人教版初二数学上试卷第1课时等边三角形的性质与判定.docx
- 格式:docx
- 大小:88.46 KB
- 文档页数:4
第04讲等边三角形课程标准学习目标①等边三角形的概念与性质②等边三角形的判定③含30°角的直角三角形 1.掌握等边三角形的性质并能够对其熟练应用。
2.掌握等边三角形的判定方法,能够运用已知条件熟练判定等腰三角形。
3.掌握含30°角的直角三角形的性质并对其熟练应用。
知识点01等边三角形的概念与性质1.等边三角形的概念:三条边都的三角形叫做等边三角形,等边三角形是特殊的。
2.等边三角形的性质:如图①等边三角形的三条边都,三个角也,且三个角都等于°。
②等边三角形三条边都存在。
③等边三角形是一个图形,它有条对称轴,对称轴的交点叫做中心。
题型考点:①等边三角形的性质求角度与线段。
【即学即练1】1.如图,直线a∥b,等边三角形ABC的顶点C在直线b上,∠1=40°,则∠2的度数为()A.80°B.70°C.60°D.50°【即学即练2】2.如图:等边三角形ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是()A.45°B.55°C.60°D.75°【即学即练3】3.如图,△ABC中,AD为角平分线,若∠B=∠C=60°,AB=8,则CD的长度为.【即学即练4】4.如图,过边长为4的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为.知识点02含30°角的直角三角形1.30°角所对的直角边与斜边的关系:30°角所对的直角边等于斜边的。
证明如下:1如图,△ABC是等边三角形,AD⊥BC。
证明BD=AB2∵△ABC是等边三角形∴AB=BC=AC,∠BAC=∠B=∠C=。
∵AD⊥BC∴AD平分∠BAC,∠BAD=∠CAD=BD=CD=BC∴BD=AB。
题型考点:含30°角的直角三角形的性质。
13.3.2 等边三角形一、单选题1.如图,Rt△ABC 中,△C =90°,△B =30°,△BAC 的平分线AD 交BC 于点D ,CD =BD 的长是( )A .2B .C .3D .2.如图,//,AB CD ACE 为等边三角形,40DCE ∠=︒,则EAB ∠等于( )A .40︒B .30C .20︒D .15︒3.下列说法错误的是( ) A .有两边相等的三角形是等腰三角形 B .直角三角形不可能是等腰三角形 C .有两个角为60°的三角形是等边三角形 D .有一个角为60°的等腰三角形是等边三角形4.如图,点B 是线段AC 上任意一点(点B 与点A ,C 不重合),分别以AB 、BC 为边在直线AC的同侧作等边三角形ABD 和等边三角形BCE ,AE 与BD 相交于点G 、CD 与BE 相交于点F ,AE与CD 相交于点H ,连HB ,则下列结论:△AE CD =;△120AHC ∠=︒;△HB 平分AHC ∠;△CH EH BH =+.其中正确的结论有( )A .4个B .3个C .2个D .1个5.如图,过边长为3的等边ABC 的边AB 上一点P ,作PE AC ⊥于E ,Q 为BC 延长线上一点,当PA CQ =时,连接PQ 交边AC 于点D ,则DE 的长为( )A .13B .12C .32D .26.下列所叙述的三角形一定全等的是( ) A .边长相等的两个正三角形B .腰相等的两个等腰三角形C .含有30°角的两个直角三角形D .两边和其中一边的对角分别相等的两个三角形7.如图,在ABC 中,30C ∠=︒,点D 是AC 的中点,DE AC ⊥交BC 于E ;点O 在DE 上,OA OB =,2OD =,4OE =,则BE 的长为( )A .12B .10C .8D .68.如图,ABC 为等边三角形,BO 为中线,延长BA 至D ,使AD AO =,则DOB ∠的度数为( )A .105︒B .120︒C .135︒D .150︒9.如图,△ABC 是等边三角形,AD=AE ,BD=CE ,则△ACE 的度数是( )A .40°B .50°C .60°D .70°10.如图,在边长为9的等边△ABC 中,CD △AB 于点D ,点E 、F 分别是边AB 、AC 上的两个点,且AE=CF=4cm ,在CD 上有一动点P ,则PE +PF 的最小值是( )A .4B .4.5C .5D .811.如图,ABC 是等边三角形,D 是线段BC 上一点(不与点,B C 重合),连接AD ,点,E F 分别在线段,AB AC 的延长线上,且DE DF AD ==,点D 从B 运动到C 的过程中,BED 周长的变化规律是( )A .不变B .一直变小C .先变大后变小D .先变小后变大12.如图,等边ABC 的顶点(1,1)A ,(3,1)B ,规定把等边ABC “先沿x 轴翻折,再向左平移1个单位”为一次变换,这样连续经过2021次变换后,ABC 顶点C 的坐标为( )A .