子发芽的频率分别是09520951095095总在09解析:①【分析】根据表中信息,当随着小麦种子粒数的增加,小麦的发芽率越来越稳定,可以用频率估计概率.【详解】解:①随着试验次数的增加,从第500粒开始,此种小麦种子发芽的频率分别是0.952、0.951、0.95、0.95总在0.95附近摆动,显示出一定的稳定性,可以估计此种小麦种子发芽的概率是0.95,故正确;②当试验种子数为500粒时,发芽频数是476,此时小麦种子发芽的频率是0.952,不能说明小麦种子发芽的概率就是0.952,此推断错误;③若再次试验,则当试验种子数为1000时,此种小麦种子发芽的频率不一定是0.951,此推断错误;故答案为:①.【点睛】本题主要考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.13.2020 年“中华魂”读书活动的主题为“科技托起强国梦”,现准备从万州二中校园电视台2名男主播和3名女主播中任选两人担任演讲比赛主持人,则选中一男一女的概率为__________.【分析】先列表求出所有情况数然后再确定一男一女的情况数最后运用概率公式计算即可【详解】解:列表如下:男1男2女1女2女3男1(男1男2)(男1女1)(男1女2)(男1女3)解析:3 5【分析】先列表求出所有情况数,然后再确定一男一女的情况数,最后运用概率公式计算即可.【详解】解:列表如下:所以由概率公式可得选中一男一女的概率为123= 205.故答案为35.【点睛】本题主要考查了运用列表法求概率,正确的列表是解答本题的关键.14.综合实践小组的同学做了某种黄豆在相同条件下的发芽试验,结果如表,那么这种黄豆发芽的概率约为__________.(结果精确到0.01)【分析】观察表格得到这种黄豆发芽的频率稳定在095附近即可估计出这种黄豆发芽的概率【详解】当n足够大时发芽的频率逐渐稳定于095故用频率估计概率黄豆发芽的概率估计值是095故答案为:095【点睛】本解析:0.95【分析】观察表格得到这种黄豆发芽的频率稳定在0.95附近,即可估计出这种黄豆发芽的概率.【详解】当n足够大时,发芽的频率逐渐稳定于0.95,故用频率估计概率,黄豆发芽的概率估计值是0.95.故答案为:0.95.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.15.如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为2m 的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,由此可估计不规则区域的面积是__m2.1【详解】解:由题意可知正方形的面积为4平方米因为小石子落在不规则区域的频率稳定在常数025附近所以不规则区域的面积约是4×025=1平方米故答案为:1解析:1【详解】解:由题意可知,正方形的面积为4平方米,因为小石子落在不规则区域的频率稳定在常数0.25附近,所以不规则区域的面积约是4×0.25=1平方米.故答案为:116.桌上放有完全相同的三张卡片,卡片上分别标有数字2,1,4,随机摸出一张卡片(不放回),其数字为p,随机摸出另一张卡片,其数字记为q,则满足关于x的方程x2+px+q=0有实数根的概率是_____.【分析】画树状图列出所有等可能结果从中依据根的判别式找到使方程x2+px+q=0有实数根的结果数利用概率公式计算可得【详解】画树状图如下:由树状图知共有6种等可能结果其中使关于x的方程x2+px+q解析:1 2【分析】画树状图列出所有等可能结果,从中依据根的判别式找到使方程x2+px+q=0有实数根的结果数,利用概率公式计算可得.【详解】画树状图如下:由树状图知共有6种等可能结果,其中使关于x的方程x2+px+q=0有实数根的结果有3种结果,∴关于x的方程x2+px+q=0有实数根的概率为3=612,故答案为1 2 .【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.17.四张质地、大小、背面完全相同的卡片上,正面分别画有平行四边形、矩形、等腰三角形、菱形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为___________________.【分析】由四张质地大小背面完全相同的卡片上正面分别画有平行四边形矩形等腰三角形菱形四个图案平行四边形矩形菱形是中心对称图形等腰三角形是轴对称图形直接利用概率公式求解即可求得答案【详解】解:∵四张质地解析:3 4【分析】由四张质地、大小、背面完全相同的卡片上,正面分别画有平行四边形、矩形、等腰三角形、菱形四个图案.平行四边形、矩形、菱形是中心对称图形,等腰三角形是轴对称图形,直接利用概率公式求解即可求得答案. 【详解】解:∵四张质地、大小、背面完全相同的卡片上,正面分别画有平行四边形、矩形、等腰三角形、菱形四个图案.中心对称图形的是平行四边形、矩形、菱形, ∴从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为:34. 故答案为:34. 