(最新整理)重庆2012中考数学第16题专题训练
- 格式:doc
- 大小:979.50 KB
- 文档页数:4
2010年重庆市中考数学综合解答题选编
【重庆市潼南县】
五、解答题:(本大题2个小题,第25小题10分,第26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤.
25. (10分)某镇道路改造工程,由甲、乙两工程队合作20天可完成.甲工程队单独施工
比乙工程队单独施工多用30天完成此项工程.
(1)求甲、乙两工程队单独完成此项工程各需要多少天?
(2)若甲工程队独做a 天后,再由甲、乙两工程队合作 天(用含a 的代数式表示)可完成此项工程;
(3)如果甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元?
26.(12分)如图, 已知抛物线c bx x y ++=22
1与y 轴相交于C ,与x 轴相交于A 、B ,点A 的坐标为(2,0),点C 的坐标为(0,1-).
(1)求抛物线的解析式;
(2)点E 是线段AC 上一动点,过点E 作DE ⊥x 轴于点D ,连结DC ,当△DCE 的面积最大时,求点D 的坐标;
(3)在直线BC 上是否存在一点P ,使△ACP 为等腰三角形,若存在,求点P 的坐标,若不存在,说明理由.
题图26
备用图。
年重庆市中考数学试卷一.选择题<本大题个小题,每小题分,共分)在每个小题地下面,都给出了代号为...地四个答案,其中只有一个是正确地,请将答题卡上题号右侧正确答案所对应地方框涂黑<或将正确答案地代号填人答题卷中对应地表格内)..<重庆)在﹣,﹣,,这四个数中,最小地数是< ).﹣.﹣..考点:有理数大小比较.解答:解:这四个数在数轴上地位置如图所示:由数轴地特点可知,这四个数中最小地数是﹣.故选..<重庆)下列图形中,是轴对称图形地是< )....考点:轴对称图形.解答:解:、不是轴对称图形,故本选项错误;、是轴对称图形,故本选项正确;、不是轴对称图形,故本选项错误;、不是轴对称图形,故本选项错误.故选..<重庆)计算地结果是< )....考点:幂地乘方与积地乘方.解答:解:原式.故选..<重庆)已知:如图,,是⊙地两条半径,且⊥,点在⊙上,则∠地度数为< ).°.°.°.°考点:圆周角定理.解答:解:∵⊥,∴∠°,∴∠°.故选..<重庆)下列调查中,适宜采用全面调查<普查)方式地是< ).调查市场上老酸奶地质量情况.调查某品牌圆珠笔芯地使用寿命.调查乘坐飞机地旅客是否携带了危禁物品.调查我市市民对伦敦奥运会吉祥物地知晓率考点:全面调查与抽样调查.解答:解:、数量较大,普查地意义或价值不大时,应选择抽样调查;、数量较大,具有破坏性地调查,应选择抽样调查;、事关重大地调查往往选用普查;、数量较大,普查地意义或价值不大时,应选择抽样调查.故选..<重庆)已知:如图,平分∠,点在上,∥.若∠°,则∠地度数为< ).°.°.°.°考点:平行线地性质;角平分线地定义.解答:解:∵∥,∠°,∴∠∠°,∵平分∠,∴∠∠×°°.故选..<重庆)已知关于地方程地解是,则地值为< )....考点:一元一次方程地解.解答:解;∵方程地解是,∴×﹣,解得.故选..<重庆)年“国际攀岩比赛”在重庆举行.小丽从家出发开车前去观看,途中发现忘了带门票,于是打电话让妈妈马上从家里送来,同时小丽也往回开,遇到妈妈后聊了一会儿,接着继续开车前往比赛现场.设小丽从家出发后所用时间为,小丽与比赛现场地距离为.下面能反映与地函数关系地大致图象是< )....考点:函数地图象.解答:解:根据题意可得,与地函数关系地大致图象分为四段,第一段,小丽从出发到往回开,与比赛现场地距离在减小,第二段,往回开到遇到妈妈,与比赛现场地距离在增大,第三段与妈妈聊了一会,与比赛现场地距离不变,第四段,接着开往比赛现场,与比赛现场地距离逐渐变小,直至为,纵观各选项,只有选项地图象符合.故选..<重庆)下列图形都是由同样大小地五角星按一定地规律组成,其中第①个图形一共有个五角星,第②个图形一共有个五角星,第③个图形一共有个五角星,…,则第⑥个图形中五角星地个数为< )....考点:规律型:图形地变化类.解答:解:第①个图形一共有个五角星,第②个图形一共有个五角星,第③个图形一共有个五角星,…,则所以第⑥个图形中五角星地个数为×;故选..<重庆)已知二次函数地图象如图所示对称轴为.下列结论中,正确地是< )....考点:二次函数图象与系数地关系.解答:解:、∵开口向上,∴>,∵与轴交与负半轴,∴<,∵对称轴在轴左侧,∴﹣<,∴>,∴<,故本选项错误;、∵对称轴:﹣﹣,∴,故本选项错误;、当时,<,故本选项错误;、∵对称轴为﹣,与轴地一个交点地取值范围为>,∴与轴地另一个交点地取值范围为<﹣,∴当﹣时,﹣<,即<,故本选项正确.故选.二.填空题<本大题个小题,每小题分,共分)请将每小题地答案直接填在答题卡<卷)中对应地横线上,.<重庆)据报道,年重庆主城区私家车拥有量近辆.将数用科学记数法表示为.考点:科学记数法—表示较大地数.解答:解:×.故答案为:×..<重庆)已知△∽△,△地周长为,△地周长为,则与△地面积之比为.考点:相似三角形地性质.解答:解:∵△∽△,△地周长为,△地周长为,∴三角形地相似比是:,∴△与△地面积之比为:.故答案为::..<重庆)重庆农村医疗保险已经全面实施.某县七个村中享受了住院医疗费用报销地人数分别为:,,,,,,,则这组数据地中位数是.考点:中位数.解答:解:把这一组数据从小到大依次排列为,,,,,,,最中间地数字是,所以这组数据地中位数是;故答案为:..<重庆)一个扇形地圆心角为°,半径为,则这个扇形地面积为 <结果保留π)考点:扇形面积地计算.解答:解:由题意得,°,,故扇形π.故答案为:π..<重庆)将长度为厘地木棍截成三段,每段长度均为整数厘.如果截成地三段木棍长度分别相同算作同一种截法<如:,,和,,),那么截成地三段木棍能构成三角形地概率是.考点:概率公式;三角形三边关系.解答:解:因为将长度为厘地木棍截成三段,每段长度均为整数厘,共有种情况,分别是,,;,,;,,;,,;其中能构成三角形地是:,,一种情况,所以截成地三段木棍能构成三角形地概率是;故答案为:..<重庆)甲、乙两人玩纸牌游戏,从足够数量地纸牌中取牌.规定每人最多两种取法,甲每次取张或<﹣)张,乙每次取张或<﹣)张<是常数,<<).经统计,甲共取了次,乙共取了次,并且乙至少取了一次张牌,最终两人所取牌地总张数恰好相等,那么纸牌最少有张.考点:应用类问题.解答:解:设甲次取<﹣)张,乙次取<﹣)张,则甲<﹣)次取张,乙<﹣)次取张,则甲取牌<﹣)张,乙取牌<﹣)张则总共取牌:<﹣)<﹣)<﹣)<﹣)﹣<),从而要使牌最少,则可使最小,因为为正数,函数为减函数,则可使<)尽可能地大,由题意得,≤,≤,又最终两人所取牌地总张数恰好相等,故<﹣),而<<,﹣为整数,则由整除地知识,可得可为,,,①当时,﹣,因为≤,≤,所以这种情况舍去;②当时,﹣,因为≤,≤,所以这种情况舍去;③当时,﹣,此时可以符合题意,综上可得:要保证≤,≤,﹣,<)值最大,则可使,;,;,;当,时,最大,,继而可确定,<),所以﹣×张.故答案为:.三.解答题<共小题).