(2020,1-B .(2020,1--C .(2019,1-+D .(2019,1--13.如图,ABC ∆是等边三角形,AD 是BC 上的高,//DE AC ,图中与BD (BD 除外)相等的线段共有( )条A .1B .2C .3D .414.以下说法正确的是( )A .三角形中 30°的对边等于最长边的一半B .若a + b = 3,ab = 2,则a - b = 1C .到三角形三边所在直线距离相等的点有且仅有一个D .等腰三角形三边垂直平分线的交点、三个内角平分线的交点、顶角的顶点三点共线 15.如图,ABC ∆和CDE ∆都是等边三角形,且62EBD ∠=,则AEB ∠的度数是( )A .124B .122C .120D .118二、填空题16.如图,在△ABC 中,△B =30°,AC = 边AB 的垂直平分线分别交AB 和BC 与点E ,D ,且AD 平分△BAC 则DE 的长度为____.17.如图,在△ABC 中,DE 是AC 的垂直平分线,△BCD 的周长为13,△ABC 的周长是19,若△ACD =60°,则AD =___.18.如图,在等边△ABC 中,点D 、E 分别在边AC 、BC 上,AD =CE ,连接BD ,AE ,点M 、N 分别在线段BE 、BD 上,满足BM =BN ,MN =ME ,若△DBC :△BEN =8:7,则△AEN 的度数为_______.19.如图是一个正方形和两个等边三角形,若△3=80°,则△1+△2=____________20.如图,等边三角形ABC 中,D 、E 分别为AB 、BC 边上的两个动点,且总使AD =BE ,AE 与CD 交于点F ,AG △CD 于点G ,则△F AG =_____°.三、解答题21.如图,ABC 和BDE 是等边三角形,连接AD 、CE .求证:ABD △△CBE △.CE AB,且AE△CE.解答下22.如图,在等边三角形ABC中,D为AC边的中点,过点C作//列问题:(1)△CAE=△ABD成立吗?请说明理由;(2)还有哪些结论?(写出一个即可)23.如图,在等边ABC中,高线BD和高线CE相交于点O.△≌△;(1)求证:ABD ACE△的形状,并说明理由.(2)连接DE,判断CDE24.如图,ABC和ADE都是等边三角形,BE和CD交于点F,ADE绕点A旋转.(1)如图1所示,求证:BAE CAD△≌△;(2)如图2所示,求证:AF平分BFD.参考答案16.1 17.6 18.45° 19.70° 20.30°21.证明:△ABC 和BDE 是等边三角形 △60ABC DBE ∠=∠=︒△ABC DBC DBE DBC ∠-∠=∠-∠ △ABD CBE ∠=∠又△AB BC =,BD BE =, ∴在ABD △和CBE △中AB BC ABD CBE BD BE =⎧⎪∠=∠⎨⎪=⎩△ABD △△CBE △()SAS 22.解:(1)成立,理由为:△三角形ABC 是等边三角形, AD =CD , △AB =BC =AC ,BD △AC 即△AEC =△BDA =90°, △AB △CE , △△ACE =△BAD . 在△ABD 和△AEC 中,90AEC BDA ACE BAD AC AB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, △△ABD △△AEC (AAS ), △△CAE =△ABD ;(2)AE = BD ,由(1)得:△ABD △△AEC , △AE = BD . 23.解:(1)证明:ABC 是等边三角形,AB AC ∴=.BD 和CE 是等边ABC 的高线,即BD 和CE 是等边ABC 的中线, 12AD AC ∴=,12AE AB =,AD AE ∴=.在ABD △与ACE 中,AD AE A A AB AC =⎧⎪∠=∠⎨⎪=⎩,(SAS)ABD ACE ∴△≌△.(2)CDE △是等腰三角形. 理由:ABC 是等边三角形,60A ∴∠=︒.AD AE =,ADE ∴是等边三角形, AD DE ∴=.BD 是等边ABC 的中线, AD CD ∴=, DE CD ∴=,CDE ∴是等腰三角形.24.证明:(1)△ABC 和ADE 都是等边三角形 △AB AC =,AE AD =,60BAC DAE ∠=∠=︒ △BAC BAD DAE BAD ∠+∠=∠+∠,即BAE CAD ∠=∠ 在BAE △和CAD 中, AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩△()BAE CAD SAS ≌.(2)过点A 作AG BF ⊥交BF 于点G ,过点A 作AH DF ⊥交DF 于点H ,由(1)可得:BAE CAD △≌△, △BE CD =, △AG AH = △AF 平分BFD ∠.。