【点睛】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.18.从112-,两个数中随机选取一个数记为,a 再从301-,,三个数中随机选取一个数记为b ,则a b 、的取值使得直线y ax b =+不过第二象限的概率是______.【分析】由直线不过第二象限可得a >0b≤0画出树状图可得出所有可能的结果找出a >0b≤0的结果数利用概率公式即可得答案【详解】∵直线不过第二象限∴a >0b≤0画树状图如下:∵共有6种等可能的结果使得解析:13【分析】由直线y ax b =+不过第二象限可得a >0,b≤0,画出树状图可得出所有可能的结果,找出a >0,b≤0的结果数,利用概率公式即可得答案. 【详解】∵直线y ax b =+不过第二象限, ∴a >0,b≤0, 画树状图如下:∵共有6种等可能的结果,使得直线y ax b =+不过第二象限的结果有2种, ∴a b 、的取值使得直线y ax b =+不过第二象限的概率是26=13, 故答案为:13【点睛】本题考查了一次函数的性质及列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.19.在一个不透明的袋中装有若干个红球,为了估计袋中红球的个数,小明在袋中放入3个黑球(每个球除颜色外其余都与红球相同),摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,则袋中红球约有_____个.17【分析】根据口袋中有3个黑球利用小球在总数中所占比例得出与实验比例应该相等求出即可【详解】解:通过大量重复摸球试验后发现摸到红球的频率稳定在085左右口袋中有3个黑球∵假设有x 个红球∴=085解解析:17 【分析】根据口袋中有3个黑球,利用小球在总数中所占比例得出与实验比例应该相等求出即可. 【详解】解:通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,口袋中有3个黑球,∵假设有x 个红球,∴3xx =0.85, 解得:x =17,经检验x =17是分式方程的解, ∴口袋中有红球约有17个. 故答案为:17. 【点睛】此题主要考查了用样本估计总体,根据已知得出小球在总数中所占比例得出与实验比例应该相等是解决问题的关键.20.如图,小明和小亮两人在玩转盘游戏,把转盘甲、乙分别分成3等份,并在每一份内标上数字,游戏规则是:转动两个转盘,停止后指针所指的两个数字之和为奇数时,小明胜;数字之和为偶数时,小亮胜.那么小明获胜的概率是__________.【分析】列举出所有情况根据概率公式即可得到小明获胜的概率【详解】共9种情况和为奇数的情况数有5种小明获胜的概率为故答案为:【点睛】本题考查了列表格或画树状图求概率正确画出树状图是解答本题的关键解析:59【分析】列举出所有情况,根据概率公式即可得到小明获胜的概率.【详解】共9种情况,和为奇数的情况数有5种,小明获胜的概率为59.故答案为:59.【点睛】本题考查了列表格或画树状图求概率.正确画出树状图是解答本题的关键.三、解答题21.我校组织了主题为“抗击新冠疫情”的绘画作品征集活动,现将收到的作品按,,,A B C D四个等级进行评价,并根据结果绘制了如下两幅不完整的统计图.请根据统计图中的信息解决下列问题:(1)本次收到的作品的总件数是________.(2)把图2条形统计图补充完整.(3)如果被评为A级的作品中有4件被评为了最佳作品,其中有1件是来自初三年级的.现在学校打算从这四件最佳作品中随机选择两件进行推送,请用列表或画树状图的方法求出推送的两件最佳作品中有1件是来自初三年级的概率.解析:(1)60;(2)画图见解析;(3)1 2【分析】(1)根据B级的件数及所占的百分比,即可求出作品的总件数;(2)用作品的总件数减去A、B、D级作品的件数,即可得到C级的作品件数,进而补全直方图;(3)利用树状图法列举出所有可能的结果,然后利用概率公式求解即可.【详解】(1)由图1,图2可知:B级有21件,占比为35%,∴总件数为2135%60÷=;(2)C的件数为:60921921---=(件)条形图如下图:(3)设这4件作品分别为A B C D、、、,其中初三年级的作品为A,则树状图为:则含有A的共有6种,一共有12种可能,∴61122P==,即有一件来自初三年级的概率为12.【点睛】本题主要考察列表法与列树状图法:利用列表法或树状图法展示所有可能的结果,再从中选出符合条件A或B的结果数,然后根据概率公式计算出事件A或B的概率.22.电影《我和我的家乡》和《姜子牙》分别夺得国庆档8天票房的冠、亚军.周末,小明和爸爸一起去看电影,但是小明想看《姜子牙》爸爸想看《我和我的家乡》,于是他们决定采用摸牌的办法决定去看哪部电影.摸牌规则如下:把一副新扑克牌中的红桃2,3,4,5四张背面朝上洗匀后放置在桌面上,小明从中随机摸出一张牌,记下数字后放回,爸爸再从中摸出一张牌,记下数字若两次数字之和为奇数,则看《我和我的家乡》,若两次数字之和为偶数,则看《姜子牙》.(1)请用列表或画树状图的方法表示出两数和的所有可能的结果;(2)请判断这个游戏是否公平.解析:(1)答案见解析;(2)这个游戏公平.