<重庆)计算:.考点:实数地运算;零指数幂;负整数指数幂.解答:解:原式﹣..<重庆)已知:如图,,∠∠,∠∠.求证:.考点:全等三角形地判定与性质.解答:证明:∵∠∠,∴∠∠∠∠,即:∠∠,在△和△中,∴△≌△<),∴..<重庆)解方程:.考点:解分式方程.解答:解:方程两边都乘以<﹣)<﹣)得,<﹣)﹣,﹣﹣,,经检验,是原方程地解,所以,原分式方程地解是..<重庆)如图,在△中,∠°,点在边上,且△是等边三角形.若,求△地周长.<结果保留根号)考点:解直角三角形;三角形内角和定理;等边三角形地性质;勾股定理.解答:解:∵△是等边三角形,∴∠°,∵∠°,∴∠°﹣°﹣°°,∴,在△中,由勾股定理得:,∴△地周长是.答:△地周长是.四、解答题:<本大题个小题,每小题分,共分)解答时每小题必须给出必要地演算过程或推理步骤,请将解答书写在答题卡<卷)中对应地位置上..<重庆)先化简,再求值:,其中是不等式组地整数解.考点:分式地化简求值;一元一次不等式组地整数解.解答:解:原式•••,又,由①解得:>﹣,由②解得:<﹣,∴不等式组地解集为﹣<<﹣,其整数解为﹣,当﹣时,原式..<重庆)已知:如图,在平面直角坐标系中,一次函数地图象与反比例函数地图象交于一、三象限内地.两点,与轴交于点,点地坐标为<>,点地坐标为<,-),∠=.<)求该反比例函数和一次函数地解读式;<)在轴上有一点<点除外),使得△与△地面积相等,求出点地坐标.考点:反比例函数综合题.解答:解:<)过点作⊥轴,垂足为,∵<,﹣),∴,在△在,∠,即,解得,又∵点在第三象限,∴<﹣,﹣),将<﹣,﹣)代入中,得,∴反比例函数解读式为,将<,)代入中,得,∴<,),将<,),<﹣,﹣)代入中,得,解得,则一次函数解读式为;<)由得<﹣,),即,∵△△,∴,∴,即<﹣,)..<重庆)高中招生指标到校是我市中考招生制度改革地一项重要措施.某初级中学对该校近四年指标到校保送生人数进行了统计,制成了如下两幅不完整地统计图:<)该校近四年保送生人数地极差是.请将折线统计图补充完整;<)该校年指标到校保送生中只有位女同学,学校打算从中随机选出位同学了解他们进人高中阶段地学习情况.请用列表法或画树状图地方法,求出所选两位同学恰好是位男同学和位女同学地概率.考点:折线统计图;扇形统计图;极差;列表法与树状图法.解答:解:<)因为该校近四年保送生人数地最大值是,最小值是,所以该校近四年保送生人数地极差是:﹣,折线统计图如下:<)列表如下:由图表可知,共有种情况,选两位同学恰好是位男同学和位女同学地有种情况,所以选两位同学恰好是位男同学和位女同学地概率是..<重庆)已知:如图,在菱形中,为边地中点,与对角线交于点,过作⊥于点,∠∠.<)若,求地长;<)求证:.考点:菱形地性质;全等三角形地判定与性质.解答:<)解:∵四边形是菱形,∴∥,∴∠∠,∵∠∠,∴∠∠,∴,∵⊥,∴,∵,∴,∴;<)证明:如图,∵为边地中点,∴,∴,在菱形中,平分∠,∴∠∠,在△和△中,∵,∴△≌△<),∴,延长交于点,∵∥,∴∠∠,∵∠∠,∴∠∠,∴,在△和△中,∵,∴△≌△<),∴,由图形可知,,∴..<重庆)企业地污水处理有两种方式,一种是输送到污水厂进行集中处理,另一种是通过企业地自身设备进行处理.某企业去年每月地污水量均为吨,由于污水厂处于调试阶段,污水处理能力有限,该企业投资自建设备处理污水,两种处理方式同时进行.至月,该企业向污水厂输送地污水量<吨)与月份<≤≤,且取整数)之间满足地函数关系如下表:至月,该企业自身处理地污水量<吨)与月份<≤≤,且取整数)之间满足二次函数关系式为.其图象如图所示.至月,污水厂处理每吨污水地费用:<元)与月份之间满足函数关系式:,该企业自身处理每吨污水地费用:<元)与月份之间满足函数关系式:;至月,污水厂处理每吨污水地费用均为元,该企业自身处理每吨污水地费用均为元.<)请观察题中地表格和图象,用所学过地一次函数、反比例函数或二次函数地有关知识,分别直接写出与之间地函数关系式;<)请你求出该企业去年哪个月用于污水处理地费用<元)最多,并求出这个最多费用;<)今年以来,由于自建污水处理设备地全面运行,该企业决定扩大产能并将所有污水全部自身处理,估计扩大产能后今年每月地污水量都将在去年每月地基础上增加,同时每吨污水处理地费用将在去年月份地基础上增加<﹣),为鼓励节能降耗,减轻企业负担,财政对企业处理污水地费用进行地补助.若该企业每月地污水处理费用为元,请计算出地整数值.<参考数据:≈,≈,≈)考点:二次函数地应用.解答:解:<)根据表格中数据可以得出定值,则与之间地函数关系为反比例函数关系:,将<,)代入得:×,故<≤≤,且取整数);根据图象可以得出:图象过<,),<,)点,代入得:,解得:,故<≤≤,且取整数);<)当≤≤,且取整数时:<﹣)••<﹣)•<﹣),﹣﹣,∵﹣<,﹣,≤≤,∴当时,最大<元),当≤≤时,且取整数时,×<﹣)×<﹣﹣)<),﹣,∵﹣<,﹣,当≤≤时,随地增大而减小,∴当时,最大<元),∵>,∴去年月用于污水处理地费用最多,最多费用是元;<)由题意得:<)×××<﹣),设,整理得:﹣,解得:,∵≈,∴≈,≈﹣<舍去),∴≈,答:地值是..<重庆)已知:如图,在直角梯形中,∥,∠°,,,.为边上一点,以为边作正方形,使正方形和梯形在地同侧.<)当正方形地顶点恰好落在对角线上时,求地长;<)将<)问中地正方形沿向右平移,记平移中地正方形为正方形′,当点与点重合时停止平移.设平移地距离为,正方形′地边与交于点,连接′,′,,是否存在这样地,使△′是直角三角形?若存在,求出地值;若不存在,请说明理由;<)在<)问地平移过程中,设正方形′与△重叠部分地面积为,请直接写出与之间地函数关系式以及自变量地取值范围.考点:相似三角形地判定与性质;勾股定理;正方形地性质;直角梯形. 解答:解:<)如图①,设正方形地边长为,则,∵,,∴﹣﹣,∵∥,∴△∽△,∴,即,解得:,即;<)存在满足条件地,理由:如图②,过点作⊥于,则,,由题意得:′,′﹣,﹣,在△′中,′′<﹣)﹣,∵∥,∴△∽△,∴,即,∴﹣,在△′中,′′<﹣)﹣,过点作⊥于,∴﹣﹣<﹣),在△中,,<Ⅰ)若∠′°,则′′,即<﹣)<﹣),解得:,<Ⅱ)若∠′°,则′′,即﹣<﹣)<),解得:﹣,﹣﹣<舍去),∴﹣;<Ⅲ)若∠′°,则′′,即:﹣<﹣)<),此方程无解,综上所述,当或﹣时,△′是直角三角形;<)①如图③,当在上时,::,即::,∴,∴′﹣′﹣﹣﹣,∵﹣,∴,当≤≤时,△××,②当在上时,,∵•∠•<﹣)﹣,∴﹣﹣,∵,∴当<≤时,△﹣△﹣<﹣)<﹣)﹣﹣;③如图⑤,当在上时,′:′:,即′::,解得:′,∴﹣′﹣,∴,∵′′<﹣)﹣,∵′﹣′﹣,∴当<≤时,梯形﹣△××<﹣)﹣<﹣)<﹣)﹣﹣,④如图⑥,当<≤时,∵′′<﹣),<﹣),′′<﹣)<﹣),梯形梯形′﹣梯形′﹣.综上所述:当≤≤时,,当<≤时,﹣﹣;当<≤时,﹣﹣,当<≤时,﹣.申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途.。