13.3.2等边三角形第1课时等边三角形的性质与判定01基础题知识点1等边三角形的性质1△.等边ABC的两条角平分线BD和CE相交所夹锐角的度数为(A)A.60°B.90°C.120°D.150°2.如图△,过等边ABC的顶点A作射线,若∠1=20°,则∠2的度数是(A)A.100°B.80°C.60°D.40°3.如图△,ABC是等边三角形,AD=CD,则∠ADB=90°,∠CBD=30°.4.如图△,等边ABC的边长如图所示,那么y=3.5.如图所示△,ABC为等边三角形,AD⊥BC,AE=AD,则∠ADE=75°.6.如图所示△,等边ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DF⊥BE,垂足为F.求证:BF=EF.证明:∵BD是等边△ABC的中线,∴BD平分∠ABC.∴∠DBE=∠ABC=30°.∴∠E=∠ACB=30°.12又∵CE=CD,12∴∠DBE=∠E.∴DB=DE.∵DF⊥BE,∴DF为底边上的中线.∴BF=EF.知识点2等边三角形的判定7.下列推理错误的是(B)A△.在ABC中,∵∠A=∠B=∠C△,∴ABC为等边三角形B△.在ABC中,∵AB=AC,且∠B=∠C△,∴ABC为等边三角形C△.在ABC中,∵∠A=60°,∠B=60°△,∴ABC为等边三角形D△.在ABC中,∵AB=AC,∠B=60°△,∴ABC为等边三角形8△.在ABC中,AB=BC,∠B=∠C,则∠A的度数是60°.9.如图△,在ABC中,点D是AB上的一点,且AD=DC=DB,∠B=30°△.求证:ADC是等边三角形.证明:∵DC=DB,∴∠B=∠DCB=30°,∴∠ADC=∠DCB+∠B=60°.又∵AD=DC,∴△ADC是等边三角形.10.如图所示△,锐角ABC中,∠A=60°,它的两条高BD,CE相交于点O,且OB=OC,求证:△ABC是等边三角形.证明:∵OB=OC,∴∠OBC=∠OCB.∵锐角△ABC的两条高BD、CE相交于点O,∴∠BEC=∠BDC=90°.又∵∠BOE=∠COD,∴∠EBO=∠DCO.∴∠ABC=∠ACB.∴AB=AC.∴△ABC是等腰三角形.∵∠A=60°,∴△ABC是等边三角形.02中档题11.如图△,ABC是等边三角形,AD是角平分线△,ADE是等边三角形,下列结论:①AD⊥BC;②EF=FD;③BE=BD,其中正确结论的个数为(A)A.3B.2C.1D.012.如图,点A,B,C在一条直线上△,ABD和△BCE是等边三角形,连接AE,交BD于P,连接CD,分别交BE,AE于Q,M,连接BM,PQ,则∠AMD的度数为(B)A.45°B.60°C.75°D.90°⎧AB =CB ,13.如图,将边长为 5 cm 的等边△ABC ,沿 BC 向右平移 3 cm △,得到DEF ,DE 交 AC 于 M ,则△MEC 是等边三角形,DM =3cm .14.如图△,等边 ABC 中,AD 是∠BAC 的平分线,E 为 AD 上一点,以 BE 为一边且在 BE 下方作 等边△BEF ,连接 CF.(1)求证:AE =CF ;(2)求∠ACF 的度数.解:(1)证明:∵△ABC 是等边三角形,∴AB =CB ,∠ABE +∠EBC =60°.∵△BEF 是等边三角形,∴EB =FB ,∠CBF +∠EBC =60°.∴∠ABE =∠CBF.在△ABE 和△CBF 中,⎪⎨∠ABE =∠CBF , ⎪⎩EB =FB ,∴△ABE ≌△CBF(SAS).∴AE =CF.(2)∵等边△ABC 中,AD 是∠BAC 的平分线,∴∠BAE =30°,∠ACB =60°.∵△ABE ≌△CBF ,∴∠BCF =∠BAE =30°.∴∠ACF =∠BCF +∠ACB =30°+60°=90°.03综合题15.(泰安中考)(1)已知:△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A=60°(如图1).求证:BE=AD;(2)若将(1)中的“点D在线段AB上”改为“点D在线段AB的延长线上”,其他条件不变(如图2),(1)的结论是否成立,并说明理由.图1图2解:(1)证明:过点D作BC的平行线交AC于点F.∵△ABC是等腰三角形,∠A=60°,∴△ABC是等边三角形.∴∠ABC=60°.∵DF∥BC,∴∠ADF=∠ABC=60°,∠FDC=∠DCE.∴△ADF是等边三角形.∴AD=DF,∠AFD=60°.∴∠DFC=180°-60°=120°.∵∠EBD=180°-60°=120°,∴∠DFC=∠EBD.∵∠FDC=∠DCE,∠DCE=∠DEC,∴∠FDC=∠DEC,ED=CD.∴△DBE≌△CFD(AAS).∴BE=DF.∴BE=AD.(2)BE=AD成立.理由如下:过点D作DG∥BC交AC的延长线于点G.同(1)可证△ADG是等边三角形,∴AD=DG,∠AGD=60°.∵∠DBE=∠ABC=60°,∴∠DBE=∠AGD.∵∠GDC=∠DCE,∠DCE=∠DEC,∴∠GDC=∠DEC,ED=CD.∴△DBE≌△CGD(AAS).∴BE=DG.∴BE=AD.。