(1)利用树状图展示所有16种等可能的等可能的结果数;(2)找出两次数字之和为奇数的结果数和两次数字之和为偶数的结果数,然后根据概率公式计算即可.【详解】解:(1)画树状图如下:共16种等可能的结果.(2)由(1)得共有16种结果,每种结果出现的可能性相同,两次数字之和为奇数的结果有8种.∴看《我和我的家乡》的概率为81 162=.两次数字之和为偶数的结果有8种,∴看《姜子牙》的概率为81 162=.1122=∴这个游戏公平.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.23.复工复学后,为防控冠状病毒,学生进校园必须戴口罩,测体温.某校开通了两种不同类型的测温通道共三条.分别为:红外热成像测温(A通道)和人工测温(B通道和C通道).在三条通道中,每位同学都可随机选择其中的一条通过,周五有甲、乙两位同学进校园.(1)当甲同学进校园时,从人工测温通道通过的概率是______.(2)请用列表或画树状图的方法求甲、乙两位同学从不同类型测温通道通过的概率.解析:(1)23;(2)49【分析】(1)直接根据概率公式求解即可;(2)根据题意画出树状图得出所有等情况数,找出符合条件的情况数,然后根据概率公式即可得出答案.解:(1)共有三个通道,分别是红外热成像测温(A通道)和人工测温(B通道和C通道),∴从人工测温通道通过的概率是23;故答案为:23;(2)根据题意画树状图如下:共有9种等可能的结果,其中甲、乙两位同学从不同类型测温通道通过的有4种情况,则甲、乙两位同学从不同类型测温通道通过的概率是49.【点睛】此题考查的是用树状图法求概率.树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24.两个不透明的箱子里各装有两个完全相同的球,分别标有数字1,2和3,4.每次分别从两个箱子里各摸出一个球,计算两个球上的数字之积.(1)利用树状图或列表法表示这两个球上的数字之积可能出现的结果;(2)求积的结果为3的倍数的概率是多少?解析:(1)见解析;(2)1 2【分析】(1)画树状图即可得出两个球上的数字之积可能出现的结果;(2)找出是3的倍数的结果,利用概率公式计算即可.【详解】解:(1)画树状图如下:由树状图可知,这两个球上的数字之积共有4种等可能的结果,即3,4,6,8;(2)∵这个积为3的倍数的结果有2种,。
一、选择题1.下列事件是必然事件的是( ) A .打开电视机,正在播放动画片 B .2022年世界杯德国队一定能夺得冠军 C .某彩票中奖率是1%,买100张一定会中奖 D .在一只装有5个红球的袋中摸出1球,一定是红球2.从﹣2,0,1,2,3中任取一个数作为a ,既要使关于x 一元二次方程ax 2+(2a ﹣4)x+a ﹣8=0有实数解,又要使关于x 的分式方程211x a ax x++--=3有正数解,则符合条件的概率是( ) A .15B .25C .35D .453.小明制作了5张卡片,上面分别写了一个条件:①AB BC =;②AB BC ⊥;③AD BC =;④AC BD ⊥,⑤AC BD =.从中随机抽取一张卡片,能判定ABCD 是菱形的概率为( ) A .15B .25C .35D .454.用如图所示的两个转盘进行“配紫色”(红色与蓝色能配成紫色)游戏,配得紫色的概率是( )A .12B .13C .14D .165.某学校在进行防溺水安全教育活动中,将以下几种在游泳时的注意事项写在纸条上并折好,内容分别是:①互相关心;②互相提醒;③不要相互嬉水;④相互比潜水深度;⑤选择水流湍急的水域;⑥选择有人看护的游泳池.小颖从这6张纸条中随机抽出一张,抽到内容描述正确的纸条的概率是( ) A .12B .13C .23 D .16 6.2,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是( ) A .15B .25C .35D .457.某射击运动员在同一条件下的射击成绩记录如下: 射击次数20801002004001000“射中九环以上”的次数186882168327823“射中九环以上”的频率(结果保留两位小数)0.900.850.820.840.820.82根据频率的稳定性,估计这名运动员射击一次时“射中九环以上”的概率约是()A.0.90 B.0.82 C.0.85 D.0.848.如图是一个圆形的地板图案,其中大圆直径恰好等于两个小圆直径的和.若在地板上任意扔一颗小玻璃珠,则小玻璃珠静止后,滚落在阴影部分的概率是().A.12B.13C.14D.1π9.有一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是()A.415B.15C.13D.21510.下列事件是必然事件的是()A.阴天一定会下雨B.购买一张体育彩票,中奖C.打开电视机,任选一个频道,屏幕上正在播放新闻联播D.任意画一个三角形,其内角和是180°11.从1到9这9个自然数中任取一个,既是2的倍数,又是3的倍数的概率是()A.19B.13C.12D.7912.现有两个可以自由转动的转盘,每个转盘分成三个相同的扇形,涂色情况如图所示,指针的位置固定,同时转动两个转盘,则转盘停止后指针指向同种颜色区域的概率是( )A .19B .16C .23D .1313.袋中装有3个绿球和4个红球,它们除颜色外,其余均相同。