一、选择题1.已知y 10,那么252x y x y +-的值等于( ) A .1B .78C .54-D .45- D 解析:D【分析】先根据二次根式的性质求出x 、y 的值,再代入代数式计算即可.【详解】解:因为y+10,可知1010x x -≥⎧⎨-≥⎩, 即11x x ≥⎧⎨≤⎩,解得x =1,所以y =10; 所以,252x y x y +-=210520+-=﹣1215=﹣45. 故选:D .【点睛】本题考查了二次根式的意义.解决此题的关键是要先根据二次根式意义求出x ,y 的值再代入所求的代数式中求值.2.下列计算正确的是( )A 2=-B .257a a a +=C .()5210a a =D .=解析:C【分析】直接利用二次根式的性质化简以及结合合并同类项法则和幂的乘方运算法则化简求出答案;【详解】A 2= ,故此选项错误;B 、2525a a a a +=+,故此选项错误;C 、()5210a a =,故此选项正确;D 、5=60⨯,故此选项错误;故选:C .【点睛】本题主要考查了二次根式的性质以及结合合并同类项法则和幂的乘方运算法则,正确化简各式是解题的关键;3.下列计算正确的是()A2=B1=C2=D=解析:D【分析】根据二次根式加法以及二次根式的性质逐项排查即可.【详解】解:A A选项错误;B77=+,故B选项错误;C、2=22=1,故C选项错误;D=D选项正确.故答案为D.【点睛】本题主要考查了二次根式加法以及二次根式的性质,掌握二次根式的加法运算法则是解答本题的关键.4.()A.1个B.2个C.3个D.4个B解析:B【分析】根据最简二次根式的定义进行求解即可.【详解】=2==2个,故选:B.【点睛】本题考查了最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.5.下列式子中是二次根式的是( )AB C D 解析:C【分析】利用二次根式的定义进行解答即可.【详解】A 中,当0a <时,不是二次根式,故此选项不符合题意;B 1x <-时,不是二次根式,故此选项不符合题意;C =()2 10x +≥恒成立,因此该式是二次根式,故此选项符合题意;D 20-<,不是二次根式,故此选项不符合题意;故选:C .【点睛】(0a ≥)的式子叫做二次根式. 6.下列各式计算正确的是( )A +=B .26=(C 4=D = D解析:D【分析】根据二次根式的运算法则一一判断即可.【详解】AB 、错误,212=(;C ==D ==故选:D .【点睛】本题考查二次根式的运算,解题的关键是熟练掌握二次根式的加减乘除运算法则,属于中考常考题型.7.下列计算中,正确的是()A .=B .10==C .(33+-=-D .2a b =+ C 解析:C【分析】根据二次根式的加法、乘法运算法则对每个选项的式子计算,判断正误即可.【详解】A 、=A 选项错误.B 、=B 选项错误.C 、22(339123+-=-=-=-,故C 选项正确.D 、2a b =+,故D 选项错误.故选:C .【点睛】本题主要考查二次根式的加法、乘法运算,熟记二次根数的加法、乘法运算法则是解题关键.8.已知,2a 应满足什么条件 ( ) A .a >0B .a≥0C .a =0D .a 任何实数B 解析:B【分析】与a 的取值范围即可得到答案.【详解】 ∵a 的取值范围是0a ≥a 的取值范围是任意实数, 故a 应满足的条件是0a ≥,故选:B.【点睛】此题考查二次根式的性质:双重非负性,二次根式的被开方数满足大于等于零的条件.9.下列二次根式能与 )A B C D C解析:C【分析】根据同类二次根式的定义可得答案.【详解】A =,不能与B =合并,故本选项不符合题意;C =合并,故本选项符合题意;D ,不能与合并,故本选项不符合题意.故选:C .【点睛】本题主要考查了同类二次根式的定义,即二次根式化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.10. )AB.CD.解析:C【分析】先根据二次根式的性质化简各项,再根据同类二次根式的定义逐项判断即得答案.【详解】解:A不是同类二次根式,故本选项不符合题意;B、=C=D、=故选:C.【点睛】本题考查了二次根式的性质和同类二次根式的定义,属于基础题型,熟练掌握上述知识是解题的关键.二、填空题11.已知最简根式a=________,b=________.【分析】根据同类二次根式的定义得到解方程组即可【详解】由题得:解得:故答案为:1【点睛】此题考查最简二次根式同类二次根式的定义解二元一次方程组正确理解最简二次根式同类二次根式的定义列出方程组是解题的解析:7 2【分析】根据同类二次根式的定义得到122531ba b+=⎧⎨-=-⎩,解方程组即可.【详解】由题得:122531ba b+=⎧⎨-=-⎩,解得:721ab⎧=⎪⎨⎪=⎩.故答案为:72,1.【点睛】此题考查最简二次根式、同类二次根式的定义,解二元一次方程组,正确理解最简二次根式、同类二次根式的定义列出方程组是解题的关键.12.在2y x =-中,x 的取值范围是:______________.x≥1且x≠2【分析】根据二次根式有意义的条件可得x-1≥0再根据分式有意义的条件可得x-2≠0再解出x 的值【详解】解:由题意得:x-1≥0且x-2≠0解得:x≥1且x≠2故答案为:x≥1且x≠2【解析:x≥1且x≠2【分析】根据二次根式有意义的条件可得x-1≥0,再根据分式有意义的条件可得x-2≠0,再解出x 的值.【详解】解:由题意得:x-1≥0,且x-2≠0,解得:x≥1且x≠2,故答案为:x≥1且x≠2.【点睛】此题主要考查了二次根式有意义的条件,以及分式有意义的条件,关键是掌握分式有意义,分母不为0;二次根式的被开方数是非负数.13.计算2+________.【分析】利用二次根式有意义的条件得到x≤2再利用二次根式的性质化简得到原式=2﹣x+|x ﹣3|然后去绝对值后合并即可【详解】解:∵∴∴故答案为:【点睛】此题考查了二次根式的化简掌握二次根式的性质和是解析:52x -.【分析】利用二次根式有意义的条件得到x≤2,再利用二次根式的性质化简得到原式=2﹣x+|x ﹣3|,然后去绝对值后合并即可.【详解】解:∵20x -≥,∴2x ≤,∴22352x x x =-+-=-.故答案为:52x -.【点睛】此题考查了二次根式的化简,掌握二次根式的性质2(0)a a =≥和(0)0? (0)(0)a a a a a a >⎧⎪===⎨⎪-<⎩是解答此题的关键. 14.2=__________.1【分析】由题可得即可得出再根据二次根式的性质化简即可【详解】由题可得∴∴∴故答案为:【点睛】本题主要考查了二次根式有意义的条件以及二次根式的性质与化简掌握二次根式的性质是解决问题的关键解析:1【分析】由题可得,30x -≥,即可得出20x -≤,再根据二次根式的性质化简即可.【详解】由题可得,30x -≥,∴3x ≥,∴20x -≤,∴2()()23x x =----23x x =-+-+1=.故答案为:1.【点睛】本题主要考查了二次根式有意义的条件以及二次根式的性质与化简,掌握二次根式的性质是解决问题的关键.15.若a 的小数部分,则()6a a +=_____.2【分析】根据<<可得的整数部分是3则小数部分a =﹣3代入计算即可【详解】解:∵9<11<16∴3<<4∴的整数部分是3∴小数部分是a =﹣3∴a (a+6)=(﹣3)(+3)=11﹣9=2【点睛】本题解析:2【分析】的整数部分是3,则小数部分a ﹣3,代入计算即可.