第1讲 等腰三角形(一)1.等边△ABC 中,D 为AC 的中点,CE =CD .求证:BD =DE .2.如图,AC =AD ,BC =BE ,∠DCE =045,求证:AC ⊥BC .3.如图,已知AC =CD , EF =DF ,AF =AG ,求∠A.一、全等中的几何画图(一)动态画图,周密思考4.如图,AC ⊥BC ,AC =BC ,过G 点任画直线l ,过A 点、B 点分别作l 的垂线AE 、BF ,垂足为E 、F ,试画图探究AE 、BF 与EF 的大小关系.5.如图,1l ∥2l ,∠1=∠2,∠3=∠4,过C 点任画直线交1l 、2l 于E 、F ,试探究AE 、BF 、AB 三线段的数量关系,并证明.6.在ABC中,AD,CE为高,两条高所在的直线相交于H点,若CH=AB,求∠ACB的大小.(二)动态画图,由此及彼7.如图∠B=2∠C,AD为∠A的平分线交BC于D点(1) 求证:AB+BD=AC(2) 如图,若AD为∠A的外角平分线,问上结论是否成立,画图证明45.8.如图AC=BC,点O为AB的中点,AC⊥BC,∠MON=0(1) 求证CN+MN=AM(2) 若点M在AC上,点N在BC的延长线上,上结论是否成立,画图证明9.已知Rt △ABC ,∠A =090,AB =AC ,过点B 的直线BF 交直线AC 于D ,CE ⊥BE 于E(1) 当BE 平分∠ABC ,求证:AB +AD =BC ;(2) BE 转到△ABC 外,平分∠ABC 的一个外角,请画出图形,上述结果是否还成立,若成立请说明理由.(一)直角三角形全等问题10.如图,等腰△ABC ,∠ACB =090,D 为CB 延长线上一点,AF =AD ,且AE ⊥AD ,BE 交AC 的延长线于点P .(1) 求证:BP =PE ;(2) 若32 BC BD ,求PCAC 的值.(二)延长、截取法运用11.已知:CA =CB ,AD 平分∠CAB ,且AB =AC +CD ,求证:AC ⊥BC12.如图在平面直角坐标系中,A (0,4),B (4,0),E 点与A 点关于x 轴对称,B 点与F 点 关于y 轴对称,∠GEP =045,交直线AB 于G 点,交直线AF 于P 点,求证:EG 平分 ∠PGB .13.如图1,点A 、B 分别为x 轴、y 轴正半轴上一点,P 为第二象限一点,P A ⊥PB ,P A 交y 轴于点C ,且C 为P A 的中点.(1) 求证:∠PBO =∠P AO ;(2) 已知A (a ,0)、C (0,b ),若()02322=-+-b a ,求P 点的坐标; (3) 如图2,若P A =PB ,求BCOC 的值.第2讲 等腰三角形(二)1.等腰三角形的性质:(1)等腰三角形的两个底角相等(简写成“等边对等角”;(2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”).2.等腰三角形的判定:(1)等腰三角形定义;(2)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”) 基础回顾例1 如图,△ABC 中,AB >AC ,AD 平分∠BAC ,EF ⊥AD 交BC 延长线于M .(1) 求证:∠BME =21(∠ACB -∠B ); (2) 若EM 平分AD ,求证:∠CAM =∠B .分析:(1)由AD 平分∠BAC ,设∠1=∠2=α,根据内角和定理及外角与内角关系定理,建立∠BME 、∠B 、∠ACB 与α之间的关系式,消去参数α“即得;(2)由EM 垂直平分AD ,得MA =MD ,∠MAD =∠MDA ,于是∠2+∠CAM =∠1+∠B ,得证.证明:点评:(1)问是“设参法”,先建立含有“参数”和相关量的关系式,再消去参数,便得所求证的关系式(2)问则是运用“等边对等角”的性质证明角相等,这种方法是证明角相等的又一方法,例2等腰△ABC 中,过其中一个顶点的直线把这个等腰三角形分成两个等腰三角形,求三内角的度数.分析:按直角、锐角、钝角三角形来分类讨论.解:点评:(1) 当面对的问题情形较多时,应注意分类讨论;(2) 当难以直接计算求角时,可考虑通过建立方程求解.1.若等腰三角形一腰上的高,等于腰长的一半,求这个等腰三角形的顶角.2.如图,过△ABC的顶点A,作直线AE与∠B的内角平分线BE垂直相交于E点,且与∠C的内角平分线交于P点.(1) 直接回答:当∠B与∠C满足什么条件时,点P在△ABC内,在△ABC外,在△ABC 的边上?(2) 若P在△ABC内,过P作PQ∥BC交AB、AC于Q、R.求证:QR=AQ+CR例3如图,△ABC中,AB=7,AC=11,点M是BC中点,AD平分∠BAC,MF∥AD 交AC于F.求FC的长.分析:“角平分线+平行线”易构造等腰三角形,对于中点的条件,类比“倍长中线”的方法,移动CF,构造等腰三角形,寻找CF、AB、AC之间的关系。