一、选择题1.已知抛物线()20y ax bx c a =++<过()30A -,、()1,0O 、()15,B y -、()25,C y 四点,则1y 与2y 的大小关系是( )A .12y y >B .12y y <C .12y y =D .不能确定2.二次函数()20y ax bx c a =++≠的图象如图所示,对称轴是直线1x =-.下列结论:①240b ac ->,②0abc <,③420a b c -+>.其中正确的是( )A .①②B .①③C .②③D .①②③ 3.已知抛物线2y x bx c =++的顶点在x 轴上,且经过点(3,)A m n -、(3,)B m n +,则n 的值为( )A .3B .6C .9D .124.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论:①ac <0;②b <0;③4ac ﹣b 2<0;④当x >﹣1时,y 随x 的增大而减小.其中正确的有( )A .4个B .3个C .2个D .1个5.如图所示,二次函数2y ax bx c =++的图象中,对称轴是直线1x =,王刚同学观察得出了下面四条信息:①1c >;②若()12,y ,()24,y 是抛物线上两点,则12y y >;③420a b c -+<;④方程20ax bx c ++=的两根是11x =-,23x =.其中说法正确的有( )A .①②③④B .②④C .①②④D .①③④ 6.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,顶点坐标为(1,)n 与y 轴的交点在(0,2)、(0,3) 之间(包含端点).有下列结论:①24ac b <;②30a b +>;③420a b c ++>;④当0y >时,x 的取值范围为13x ;⑤当0x >时,y 随着x 的增大而减小;⑥若抛物线经过点()12,y -、23,2y ⎛⎫ ⎪⎝⎭、()33,y ,则312y y y <<.其中正确的有( )A .②③⑤B .①③④C .①③⑥D .②③⑥ 7.如图1,是某次排球比赛中运动员垫球时的动作,垫球后排球的运动路线可近似地看作抛物线,在图2所示的平面直角坐标系中,运动员垫球时(图2中点A )离球网的水平距离为5米,排球与地面的垂直距离为0.5米,排球在球网上端0.26米处(图2中点B )越过球网(女子排球赛中球网上端距地面的高度为2.24米),落地时(图2中点C )距球网的水平距离为2.5米,则排球运动路线的函数表达式为( ).A .2148575152y x x =--+ B .2148575152y x x =-++ C .2148575152y x x =-+ D .2148575152y x x =++ 8.已知二次函数22236y x ax a a =-+-+(其中x 是自变量)的图象与x 轴没有公共点,且当1x <-时,y 随x 的增大而减小,则实数a 的取值范围是( )A .2a <B .1a >-C .12a -<≤D .12a -≤< 9.把抛物线231y x =+向上平移2个单位,则所得抛物线的表达式为( )A .233y x =+B .231y x =-C .()2321y x =++D .()2321y x =-+ 10.对于二次函数()2532y x =-+的图象,下列说法中不正确的是( )A .顶点是()3,2B .开口向上C .与x 轴有两个交点D .对称轴是3x =11.抛物线2(3)y a x k =++的图象如图所示.已知点()15,A y -,()22,B y -,()36.5,C y -三点都在该图象上,则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .321y y y >>C .213y y y >>D .231y y y >> 12.设()12,A y -,()21,B y ,()32,C y 是抛物线2(1)y x =-+上的三点,1y ,2y ,3y 的大小关系为( )A .123y y y >>B .132y y y >>C .321y y y >>D .312y y y >>13.二次函数()20y ax bx c a =++≠的图象如图所示,则下列结论正确的是( )A .0abc >B .20a b +<C .关于x 的方程230ax bx c +++=有两个相等的实数根D .930a b c ++<14.抛物线()2512y x =--+的顶点坐标为( )A .()1,2-B .()1,2C .()1,2-D .()2,1 15.对于二次函数2(2)7y x =---,下列说法正确的是( )A .图象开口向上B .对称轴是直线2x =-C .当2x >时,y 随x 的增大而减小D .当2x <时,y 随x 的增大而减小二、填空题16.有一个二次函数的图象,三位同学分别说了它的一些特点:甲:与x 轴只有一个交点;乙:对称轴是直线x =4;丙:与y 轴的交点到原点的距离为3.