【详解】解:∵9<11<16,∴3<4, ∴3,∴小数部分是a﹣3,∴a (a +6﹣3)=11﹣9=2.【点睛】本题考查了无理数的估算,注意在相乘的时候,运用平方差公式简便计算.16. 1.844≈≈__________.【分析】根据二次根式的乘法运算即可得【详解】因为所以故答案为:【点睛】本题考查了二次根式的乘法运算熟练掌握运算法则是解题关键解析:18.44【分析】根据二次根式的乘法运算即可得.【详解】1.844≈,==,=,10 1.844≈⨯,18.44≈,故答案为:18.44.【点睛】本题考查了二次根式的乘法运算,熟练掌握运算法则是解题关键.17.若最简二次根式132-+b a 与a b -4是同类二次根式,则a+b =___.2【分析】根据同类二次根式的定义:被开方数相同的二次根式列方程即可解答【详解】解:∵最简二次根式与是同类二次根式∴解得:则a+b =2故答案为:2【点睛】本题考查了同类二次根式:把各二次根式化为最简二解析:2【分析】根据同类二次根式的定义:被开方数相同的二次根式,列方程,即可解答.【详解】解:∵最简二次根式132-+b a 与a b -4是同类二次根式,∴31224b a b a -=⎧⎨+=-⎩, 解得:11a b =⎧⎨=⎩, 则a+b =2,故答案为:2.【点睛】本题考查了同类二次根式:把各二次根式化为最简二次根式后若被开方数相同,那么这样的二次根式叫同类二次根式.18.函数12y x =-自变量的取值范围是________;函数y =自变量的取值范围是________.【分析】根据分式的分母不等于0得到根据二次根式的被开方数大于等于0得到求解即可【详解】由题意得:解得∵∴故答案为:【点睛】此题考查分式有意义的条件二次根式被开方数的非负性正确理解代数式的形式列式计算解析:2x ≠ 3x ≥【分析】根据分式的分母不等于0得到20x -≠,根据二次根式的被开方数大于等于0得到30x -≥,求解即可.【详解】由题意得:20x -≠,解得2x ≠,∵30x -≥,∴3x ≥故答案为:2x ≠,3x ≥.【点睛】此题考查分式有意义的条件,二次根式被开方数的非负性,正确理解代数式的形式列式计算是解题的关键.19.若1y =,则x y -=_________.1【分析】根据二次根式有意义的条件得到2-x≥0且x-2≥0则x=2易得y=1然后把x 与y 的值代入计算即可【详解】由题意得∴∴故答案为:1【点睛】本题考查了二次根式有意义的条件:二次根式有意义的条件解析:1【分析】根据二次根式有意义的条件得到2-x≥0且x-2≥0,则x=2,易得y=1,然后把x 与y 的值代入计算即可.【详解】由题意得2020x x -≥⎧⎨-≤⎩, ∴2x =,0011y =++=,∴1x y -=.故答案为:1.【点睛】本题考查了二次根式有意义的条件:二次根式有意义的条件为被开方数为非负数.20.11|1()2--+的值是_____【分析】直接利用二次根式的性质绝对值以及负整数指数幂的性质分别化简得出答案【详解】故答案为:【点睛】本题主要考查了二次根式的混合运算以及负整数指数幂的性质正确掌握相关运算法则是解题关键解析:3【分析】直接利用二次根式的性质,绝对值以及负整数指数幂的性质分别化简得出答案.【详解】11|1()2---+21=3=.故答案为:3.【点睛】本题主要考查了二次根式的混合运算以及负整数指数幂的性质,正确掌握相关运算法则是解题关键.三、解答题21.先阅读,后回答问题:x 有意义?解:要使该二次根式有意义,需x(x-3)≥0,由乘法法则得0 30? x x ≥⎧⎨-≥⎩或0 30x x ≤⎧⎨-≤⎩, 解得x 3≥或x 0≤,即当x 3≥或x 0≤体会解题思想后,解答:x 解析:x 2≥或1x 3<-. 【分析】 根据题目信息,列出不等式组求解即可得到x 的取值范围.【详解】解:要使该二次根式有意义,需x 23x 1-≥+0, 由乘法法则得20310x x -≥⎧⎨+>⎩或20310x x -≤⎧⎨+<⎩, 解得x 2≥或1x 3<-,即当x 2≥或1x 3<- 【点睛】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.22.先化简,再求值:(221111a a a++--)÷a ,其中a . 解析:211a -,1 【分析】 将括号中的第一项分母分解因式,第二项提取−1,找出最简公分母,通分后利用同分母分式的加法法则计算,同时根据除以一个数等于乘以这个数的倒数把除法运算化为乘法运算,合并约分后得到最简结果,然后将a 的值代入即可求出原式的值.【详解】 (221111a a a ++--)÷a =[(1)(1)(1)(1211)a a a a a a ++-+-+-]1a ⨯ =21111()(1)a a a a a +-+--⨯ =211a -,当a =1121=-. 【点睛】 此题主要考查了分式的混合运算以及化简求值问题,二次根式的混合运算,选择正确的计算方法,首先进行通分降低了计算量是解决问题的关键.23.化简(1(2)0( 3.14)π-解析:(1)2)2--【分析】(1)由二次根式的性质进行化简,然后进行计算即可;(2)由二次根式的混合运算,平方差公式,零指数幂的运算法则进行化简,然后计算即可.【详解】解:(1==(2)0( 3.14)π-=(25)1--=31--+=2--【点睛】本题考查了二次根式的混合运算,二次根式的性质,零指数幂,平方差公式,解题的关键是熟练掌握运算法则进行计算.24.阅读下列简化过程:1===;====……解答下列问题:(1)请用n(n为正整数)表示化简过程规律________;(2++⋯+;(3)设a=,b=c=,比较a,b,c的大小关系.解析:(1==2)1;(3)c b a>>【分析】(1)根据已知可得:两个连续正整数算术平方根的和的倒数,等于分子分母都乘以这两个连续正整数算术平方根的差,化简得这两个连续正整数算术平方根的差;(2)利用分母有理化分别化简,再合并同类二次根式得解;(3)将a、b、c分别化简,比较结果即可.【详解】(1==(21=+1=1=.(3)a ==2b ==2c ==, 22>,a b ∴>, 又53>b c ∴>,c b a ∴>>.【得解】此题考查代数式计算规律探究,分母有理化计算,根据例题掌握计算的规律并解决问题是解题的关键.25.计算(1)2)解析:(12)-17【分析】(1)先化简二次根式,再合并即可;(2)利用平方差计算即可.【详解】解:(1)=(68=-+=(2)22=-320=-17=-【点睛】本题考查了二次根式的运算、平方差公式,准确掌握运算法则,合理利用公式是解题关键.26.+【分析】直接化简二次根式,再合并同类二次根式即可.【详解】﹣==【点睛】本题考查二次根式的混合运算.掌握二次根式的性质能分别化简是解题关键.27..解析:-【分析】先化简二次根式,然后进行求解即可.【详解】=⨯+33==【点睛】本题考查了二次根式的运算,解题的关键是掌握二次根式的运算法则.28.计算:(1(2)+解析:(1)2【分析】(1)把每个二次根式化成最简后再把被开方数相同的项合并;(2)按照乘法分配律去括号,按照除法法则计算二次根式的商,再把所得结果各项化简后合并同类二次根式即可得到最终答案.【详解】解:(1)原式=+-=(241=(2)原式=3-+=(121.【点睛】本题考查二次根式的运算,熟练掌握二次根式的运算法则和化简方法是解题关键.。