等边三角形(1)【目标导航】1.了解等边三角形的性质和判定;2.理解如何用轴对称性质解释等边三角形的有关性质.【要点梳理】活动1 复习旧知1.等腰三角形的定义:.答案:有两条边相等的三角形叫做等腰三角形.2.等腰三角形的性质:⑴;⑵.答案:(1)等腰三角形的两个底角相等;(2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.3.等腰三角形的判定:.答案:如果一个三角形有两个底角相等,那么这两个角所对的边也相等.活动2 等边三角形的性质与判定1.等边三角形的定义:.答案:三条边都相等的三角形叫做等边三角形.2.等边三角形的性质:⑴;⑵.答案:(1)等边三角形的三条边都相等;(2)等边三角形的三个内角都相等,并且每一个角都等于60°;3.等边三角形的判定:⑴;⑵.答案:(1)三个角都相等的三角形是等边三角形;(2)有一个角是60°的等腰三角形是等边三角形.指出:1.等边三角形是特殊的等腰三角形,除有本身的性质外,还具有等腰三角形的所有性质.2.等边三角形的定义既是等边三角形的性质,又是它的判定.在证明等边三角形时,若已知三边关系,则先选用定义法;若已知三角关系,则先选用判定1;若已知等腰三角形,则先选用判定2.活动3 等边三角形的性质与判定的应用1.如图,△ABC是等边三角形,DE∥BC,交AB,AC于D,E.求证:△ADE是等边三角形.AD EB C答案:∵△ABC是等边三角形,∴∠A=∠B=∠C.∵DE∥BC,∴∠ADE=∠B,∠AED=∠C.∴∠A =∠ADE =∠AED .∴△ADE 是等边三角形.2.如图,在等边三角形ABC 的三边上,分别取 点D ,E ,F ,使AD =BE =CF . 求证:△DEF 是等边三角形.FAB CDE答案:∵△ABC 是等边三角形,∴∠A =∠B=∠C ,AB =BC =AC .∵AD =BE =CF ,∴BD =CE =AF .∴△DBE ≌△ECF ≌△FAD .∴DE =EF =DF .∴△DEF 是等边三角形.3. 如图,△ABC 是等边三角形,D 是BC 延长线上一点,CE 平分∠ACD ,且CE =BD .求证:△DAE 为等边三角形.AB C ED答案:∵△ABC 是等边三角形,∴AB =AC ,∠B =∠ACB =60°,∴∠ACD =120°.∵CE 平分∠ACD ,∴∠ACE =∠DCE =60°.在△ABD 和△ACE 中,∵AB =AC ,∠B =∠ACE ,BD =CE ,∴△ABD ≌△ACE (SAS ),∴AD =AE ,∠BAD =∠CAE ,∴∠DAE =∠BAC =60°,∴△ADE 为等边三角形.4. 如图,△ABD ,△AEC 都是等边三角形,BE ,CD 相交于O .⑴求证:BE =DC ;⑵求∠BOC 的度数.O AB CDE答案:(1)∵△ABD ,△AEC 都是等边三角形,∴AD =AB ,AC =AE ,∠DAB =∠CAE =60°.∴∠DAC =∠BAE .∴△DAC ≌△BAE (SAS ).∴BE =DC ;(2)∠BOC =∠DBO +∠BDO =∠ABO +∠ABD+∠BDO =∠ADC +∠ABD +∠BDO =∠ABD +∠ADB =60°+60°=120°.5.如图1,点A 是线段BC 上一点,△ABD ,△AEC 都是等边三角形,BE 交AD 于点M ,CD 交AE 于N . ⑴求证:BE =DC ;⑵求证:△AMN 是等边三角形;⑶将△ACE 绕点A 按顺时针方向旋转90°,其它条件不变,在图2中补出符合要求的图形,并判断⑴、⑵两小题结论是否仍然成立,并加以证明.图1答案:(1)∵△ABD ,△AEC 都是等边三角形,∴AD =AB ,AC =AE ,∠DAB =∠CAE =60°.∴∠DAC =∠BAE .∴△DAC ≌△BAE (SAS ).∴BE =DC ;(2)∵△DAC ≌△BAE ,∴∠ABM=∠ADN.∵∠BAD=∠EAC=60°,∴∠DAN=60°.又∵AB=AD ,∴△ABM ≌△ADN (ASA ).∴AM=AN.又∵∠MAN=60°,∴△AMN 是等边三角形;(3)图略,⑴小题结论仍然成立,过程同(1);(2)小题结论不成立,因为此时∠MAN 并不等于60°.6.如图,△ABC 是等边三角形,延长BC 到D ,延长BA 到E ,使AE =BD ,连结CE ,DE .求证:EC =ED .AB C ED答案:延长CD 到F ,使DF =BC ,连结EF ,∵AE =BD ,∴AE =CF . ∵△ABC 为等边三角形,∴BE =BF ,∠B =60°. ∴△EBF 为等边三角形,∴∠F =60°,EF =EB . 在△EBC 和△EFD 中,EB =EF ,∠B=∠F ,BC =DF ,∴△EBC ≌△EFD ,∴EC =ED (SAS ).【课堂操练】1.