满足上述全部特点的二次函数的解析式为_____.17.已知二次函数2y ax bx c =++的图象过点(1,2)A ,(3,2)B ,(5,7)C .若点1(2,)M y ,2(1,)N y -,3(8,)K y 也在二次函数2y ax bx c =++的图象上,则1y ,2y ,2y 的从小到大的关系是___.18.抛物线2(3)y a x m =-+与x 轴的一个交点为(1,0),则关于x 的一元二次方程2(3)0a x m -+=的根为__________.19.如图,平面直角坐标系中,桥孔抛物线对应的二次函数关系式是y =﹣13x 2,桥下的水面宽AB 为6m ,当水位上涨2m 时,水面宽CD 为_____m (结果保留根号).20.高尔夫球运动是一项具有特殊魅力的运动,运动员会利用不同的高尔夫球杆将高尔夫球打进球洞,从而使其在优美的自然环境中锻炼身体,并陶冶情操. 如图,某运动员将一只高尔夫球沿某方向击出时,小球的飞行路线是一条抛物线. 如果不考虑空气阻力等因素,小球的飞行高度 h (单位:米)与飞行时间 t (单位:秒)之间满足函数关系2205h t t =- .则小球从飞出到落地瞬间所需的时间为________秒.21.将二次函数y=x 2-4x+5化成=(x-h )2+k 的形式,则y= _____.22.如图,抛物线()()13y a x x =+-与x 轴交于A ,B 两点(点A 在B 的左侧),点C 为抛物线上任意一点....(不与A ,B 重合),BD 为ABC 的AC 边上的高线,抛物线顶点E 与点D 的最小距离为1,则抛物线解析式为______.23.单行隧道的截面是抛物线形,且抛物线的解析式为21 3.258y x =-+,一辆车高3米,宽4米,该车________(填“能”或“不能”)通过该隧道. 24.将抛物线y =2(x ﹣1)2+3绕着点A (2,0)旋转180°,则旋转后的抛物线的解析式为_____.25.若二次函数()221y x k =++的图象上有两点()(),,,03A m B n -,m ____________n .(填“>”,“=”或“<”)26.在平面直角坐标系xOy 中,函数y=x 2的图象经过点M (x 1,y 1),N (x 2,y 2)两点,若﹣4<x 1<﹣2,0<x 2<2,则y 1 ______y 2 .(用“<”,“=”或“>”号连接)三、解答题27.如图,Rt ABC △中,90C ∠=︒,6cm AC =,8cm BC =,点P 由A 出发向点C 移动,点Q 由C 出发向点B 移动,两点同时出发,速度均为1cm/s ,运动时间为t 秒.(1)几秒时PCQ △的面积为4?(2)是否存在t 的值,使PCQ △的面积为5?若存在,求这个t 值,若不存在,说明理由. (3)几秒时PCQ △的面积最大,最大面积是多少?28.如图1,抛物线y =x 2+bx +c 与x 轴交于A ,B 两点,与y 轴交于点C (0,2),连接AC ,若OC =2OA .(1)求抛物线的解析式;(2)抛物线对称轴l 上有一动点P ,当PC +PA 最小时,求出点P 的坐标;(3)如图2所示,连接BC ,M 是线段BC 上(不与B 、C 重合)的一个动点.过点M 作直线l '∥l ,交抛物线于点N ,连接CN ,BN ,设点M 的横坐标为t .当t 为何值时,△BCN 的面积最大?最大面积为多少?29.如图,四边形ABCD 的两条对角线AC 、BD 互相垂直,10AC BD ,当AC 、BD 的长是多少时,四边形ABCD 的面积最大?30.已知抛物线2221y x x m =--+,直线2y x =-与x 轴交于点M ,与y 轴交于点N . (1)求证:抛物线与x 轴必有公共点;(2)若抛物线与x 轴交于A 、B 两点,且抛物线的顶点C 落在此直线上,求ABC 的面积;(3)若线段MN 与抛物线有且只有一个公共点,求m 的取值范围.。
初三数学模拟试卷一、精心选一选,相信自己的判断!(共10小题,每小题3分,共30分)1. (★)计算屈一血的结果是()3. (★)将二次函数y = %2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是()A. y = (%-l)2+2 B. y = (x+l)2+2 C. y = (x-l)2-2 D. y = (% + l)2 -2况是( )A.有两个不等实根B.有两个相等实根C.没有实根D.无法确定。
6. (★★)把长为8cm 的矩形按虚线对折,按图屮的虚线剪出一个直角梯形,找开得到一个等腰梯形, 剪掉部分的面积为6cn?,则打开后梯形的周长是()A. (10 + 2-\/^3) cmB. (10 + VTJ ) cm C ・ 22cm D. 18cm7. (★★)下面右边的图形是由8个棱长为1个单位的小立方体组成的立体图形,这个立体图形的左视图是 ()A. B.C. D. ~8. (★★)己知腮的面积为36,将腮沿兀的方向平移到C 的位置,使〃和C 重合,连结化/交才C 于〃,则DC 的面 积为 ( ) A. 6 B. 9 C. 12 D. 18X 0根的情 5.4. (★)如图1,现有一个圆心角为90。