2012年中考数学精析系列——重庆卷一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑(或将正确答案的代号填人答题卷中对应的表格内).1.在﹣3,﹣1,0,2这四个数中,最小的数是()A.﹣3 B.﹣1 C.0 D.2考点:有理数大小比较。
专题:存在型。
分析:画出数轴,在数轴上标出各点,再根据数轴的特点进行解答即可.解答:解:这四个数在数轴上的位置如图所示:由数轴的特点可知,这四个数中最小的数是﹣3.故选A.点评:本题考查的是有理数的大小比较,利用数形结合比较出有理数的大小是解答此题的关键•.2.下列图形中,是轴对称图形的是()A.B.C.D.考点:轴对称图形。
专题:常规题型。
分析:根据轴对称图形的概念对各选项分析判断后利用排除法求解.解答:解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选B.点评:本题考查了轴对称图形,掌握轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合是解题的关键.3.计算(ab)2的结果是()A.2ab B.a2b C.a2b2D.ab2考点:幂的乘方与积的乘方。
专题:计算题。
分析:根据幂的乘方法则:底数不变,指数相乘,进行计算即可.解答:解:原式=a2b2.故选C.点评:此题考查了幂的乘方及积的乘方,属于基础题,注意掌握幂的乘方法则:底数不变,指数相乘.4.已知:如图,OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠ACB的度数为()A.45°B.35°C.25°D.20°考点:圆周角定理。
专题:探究型。
分析:直接根据圆周角定理进行解答即可.解答:解:∵OA⊥OB,∴∠AOB=90°,∴∠ACB=45°.故选A.点评:本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5.下列调查中,适宜采用全面调查(普查)方式的是()A.调查市场上老酸奶的质量情况B.调查某品牌圆珠笔芯的使用寿命C.调查乘坐飞机的旅客是否携带了危禁物品D.调查我市市民对伦敦奥运会吉祥物的知晓率考点:全面调查与抽样调查。
2012年重庆市中考数学试卷一.选择题(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A .B .C .D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑(或将正确答案的代号填人答题卷中对应的表格内).1.(2012重庆)在﹣3,﹣1,0,2这四个数中,最小的数是( )A .﹣3B .﹣1C .0D .2考点:有理数大小比较。
解答:解:这四个数在数轴上的位置如图所示:由数轴的特点可知,这四个数中最小的数是﹣3.故选A .2.(2012重庆)下列图形中,是轴对称图形的是( )A .B .C .D .考点:轴对称图形。
解答:解:A 、不是轴对称图形,故本选项错误;B 、是轴对称图形,故本选项正确;C 、不是轴对称图形,故本选项错误;D 、不是轴对称图形,故本选项错误.故选B .3.(2012重庆)计算()2ab 的结果是( ) A .2ab B .b a 2 C .22b a D .2ab考点:幂的乘方与积的乘方。
解答:解:原式=a 2b 2.故选C .4.(2012重庆)已知:如图,OA ,OB 是⊙O 的两条半径,且OA ⊥OB ,点C 在⊙O 上,则∠ACB 的度数为( )A .45°B .35°C .25°D .20°考点:圆周角定理。
解答:解:∵OA ⊥OB ,∴∠AOB=90°,∴∠ACB=45°.故选A .5.(2012重庆)下列调查中,适宜采用全面调查(普查)方式的是( )A .调查市场上老酸奶的质量情况B .调查某品牌圆珠笔芯的使用寿命C .调查乘坐飞机的旅客是否携带了危禁物品D .调查我市市民对伦敦奥运会吉祥物的知晓率 考点:全面调查与抽样调查。
解答:解:A 、数量较大,普查的意义或价值不大时,应选择抽样调查;B 、数量较大,具有破坏性的调查,应选择抽样调查;C 、事关重大的调查往往选用普查;D 、数量较大,普查的意义或价值不大时,应选择抽样调查.故选C .6.(2012重庆)已知:如图,BD 平分∠ABC ,点E 在BC 上,EF ∥AB .若∠CEF=100°,则∠ABD 的度数为( )A .60°B .50°C .40°D .30°考点:平行线的性质;角平分线的定义。
2012年重庆市中考数学试卷一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑(或将正确答案的代号填人答题卷中对应的表格内).1.(2012•重庆)在﹣3,﹣1,0,2这四个数中,最小的数是()A.﹣3B.﹣1C.0D.22.(2012•重庆)下列图形中,是轴对称图形的是()A.B.C.D.3.(2012•重庆)计算(ab)2的结果是()A.2ab B.a2b C.a2b2D.ab24.(2012•重庆)已知:如图,OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠ACB的度数为()A.45°B.35°C.25°D.20°5.(2012•重庆)下列调查中,适宜采用全面调查(普查)方式的是()A.调查市场上老酸奶的质量情况B.调查某品牌圆珠笔芯的使用寿命C.调查乘坐飞机的旅客是否携带了危禁物品D.调查我市市民对伦敦奥运会吉祥物的知晓率6.(2012•重庆)已知:如图,BD平分∠ABC,点E在BC上,EF∥AB.若∠CEF=100°,则∠ABD的度数为()A.60°B.50°C.40°D.30°7.(2012•重庆)已知关于x的方程2x+a﹣9=0的解是x=2,则a的值为()A.2B.3C.4D.58.(2012•重庆)2012年“国际攀岩比赛”在重庆举行.小丽从家出发开车前去观看,途中发现忘了带门票,于是打电话让妈妈马上从家里送来,同时小丽也往回开,遇到妈妈后聊了一会儿,接着继续开车前往比赛现场.设小丽从家出发后所用时间为t,小丽与比赛现场的距离为S.下面能反映S与t的函数关系的大致图象是()A.B.C.D.9.(2012•重庆)下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为()A.50B.64C.68D.7210.(2012•重庆)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示对称轴为x=﹣.下列结论中,正确的是()A.abc>0B.a+b=0C.2b+c>0D.4a+c<2b二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡(卷)中对应的横线上,11.(2012•重庆)据报道,2011年重庆主城区私家车拥有量近380000辆.