在△ABC 中∠A =60°,要使△ABC 是等边三角形,则需添加的一个条件是: .答案:AB =AC ,或∠B =60°等2. (2011年广东茂名中考)如图,已知△ABC 是等边三角形,点B 、C 、D 、E 在同一直线上,且CG =CD ,DF =DE ,则∠E = 度.答案:15 ABC D E F G图2A BD CE N M A B CD E3.下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;•③三个外角(每个顶点处各取一个外角)都相等的三角形;•④一腰上的中线也是这条腰上的高的等腰三角形,其中是等边三角形的有( )A.①②③B.①②④C.①③D.①②③④答案:D4.如图,△ABC 和△ADE 都是等边三角形.求证:BE =CD .A B C ED答案:∵△ABC 和△ADE 都是等边三角形,∴AB =AC ,AE =AD ,∠BAE =∠CAD =60°.∴△BAE ≌△CAD .∴BE =CD .5.如图,在等边△ABC 中,点D 、E 分别在边BC 、AC 上,DC =AE ,AD 、BE 交于点F ,求∠BFD 的度数.FABCE D答案:∵△ABC 是等边三角形,∴AB =AC ,∠BAC =∠C =60°.又∵DC =AE ,∴△BAE ≌△ACD .∴∠ABE =∠DAC .∴∠BFD =∠ABE +∠BAD =∠DAC +∠BAD =∠BAC =60°.6.如图,在△ABC 中,AB =AC ,D 是CB 延长线上一点,∠D =60°,E 是AD 上一点,且有DE =DB ,求证:AE =BE +BC .A B C ED答案:过点A 作AF ⊥BC 于F .∵AF 是等腰△ABC 底边上的高,∴BC = 2BF .∵∠D =60°,DE =DB ,∴△BDE 是等边三角形,BE = DE = DB .在Rt △ADF 中,∠AFD = 90°,∠ADF = 60°,可得AD = 2DF .所以,AE = AD -DE = 2DF -DB = 2(DB +BF )-DB = DB +2BF = BE +BC .【课后巩固】1. 等边三角形是轴对称图形,它有 条对称轴,对称轴是 所在的直线.答案:3,各边中线2.已知AD 是等边△ABC 的高,BE 是AC 边的中线,AD 与BE 交于点F ,则∠AFE =______. 答案:60°3. (2011年广西梧州中考)如图,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等边三角形,则下列结论不一定成立的是( )A .△ACE ≌△BCDB .△BGC ≌△AFCC .△DCG ≌△ECFD .△ADB ≌△CEA答案:D4.如图1,在等边△ABC 中,AD 是BC 上的高,∠BDE =∠CDF =60°,图中与BD 相等的线段有: .答案:BE ,DE ,CD ,CF ,DF ,AE ,AF图1FA BC E D5.如图2,E 是等边△ABC 中AC 边上的点,∠1=∠2,BE =CD ,则对△ADE 的形状最准确的判断是( )A .等腰三角形B .等边三角形C .不等边三角形D .不能确定形状答案:B6.如图3,△ABC 是等边三角形,AD 是角平分线,△ADE 是等边三角形,下列结论:①AD ⊥BC ;②EF =FD ;③BE =BD .其中正确的有( )A .3个B .2个C .1个D .0个答案:A7.如图4,已知点D 是BC 上一点,且满足AB =AC =BD ,那么∠1与∠2的关系是( )图3图4AB CDFABC E D答案:相等8.下列说法正确的是( )A .有一个角相等的两个等腰三角形全等B .有一条边对应相等两个等腰三角形全等C .有一腰和底边对应相等的两个等腰三角形全等D .有一条边对应相等的两个等边三角形不一定全等 AB C D E 12图2A B C E G F D答案:C9.如图△ABC 是等边三角形,BD 是中线,延长BC 至E ,使CE =CD ,求证:DB =DE .答案:∵BD 是等边△ABC 的中线,∴∠DBC =21∠ABC =21×60°=30°.∠DCE =180°-∠ACB =120°,又∵CE =CD ,所以∠E =∠CDE =30°.∴∠E =∠DBE ,∴BD =DE .10.已知:AD 是△ABC 的中线,∠ADC =60°,BC =4.把△ADC 沿直线AD 折叠后,点C 落在点C ′的位置上,求BC ′的长.AB CD C '答案:连接BC ′.∵AD 是△ABC 的中线,∴BD =DC.又∵DC =DC ′,∴BD =DC ′.∵∠ADC =60°,∴∠ADC ′=60°,∴∠BDC ′=60°,∴△BDC ′是等边三角形,∴BC ′= BD =BC 21=2.11.如图,△ABC 是等边三角形,延长BC 至E ,延长BA 至F ,使AF =BE ,连结CF 、EF ,过点F 作直线FD ⊥CE 于D ,试发现∠FCE 与∠FEC 的数量关系,并说明理由.