,半径为8cm 的扇形纸片,用它恰好围成一个圆锥的侧面(接 缝忽略不计),则该圆锥底面圆的半径为( )B C &)C (第8题)9. (★★)某探究性学习小组仅利用一幅三角板不能完成的操作是( )A.作已知直线的平行线B.作已知角的平分线C.测量钢球的直径D.找已知圆的圆心10. (★★★)如图,正方形力滋9的边长是3cm,—个边长为lcm 的小正方形 沿着正方形昇彩的边AB-BC-dDAfAB 连续地翻转,那么这个小正方形笫 一次回到起始位置时,它的方向是()A. B. C. D.二、细心填一填,试试自己的身手!(共6小题,每小题3分,共18分) 10. (★)在函数y =』2-x 中,自变量兀的取值范围是 ______________ .11. (★)国家游泳屮心“水立方”是北京2008年奥运会场馆之一,它的外层膜的展开面积约为260000平方米,将260000用科学记数法表示应为 ________________ .x — 3 v 0 12. (★)不等式组彳 .的解集是2无一1三0------------13. (★★)如图,(甲)是四边形纸片ABCD ,其中Z 尿120。
一、选择题1.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )A .B .C .D .2.如图,已知⊙O 的半径是2,点A 、B 、C 在⊙O 上,若四边形OABC 为菱形,则图中阴影部分面积为( )A .23π﹣23 B .13π﹣3 C .43π﹣23 D .43π﹣3 3.下列计算正确的是( )A .()3473=a ba b B .()232482--=--b a bab bC .32242⋅+⋅=a a a a aD .22(5)25-=-a a4.下列长度的三根小木棒能构成三角形的是( )A .2cm ,3cm ,5cmB .7cm ,4cm ,2cmC .3cm ,4cm ,8cmD .3cm ,3cm ,4cm 5.如图中的几何体是由一个圆柱和个长方体组成的,该几何体的俯视图是( )A .B .C .D .6.如图,将▱ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若ABD 48∠=,CFD 40∠=,则E ∠为( )A.102B.112C.122D.927.现定义一种变换:对于一个由有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,例如序列S0:(4,2,3,4,2),通过变换可生成新序列S1:(2,2,1,2,2),若S0可以为任意序列,则下面的序列可作为S1的是()A.(1,2,1,2,2)B.(2,2,2,3,3)C.(1,1,2,2,3)D.(1,2,1,1,2)8.下列二次根式中的最简二次根式是()A.30B.12C.8D.0.59.下列计算正确的是()A.a2•a=a2B.a6÷a2=a3C.a2b﹣2ba2=﹣a2b D.(﹣32a)3=﹣398a10.已知关于x的方程2x+a-9=0的解是x=2,则a的值为A.2 B.3 C.4 D.511.若关于x的方程333x m mx x++--=3的解为正数,则m的取值范围是()A.m<92B.m<92且m≠32C.m>﹣94D.m>﹣94且m≠﹣3412.已知反比例函数 y=abx的图象如图所示,则二次函数 y =a x 2-2x和一次函数 y=bx+a 在同一平面直角坐标系中的图象可能是()A.B.C.D.13.直线y=﹣kx+k﹣3与直线y=kx在同一坐标系中的大致图象可能是()A.B.C.D.14.如图,将△ABC绕点C(0,1)旋转180°得到△A'B'C,设点A的坐标为(,)a b,则点的坐标为( )A .(,)a b --B .(,1)a b ---C .(,1)a b --+D .(,2)a b --+15.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( ) A .12 B .15 C .12或15 D .1816.如图的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A 点到B 点,甲虫沿大半圆弧ACB 路线爬行,乙虫沿小半圆弧ADA 1、A 1EA 2、A 2FA 3、A 3GB 路线爬行,则下列结论正确的是 ( )A .甲先到B 点 B .乙先到B 点C .甲、乙同时到B 点D .无法确定17.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45°18.已知二次函数y =ax 2+bx+c(a≠0)的图象如图,则下列结论中正确的是( )A .abc >0B .b 2﹣4ac <0C .9a+3b+c >0D .c+8a <019.如图,矩形ABCD 的顶点A 和对称中心均在反比例函数y =kx(k≠0,x >0)上,若矩形ABCD 的面积为12,则k 的值为( )A.12B.4C.3D.6⊥于点D,连接BD,BC,且20.