将数380000用科学记数法表示为.12.(2012•重庆)已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为1,则ABC与△DEF的面积之比为.13.(2012•重庆)重庆农村医疗保险已经全面实施.某县七个村中享受了住院医疗费用报销的人数分别为:20,24,27,28,31,34,38,则这组数据的中位数是.14.(2012•重庆)一个扇形的圆心角为120°,半径为3,则这个扇形的面积为(结果保留π)15.(2012•重庆)将长度为8厘米的木棍截成三段,每段长度均为整数厘米.如果截成的三段木棍长度分别相同算作同一种截法(如:5,2,1和1,5,2),那么截成的三段木棍能构成三角形的概率是.16.(2012•重庆)甲、乙两人玩纸牌游戏,从足够数量的纸牌中取牌.规定每人最多两种取法,甲每次取4张或(4﹣k)张,乙每次取6张或(6﹣k)张(k是常数,0<k<4).经统计,甲共取了15次,乙共取了17次,并且乙至少取了一次6张牌,最终两人所取牌的总张数恰好相等,那么纸牌最少有张.三、解答题:(本大题4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上.17.(2012•重庆)计算:.18.(2012•重庆)已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.19.(2012•重庆)解方程:.20.(2012•重庆)如图,在Rt△ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三角形.若AB=2,求△ABC的周长.(结果保留根号)四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上.21.(2012•重庆)先化简,再求值:,其中x是不等式组的整数解.22.(2012•重庆)已知:如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数的图象交于一、三象限内的A、B两点,与x轴交于C点,点A的坐标为(2,m),点B的坐标为(n,﹣2),tan∠BOC=.(1)求该反比例函数和一次函数的解析式;(2)在x轴上有一点E(O点除外),使得△BCE与△BCO的面积相等,求出点E的坐标.23.(2012•重庆)高中招生指标到校是我市中考招生制度改革的一项重要措施.某初级中学对该校近四年指标到校保送生人数进行了统计,制成了如下两幅不完整的统计图:(1)该校近四年保送生人数的极差是.请将折线统计图补充完整;(2)该校2009年指标到校保送生中只有1位女同学,学校打算从中随机选出2位同学了解他们进人高中阶段的学习情况.请用列表法或画树状图的方法,求出所选两位同学恰好是1位男同学和1位女同学的概率.24.(2012•重庆)已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.五、解答题:(本大题2个小题,第25小题10分,第26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上.25.(2012•重庆)企业的污水处理有两种方式,一种是输送到污水厂进行集中处理,另一种是通过企业的自身设备进行处理.某企业去年每月的污水量均为12000吨,由于污水厂处于调试阶段,污水处理能力有限,该企业投资自建设备处理污水,两种处理方式同时进行.1至6月,该企业向污水厂输送的污水量y1(吨)与月份x(1≤x≤6,且x取整数)之间满足7至12月,该企业自身处理的污水量y2(吨)与月份x(7≤x≤12,且x取整数)之间满足二次函数关系式为.其图象如图所示.1至6月,污水厂处理每吨污水的费用:z1(元)与月份x之间满足函数关系式:,该企业自身处理每吨污水的费用:z2(元)与月份x之间满足函数关系式:;7至12月,污水厂处理每吨污水的费用均为2元,该企业自身处理每吨污水的费用均为1.5元.(1)请观察题中的表格和图象,用所学过的一次函数、反比例函数或二次函数的有关知识,分别直接写出y1,y2与x之间的函数关系式;(2)请你求出该企业去年哪个月用于污水处理的费用W(元)最多,并求出这个最多费用;(3)今年以来,由于自建污水处理设备的全面运行,该企业决定扩大产能并将所有污水全部自身处理,估计扩大产能后今年每月的污水量都将在去年每月的基础上增加a%,同时每吨污水处理的费用将在去年12月份的基础上增加(a﹣30)%,为鼓励节能降耗,减轻企业负担,财政对企业处理污水的费用进行50%的补助.若该企业每月的污水处理费用为18000元,请计算出a的整数值.(参考数据:≈15.2,≈20.5,≈28.4)26.(2012•重庆)已知:如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=6,AB=3.E为BC边上一点,以BE为边作正方形BEFG,使正方形BEFG和梯形ABCD在BC的同侧.(1)当正方形的顶点F恰好落在对角线AC上时,求BE的长;(2)将(1)问中的正方形BEFG沿BC向右平移,记平移中的正方形BEFC为正方形B′EFG,当点E与点C重合时停止平移.设平移的距离为t,正方形B′EFG的边EF与AC交于点M,连接B′D,B′M,DM,是否存在这样的t,使△B′DM是直角三角形?若存在,求出t的值;若不存在,请说明理由;(3)在(2)问的平移过程中,设正方形B′EFG与△ADC重叠部分的面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围.2012年重庆市中考数学试卷参考答案1.A 2.B 3.C 4.A 5.C 6.B 7.D 8.B 9.D 10.D 11.3.8×10512.9:1 13.28 14.3π15.16.10817.解:原式=2+1﹣5+1+9=8.18.证明:∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,即:∠EAD=∠BAC,在△EAD和△BAC中,∴△ABC≌△AED(ASA),∴BC=ED.19.解:方程两边都乘以(x﹣1)(x﹣2)得,2(x﹣2)=x﹣1,2x﹣4=x﹣1,x=3,经检验,x=3是原方程的解,所以,原分式方程的解是x=3.20.解:∵△ABD是等边三角形,∴∠B=60°,∵∠BAC=90°,∴∠C=180°﹣90°﹣60°=30°,∴BC=2AB=4,在Rt△ABC中,由勾股定理得:AC===2,∴△ABC的周长是AC+BC+AB=2+4+2=6+2.答:△ABC的周长是6+2.21.解:(﹣)÷=[﹣]•=•=•=,又,由①解得:x>﹣4,由②解得:x<﹣2,∴不等式组的解集为﹣4<x<﹣2,其整数解为﹣3,当x=﹣3时,原式==2.22.解:(1)过B点作BD⊥x轴,垂足为D,∵B(n,﹣2),∴BD=2,在Rt△OBD在,tan∠BOC=,即=,解得OD=5,又∵B点在第三象限,∴B(﹣5,﹣2),将B(﹣5,﹣2)代入y=中,得k=xy=10,∴反比例函数解析式为y=,将A(2,m)代入y=中,得m=5,∴A(2,5),将A(2,5),B(﹣5,﹣2)代入y=ax+b中,得,解得,则一次函数解析式为y=x+3;(2)由y=x+3得C(﹣3,0),即OC=3,∵S△BCE=S△BCO,∴CE=OC=3,∴OE=6,即E(﹣6,0).23.