答案:∠FCE =∠FEC.∵△ABC 是等边三角形,∴AB =BC ,∠B =60°.∵FD ⊥CE ,∴∠BFD =30°,∴BD =21BF ,又∵BC =AB ,∴CD +BC =21(AF +BC ),∵AF =BE ,CD =21(AF -BC )=21(BE -BC ),∴CD =21CE .又∵FD ⊥CE ,∴FC =FE ,∴∠FCE =∠FEC.12.如图,点D 是等边△ABC 内一点,DB =DA ,BP =AB ,∠DBP =∠DBC .求∠BPD 的度数.AB C D EAPDB C答案:作AB的垂直平分线,∵DA=DB,CA=CB,∴AB的垂直平分线必过C、D两点,∴∠BCD=30°.∵AB=BP=BC,∠DBP=∠DBC,BD=BD,∴△BDC≌△BDP,∴∠BPD=∠BCD=30°.13.如图,在△ABC中,AB=AC,D是△ABC外一点,且∠ABD=∠ACD=60°.求证:BD+DC=AB.ADB C答案:延长BD至F,使得AF=AB,连结CF.∵AB=AF,∠ABF=60°,∴△ABC是等边三角形,∴∠AFB=60°,AB=BF,∴∠AFB=∠ACD.∵AB=AC,∴AC=AF.∴∠ACF=∠AFC.∴∠ACF-∠ACD=∠AFC-∠AFB.∴∠DCF=∠DFC.∴DC=DF.∴DC+BD=DF+BD=BF,又∵AB=BF,∴DC+BD=AB.【课外拓展】14.等边三角形给人以“稳如泰山”的视觉感受,它具有独特的对称性,请你至少用三种不同的方法,将以下三个等边三角形分割成四个等腰三角形(在图中画出分割线,并标出必要的角的度数).答案:如图所示:15.如图,点D 是等边△ABC 内一点,将△BOC 绕点C 顺时针旋转60°得△ADC ,连接OD . ⑴求证:△DOC 是等边三角形;⑵当α=150°时,判断△AOD 的形状,并说明理由;⑶探究:当α为多少度时,△AOD 是等腰三角形.答案:(1)证明:∵将△BOC 绕点C 按顺时针方向旋转60°得△ADC ,∴△BOC ≌△ADC ,∠OCD =60°,∴CO =CD .∴△COD 是等边三角形;(2)∵△ADC ≌△BO C ,∴DA =OB .∵△COD 是等边三角形,∴OD =OC ,且∠ADC =∠α=150°,即可得∠ADO =90°,∴△AOD 为直角三角形.(3)若△AOD 是等腰三角形,所以分三种情况:①∠AOD =∠ADO ;②∠ODA =∠OAD ;③∠AOD =∠DAO .∵∠AOB =110°,∠COD =60°,∴∠BOC =190°-∠AOD ,而∠BOC =∠ADC =∠ADO +∠CDO ,由①∠AOD =∠ADO 可得∠BOC=∠AOD +60°,求得α=125°;由②∠ODA =∠OAD 可得∠BOC =150°- ∠AOD ,求得α=110°;由③∠AOD =∠DAO 可得∠BOC =240°-2∠AOD ,求得α=140°;综上可知α=125°,或α=110°或α=140°.16. (2011年浙江绍兴中考)数学课上,李老师出示了如下框中的题目.小敏与同桌小聪讨论后,进行了如下解答: αA B C D O 110°(1)特殊情况,探索结论当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请你直接写出结论:AE DB(填“>”,“<”或“=”).AEDB C图1图2(2)特例启发,解答题目【答案】解:题目中,AE与DB的大小关系是:AE DB(填“>”,“<”或“=”).理由如下:如图2,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长(请你直接写出结果).答案:(1)=;(2)=.证明:在等边△ABC中,∠ABC=∠ACB=∠BAC=60°,AB=BC=AC,∵EF∥BC,∴∠AEF=∠AFE=60°=∠BAC,∴AE=AF=EF,∴AB-AE=AC-AF,即BE=CF.∵∠ABC=∠EDB+∠BED=60°,∠ACB=∠ECB+∠FCE=60°,∵ED=EC,∴∠EDB=∠ECB,∴∠BED=∠FCE,∴△DBE≌△EFC,∴DB=EF,∴AE=BD.(3)1或3.。
初中数学试卷 鼎尚图文**整理制作
13.3.2 等边三角形
第1课时 等边三角形的性质与判定
要点感知 1 等边三角形的性质:(1)等边三角形是_______对称图形,且有_____对称轴;(2)等边三角形的三条边都_____,三个角都_____且都为_____;(3)等边三角形具有等腰三角形的一切性质. 预习练习1-1 如图,△ABC 是等边三角形,AD=CD,则∠ADB=_____,∠
CBD=_____.
要点感知2 等边三角形的判定方法:(1)三个角都_____的三角形是等边三角形;(2)有一个角为60°的_____是等边三角形;(3)三边都_____的三角形为等边三角形.