如图,AB,AC分别是⊙O的直径和弦,OD ACAC=,则BD的长为()10AB=,8A.25B.4C.213D.4.821.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB 和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是()A.B.C.D.22.在如图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是()A.点A B.点B C.点C D.点D 23.在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为()A.154B.14C.1515D.4171724.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°25.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连结BF交AC于点M,连结DE、BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中正确结论的个数是()A.4个B.3个C.2个D.1个26.某排球队6名场上队员的身高(单位:cm)是:180,184,188,190,192,194.现用一名身高为186cm的队员换下场上身高为192cm的队员,与换人前相比,场上队员的身高()A.平均数变小,方差变小B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大27.估6√3−√27的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间28.如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M 是第三象限内OB上一点,∠BMO=120°,则⊙C的半径长为()A .6B .5C .3D .3229.为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是( ) 捐款数额 10 20 30 50 100 人数24531A .众数是100B .中位数是30C .极差是20D .平均数是3030.今年我市工业试验区投资50760万元开发了多个项目,今后还将投资106960万元开发多个新项目,每个新项目平均投资比今年每个项目平均投资多500万元,并且新增项目数量比今年多20个.假设今年每个项目平均投资是x 万元,那么下列方程符合题意的是( ) A .1069605076020500x x -=+B .5076010696020500x x -=+ C .1069605076050020x x-=+D .5076010696050020x x -=+ 二、填空题31.某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是______元.32.如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B ′处,当△CEB ′为直角三角形时,BE 的长为 .33.已知(a -4)(a -2)=3,则(a -4)2+(a -2)2的值为__________.34.如图,把三角形纸片折叠,使点B ,点C 都与点A 重合,折痕分别为,DE FG ,若15,2C AE EG ︒∠===厘米,ABC △则的边BC 的长为__________厘米。
罗店中学初三中考数学模拟卷
(时间:100分钟,满分:150分) 2010.1
一、单项选择题:(本大题共6题,每题4分,满分24分)
[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上]
1下列运算结果正确的是…………………………………………………………………( ) A.6
3
2
a a a =⋅; B.6332)(
b a ab =; C.532)(a a =;
D.3
2
32a a a =+.
2. 在49,a 9,2
5xy ,92+a ,
2
3
+x ,1.0中,是最简二次根式的个数是( ). (A) 1; (B) 2; (C) 3; (D) 4.
3.据媒体报道,我国因环境污染造成的巨大经济损失,每年高达680000000元,这个数用科学记数法表示正确的是
(A )68109
.⨯元; (B ) 68108.⨯元; (C )68107.⨯元; (D ) 68106
.⨯元. 4.在平面直角坐标系中,直线1y x =-经过……………………………( ) A .第一、二、三象限 ; B .第一、二、四象限; C .第一、三、四象限 ;
D .第二、三、四象限.
5.下列命题中假命题是……………………………………………………………………( ) A.两组对边分别相等的四边形是平行四边形; B.两组对角分别相等的四边形是平行四边形; C.一组对边平行一组对角相等的四边形是平行四边形; D.一组对边平行一组对边相等的四边形是平行四边形.