解:(1)因为该校近四年保送生人数的最大值是8,最小值是3,所以该校近四年保送生人数的极差是:8﹣3=5,折线统计图如下:(2)列表如下:由图表可知,共有12种情况,选两位同学恰好是1位男同学和1位女同学的有6种情况,所以选两位同学恰好是1位男同学和1位女同学的概率是=.24.(1)解:∵四边形ABCD是菱形,∴AB∥CD,∴∠1=∠ACD,∵∠1=∠2,∴∠ACD=∠2,∴MC=MD,∵ME⊥CD,∴CD=2CE,∵CE=1,∴CD=2,∴BC=CD=2;(2)证明:如图,∵F为边BC的中点,∴BF=CF=BC,∴CF=CE,在菱形ABCD中,AC平分∠BCD,∴∠ACB=∠ACD,在△CEM和△CFM中,∵,∴△CEM≌△CFM(SAS),∴ME=MF,延长AB交DF于点G,∵AB∥CD,∴∠G=∠2,∵∠1=∠2,∴∠1=∠G,∴AM=MG,在△CDF和△BGF中,∵,∴△CDF≌△BGF(AAS),∴GF=DF,由图形可知,GM=GF+MF,∴AM=DF+ME.25.解:(1)根据表格中数据可以得出xy=定值,则y1与x之间的函数关系为反比例函数关系:y1=,将(1,12000)代入得:k=1×12000=12000,故y1=(1≤x≤6,且x取整数);根据图象可以得出:图象过(7,10049),(12,10144)点,代入得:,解得:,故y2=x2+10000(7≤x≤12,且x取整数);(2)当1≤x≤6,且x取整数时:W=y1•x1+(12000﹣y1)•x2=•x+(12000﹣)•(x﹣x2),=﹣1000x2+10000x﹣3000,∵a=﹣1000<0,x=﹣=5,1≤x≤6,∴当x=5时,W最大=22000(元),当7≤x≤12时,且x取整数时,W=2×(12000﹣y1)+1.5y2=2×(12000﹣x2﹣10000)+1.5(x2+10000),=﹣x2+1900,∵a=﹣<0,x=﹣=0,当7≤x≤12时,W随x的增大而减小,∴当x=7时,W最大=18975.5(元),∵22000>18975.5,∴去年5月用于污水处理的费用最多,最多费用是22000元;(3)由题意得:12000(1+a%)×1.5×[1+(a﹣30)%]×(1﹣50%)=18000,设t=a%,整理得:10t2+17t﹣13=0,解得:t=,∵≈28.4,∴t1≈0.57,t2≈﹣2.27(舍去),∴a≈57,答:a的值是57.26.解:(1)如图①,设正方形BEFG的边长为x,则BE=FG=BG=x,∵AB=3,BC=6,∴AG=AB﹣BG=3﹣x,∵GF∥BE,∴△AGF∽△ABC,∴,即,解得:x=2,即BE=2;(2)存在满足条件的t,理由:如图②,过点D作DH⊥BC于H,则BH=AD=2,DH=AB=3,由题意得:BB′=HE=t,HB′=|t﹣2|,EC=4﹣t,在Rt△B′ME中,B′M2=ME2+B′E2=22+(2﹣t)2=t2﹣2t+8,∵EF∥AB,∴△MEC∽△ABC,∴,即,∴ME=2﹣t,在Rt△DHB′中,B′D2=DH2+B′H2=32+(t﹣2)2=t2﹣4t+13,过点M作MN⊥DH于N,则MN=HE=t,NH=ME=2﹣t,∴DN=DH﹣NH=3﹣(2﹣t)=t+1,在Rt△DMN中,DM2=DN2+MN2=t2+t+1,(Ⅰ)若∠DB′M=90°,则DM2=B′M2+B′D2,即t2+t+1=(t2﹣2t+8)+(t2﹣4t+13),解得:t=,(Ⅱ)若∠B′MD=90°,则B′D2=B′M2+DM2,即t2﹣4t+13=(t2﹣2t+8)+(t2+t+1),解得:t1=﹣3+,t2=﹣3﹣(舍去),∴t=﹣3+;(Ⅲ)若∠B′DM=90°,则B′M2=B′D2+DM2,即:t2﹣2t+8=(t2﹣4t+13)+(t2+t+1),此方程无解,综上所述,当t=或﹣3+时,△B′DM是直角三角形;(3)①如图③,当F在CD上时,EF:DH=CE:CH,即2:3=CE:4,∴CE=,∴t=BB′=BC﹣B′E﹣EC=6﹣2﹣=,∵ME=2﹣t,∴FM=t,当0≤t≤时,S=S△FMN=×t×t=t2,②当G在AC上时,t=2,∵EK=EC•tan∠DCB=EC•=(4﹣t)=3﹣t,∴FK=2﹣EK=t﹣1,∵NL=AD=,∴FL=t﹣,∴当<t≤2时,S=S△FMN﹣S△FKL=t2﹣(t﹣)(t﹣1)=﹣t2+t﹣;③如图⑤,当G在CD上时,B′C:CH=B′G:DH,即B′C:4=2:3,解得:B′C=,∴EC=4﹣t=B′C﹣2=,∴t=,∵B′N=B′C=(6﹣t)=3﹣t,∵GN=GB′﹣B′N=t﹣1,∴当2<t≤时,S=S梯形GNMF﹣S△FKL=×2×(t﹣1+t)﹣(t﹣)(t﹣1)=﹣t2+2t ﹣,④如图⑥,当<t≤4时,∵B′L=B′C=(6﹣t),EK=EC=(4﹣t),B′N=B′C=(6﹣t)EM=EC=(4﹣t),S=S梯形MNLK=S梯形B′EKL﹣S梯形B′EMN=﹣t+.综上所述:当0≤t≤时,S=t2,当<t≤2时,S=﹣t2+t﹣;当2<t≤时,S=﹣t2+2t﹣,当<t≤4时,S=﹣t+.。
2012年重庆市中考数学试卷一、选择题(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A .B .C .D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑(或将正确答案的代号填人答题卷中对应的表格内).1.在-3,-1,0,2这四个数中,最小的数是( )A .-3B .-1C .0D .2 2.下列图形中,是轴对称图形的是( )A B C D 3.计算()2ab 的结果是( )A .2abB .b a 2C .22b aD .2ab4.已知:如图,OA ,OB 是⊙O 的两条半径,且OA ⊥OB ,点C 在⊙O 上,则∠ACB 的度数为( )A .45°B .35°C .25°D .20°5.下列调查中,适宜采用全面调查(普查)方式的是( )A .调查市场上老酸奶的质量情况B .调查某品牌圆珠笔芯的使用寿命C .调查乘坐飞机的旅客是否携带了危禁物品D .调查我市市民对伦敦奥运会吉祥物的知晓率6.已知:如图,BD 平分∠ABC ,点E 在BC 上,EF ∥AB .若∠CEF =100°,则∠ABD 的度数为( )A .60°B .50°C .40°D .30°7.已知关于x 的方程290x a +-= 的解是2x =,则a 的值为( )A .2B .3C .4D .58.2012年“国际攀岩比赛”在重庆举行.小丽从家出发开车前去观看,途中发现忘了带门票,于是打电话让妈妈马上从家里送来,同时小丽也往回开,遇到妈妈后聊了一会儿,接着继续开车前往比赛现场.设小丽从家出发后所用时间为t ,小丽与比赛现场的距离为S .下面能反映S 与t 的函数关系的大致图象是( )A B C D9.