预习练习2-1 在△ABC 中,①AB =BC =CA ;②一底角为60°的等腰三角形;③顶角为60°的等腰三角形.上述条件能判定此三角形为等边三角形的有( )
A.1个
B.2个
C.3个
D.0个
知识点1 等边三角形的性质
1.等边△ABC 的两条角平分线BD 和CE 相交所夹锐角的度数为( )
A.60°
B.90°
C.120°
D.150°
2.如图,等边△ABC 的边长如图所示,那么
y=_____.
3.如图所示,△ABC 为等边三角形,AD ⊥BC ,AE=AD ,则∠ADE=_____.
4.如图所示,等边△ABC 中,D 是AC 的中点,E 是BC 延长线上的一点,且CE=CD ,DF ⊥BE ,垂足是F.求证:
BF=EF.
知识点2 等边三角形的判定
5.下列条件能判断一个三角形是等边三角形的有( )
①三边相等,②三个内角相等,③三个外角相等,④有一个角是60°的等腰三角形.
A.1个
B.2个
C.3个
D.4个
6.在△ABC中,AB=BC,∠B=∠C,则∠A的度数是_____.
7.如图,在△ABC中,点D是AB上的一点,且AD=DC=DB,∠B=30°.求证:△ADC是等边三角形.
8.如图所示,锐角三角形ABC中,∠A=60°,它的两条高BD,CE相交于点O,且OB=OC,
求证:△ABC是等边三角形.
9.如图,△ABC是等边三角形,AD是角平分线,△ADE是等边三角形,下列结论:①AD⊥BC;②EF=FD;③BE=BD,其中正确结论的个数为( )
A.3
B.2
C.1
D.0
10.如图所示,等边三角形ABC的三条角平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,那么这个图形中的等腰三角形共有( )
A.4个
B.5个
C.6个
D.7个
11.如图,将等边△APQ的边PQ向两边延长,使BP=PQ=QC,则∠BAC=_____.
12.如图,等边△ABC的边长为1 cm,D、E分别是AB、AC上的点,将△ADE沿直线DE折叠,点A落在点A′处,且点A′在△ABC外部,则阴影部分图形的周长为_____cm.
13.如图所示,在等边△ABC中,点D,E分别在边BC,AB上,且BD=AE,AD与CE交于点F.
(1)求证:AD=CE;
(2)求∠DFC的度数.
14.如图,已知△ABC 是等边三角形,且∠1=∠2=∠3.
(1)求∠BEC 的度数;
(2)△DEF 是等边三角形吗?请简要说明理由.
挑战自我
15.如图,已知△ABC 是边长为6 cm 的等边三角形,动点P ,Q 同时从A ,B 两点出发,分别沿AB ,BC 匀速运动,其中点P 运动的速度是1 cm/s,点Q 运动的速度是2 cm/s,当点Q 到达点C 时,P ,Q 两点都停止运动,设运动时间为t(s),当t=2时,判断△BPQ 的形状,并说明理由.
参考答案
课前预习
要点感知1 轴 三条 相等 相等 60°
预习练习1-1 90°30°
要点感知2 相等 等腰三角形 相等
预习练习2-1 C
当堂训练
1.A
2.3
3.75°
4.证明:∵BD 是等边三角形ABC 的中线,∴BD 平分∠ABC.∴∠DBE=21∠ABC=21∠ACB.又∵CE=CD ,∴∠E=2
1∠ACB.∴∠DBE=∠E.∴DB=DE.∵DF ⊥BE ,∴DF 为底边上的中线.∴BF=EF. 5.D 6.60°
7.证明:∵DC=DB,∴∠B=∠DCB=30°,∴∠ADC=∠DCB+∠B=60°.又∵AD=DC,∴△ADC 是等边三角形. 8.证明:在△EOB 和△COD 中,∠OEB=∠ODC=90°,∠EOB=∠COD ,OB=OC ,∴△EOB ≌△COD.∴∠EBO=∠DCO.∵OB=OC ,∴∠OBC=∠OCB.∴∠EBC=∠DCB.∴AB=AC.又∵∠A=60°,∴△ABC 是等边三角形.
课后作业
9.A 10.D 11.120° 12.3 13.(1)证明:∵△ABC 是等边三角形,∴AB=AC,∠B=∠BAC.∵BD=AE,∴△ABD ≌△CAE.∴AD=CE.(2)∵△ABD ≌△CAE,∴∠BAD=∠ACE.∴∠DFC=∠FAC+∠ACF=∠FAC+∠BAD=∠BAC=60°.
14.(1)∵△ABC 为等边三角形,∴∠ABC=∠BCA=∠CAB=60°.又∵∠1=∠2=∠3,∴∠ABD =∠BCE =∠CAF.∴∠BEC=180°-∠2-∠BCE=180°-(∠2+∠ABD)=180°-60°=120°.(2)由(1)知∠BEC=120°,∴∠DEF=60°.同理:∠DFE =∠EDF =60°,∴△DEF 为等边三角形.
15.△BPQ是等边三角形.理由:当t=2时,AP=2×1=2(cm),BQ=2×2=4(cm).∴BP=AB-AP=6-2=4(cm).∴BQ=BP.又∵∠B=60°,∴△BPQ是等边三角形.。