6. 给出下列关于三角形的条件:①已知三边;②已知两边及其夹角;③已知两角及其夹边;④已知两边及其中一边的对角. 利用尺规作图,能作出唯一的三角形的条件是…( ). (A) ①②③; (B) ①②④; (C) ②③④; (D) ①③④. 二、填空题:(本大题共12题,每题4分,满分48分) 7.化简:
=-+-x
x x 22
2 . 8.不等式12-x ≤3的正整数解是 . 9.函数x y -=1的定义域是 . 10.在方程22
3
343x x x x
+
=--中,如果设23y x x =-,那么原方程可化为关于y 的整式方程
是 .
11.已知正比例函数y k x =(k ≠ 0)的图像经过点(-4,2),那么函数值y 随自变量x 的值的增大而
____________.(填“增大”或“减小”)
12.四张大小、质地都相同的卡片上分别标有数字1,2,3,4,现将标有数字的一面朝下放在桌子上,
从中随机抽取两张卡片,那么两张卡片上的数字的乘积为偶数的概率是_________. 13.写出一个开口向下且对称轴为直线1x =-的抛物线的函数解析式 . 14.请写出一个既是轴对称图形又是旋转对称图形的图形:_________. 15.在︒=∠∆90C ABC Rt 中,,2
1
tan =
A , 若1=BC ,则A
B 边的长是 . 16.如图,在平行四边形ABCD 中,E 是边CD 上的点,BE 与A
C 交于点F
如果
31=CD CE ,那么=FB
EF
.
17.⊙O 的直径为10,⊙O 的两条平行弦8=AB ,6=CD ,那么这两条平行弦之间的距
离是________________.
18.平行四边形ABCD 中,3,4==BC AB ,∠B =60°,AE 为BC 边上的高,将△ABE 沿AE 所在直线
翻折后得△AFE ,那么△AFE 与四边形AECD 重叠部分的面积是 .
三、解答题(本大题共7题,其中第19---22题每题10分,第23、24题每题12分,第25题14分,满分78分)
19.计算:31972331122
1
1--⎪⎭
⎫ ⎝⎛
+-+
-. 20.解方程组:⎩⎨⎧=+-=-.
065,622
2
y xy x y x
21.某商品根据以往销售经验,每天的售价与销售量之间有如下表的关系:
设当单价从38元/千克下调到x 元时,销售量为y 千克,已知y 与x 之间的函数关系是一次函数.
C
(1)求y 与x 的函数解析式;
(2)如果某商品的成本价是20元/千克,为使某一天的利润为780元,那么这一天的销售价应为多少元?(利润=销售总金额-成本)
21.为了解本区初三学生体育测试自选项目的情况,从本区初三学生中随机抽取了部分学生的自选项目
进行统计,绘制了扇形统计图和频数分布直方图,请根据图中信息,回答下列问题: (1)本次调查共抽取了 名学生; (2)将频数分布直方图补充完整;
(3)样本中各自选项目人数的中位数是 ;
(4)本区共有初三学生4600名,估计本区有 名学生选报立定跳远.
23.如图,在ABC ∆中,B C ∠=∠2,D 是BC 边上一点,且AB AD ⊥,点E 是线段BD
的中点,连
项目
篮球
排球
50米 立定跳远
其他
A
结AE .
(1)求证:AC BD 2=;
(2)若BC DC AC ⋅=2
,求证:AEC ∆是等腰直角三角形.
24.如图,抛物线c bx ax y ++=2与y 轴正半轴交于点C ,与x 轴交于点),(、04)0,1(B A ,OBC OCA ∠=∠.
(1)求抛物线的解析式; (3分)
(2)在直角坐标平面内确定点M ,使得以点C B A M 、、、为顶点的四边形是平行四边形,请直接
写出点M 的坐标; (3分)
(3)如果⊙P 过点C B A 、、三点,求圆心P 的坐标. (6分)
25.如图8,在ABC ∆中,90C ∠=︒,6AC =,3
tan 4
B =
,D 是BC 边的中点,E 为AB 边上的一个动点,作90DEF ∠=︒,EF 交射线BC 于点F .设BE x =,BED ∆的面积为y .
(1)求y 关于x 的函数关系式,并写出自变量x 的取值范围;
(2)如果以线段BC 为直径的圆与以线段AE 为直径的圆相切,求线段BE 的长; (3)如果以B 、E 、F 为顶点的三角形与BED ∆相似,求BED ∆的面积.
A
C D E
F B
图8 A
D B
备用图
·。