下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为( )A .50B .64C .68D .7210.已知二次函数)0(2≠++=a c bx ax y 的图象如图所示对称轴为21-=x .下列结论中,正确的是( )A .0abc >B .0a b +=C .20b c +>D .42a c b +<二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡(卷)中对应的横线上,11.据报道,2011年重庆主城区私家车拥有量近38000辆.将数380000用科学记数法表示为 . 12.已知△ABC ∽△DEF ,△ABC 的周长为3,△DEF 的周长为1,则ABC 与△DEF 的面积之比为 . 13.重庆农村医疗保险已经全面实施.某县七个村中享受了住院医疗费用报销的人数分别为:20,24,27,28,31,34,38,则这组数据的中位数是 .14.一个扇形的圆心角为120°,半径为3,则这个扇形的面积为 (结果保留π)15.将长度为8厘米的木棍截成三段,每段长度均为整数厘米.如果截成的三段木棍长度分别相同算作同一种截法(如:5,2,1和1,5,2),那么截成的三段木棍能构成三角形的概率是 .16.甲、乙两人玩纸牌游戏,从足够数量的纸牌中取牌.规定每人最多两种取法,甲每次取4张或(4-k )张,乙每次取6张或(6-k )张(k 是常数,0<k <4).经统计,甲共取了15次,乙共取了17次,并且乙至少取了一次6张牌,最终两人所取牌的总张数恰好相等,那么纸牌最少有 张. 三、解答题(共10小题)17.计算:()()22012311-|5|2-π4-⎪⎭⎫ ⎝⎛++--+.18.已知:如图,AB =AE ,∠1=∠2,∠B =∠E .求证:BC =ED .19.解方程:2112-=-x x .20.如图,在Rt △ABC 中,∠BAC =90°,点D 在BC 边上,且△ABD 是等边三角形.若AB =2,求△ABC 的周长.(结果保留根号)四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上. 21.先化简,再求值:1221214322+-+÷⎪⎭⎫ ⎝⎛---+x x x x x x ,其中x 是不等式组⎩⎨⎧<+>+15204x x 的整数解.22.已知:如图,在平面直角坐标系中,一次函数)0(≠+=a b ax y 的图象与反比例函数)0(≠=k xky 的图象交于一、三象限内的A .B 两点,与x 轴交于C 点,点A 的坐标为(2,m ),点B 的坐标为(n ,-2),tan ∠BOC =52。
重庆市2012年初中毕业暨高中招生考试数学4A(满分:150分 时间:120分钟)参考公式:抛物线y=ax 2+bx+c(a ≠0)的顶点坐标为(-b 2a ,4ac -b 24a),对称轴为x=-b2a .第Ⅰ卷(选择题,共40分)一、选择题:(本大题10个小题,每小题4分,共40分)1.在-3,-1,0,2这四个数中,最小的数是( )A.-3B.-1C.0D.22.下列图形中,是轴对称图形的是( )3.计算(ab)2的结果是( ) A.2abB.a 2bC.a 2b 2D.ab 24.已知:如图,OA,OB 是☉O 的两条半径,且OA ⊥OB,点C 在☉O 上,则∠ACB 的度数为( )A.45°B.35°C.25°D.20°5.下列调查中,适宜采用全面调查(普查)方式的是( ) A.调查市场上老酸奶的质量情况B.调查某品牌圆珠笔芯的使用寿命C.调查乘坐飞机的旅客是否携带了危禁物品D.调查我市市民对伦敦奥运会吉祥物的知晓率6.已知:如图,BD平分∠ABC,点E在BC上,EF∥AB.若∠CEF=100°,则∠ABD的度数为()A.60°B.50°C.40°D.30°7.已知关于x的方程2x+a-9=0的解是x=2,则a的值为()A.2B.3C.4D.58.2012年“国际攀岩比赛”在重庆举行.小丽从家出发开车前去观看,途中发现忘了带门票,于是打电话让妈妈马上从家里送来,同时小丽也往回开,遇到妈妈后聊了一会儿,接着继续开车前往比赛现场.设小丽从家出发后所用时间为t,小丽与比赛现场的距离为s.下面能反映s与t的函数关系的大致图象是()9.下列图形都是由同样大小的五角星按一定的规律组成.其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为()A.50B.64C.68D.7210.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=-1.下列结论中,正确的是2()A.abc>0B.a+b=0C.2b+c>0D.4a+c<2b第Ⅱ卷(非选择题,共110分)二、填空题:(本大题6个小题,每小题4分,共24分)11.据报道,2011年重庆主城区私家车拥有量近380000辆,将数380000用科学记数法表示为.12.已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为1,则△ABC与△DEF的面积之比为.13.重庆农村医疗保险已经全面实施.某县七个村中享受了住院医疗费用报销的人数分别为:20,24,27,28,31,34,38,则这组数据的中位数是.14.一个扇形的圆心角为120°,半径为3,则这个扇形的面积为.(结果保留π)15.将长度为8厘米的木棍截成三段,每段长度均为整数厘米.如果截成的三段木棍长度分别相同算作同一种截法(如:5,2,1和1,5,2),那么截成的三段木棍能构成三角形的概率是. 16.甲、乙两人玩纸牌游戏,从足够数量的纸牌中取牌.规定每人最多两种取法,甲每次取4张或(4-k)张,乙每次取6张或(6-k)张(k是常数,0<k<4).经统计,甲共取了15次,乙共取了17次,并且乙至少取了一次6张牌,最终两人所取牌的总张数恰好相等,那么纸牌最少有张.三、解答题:(本大题10个小题,共86分)17.(本题6分))-2.计算:√4+(π-2)0-|-5|+(-1)2012+(1318.(本题6分)已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.19.(本题6分)解方程:2x-1=1 x-2.20.(本题6分)已知:如图,在Rt△ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三角形.若AB=2,求△ABC的周长.(结果保留根号)21.(本题10分)先化简,再求值:(3x+4x2-1-2x-1)÷x+2x2-2x+1,其中x是不等式组{x+4>0,2x+5<1的整数解.4B22.(本题10分)(k≠0)的图象已知:如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数y=kx交于一、三象限内的A、B两点,与x轴交于C点,点A的坐标为(2,m),点B的坐标为.(n,-2),tan∠BOC=25(1)求该反比例函数和一次函数的解析式;(2)在x轴上有一点E(O点除外),使得△BCE与△BCO的面积相等,求出点E的坐标.23.(本题10分)高中招生指标到校是我市中考招生制度改革的一项重要措施.某初级中学对该校近四年指标到校保送生人数进行了统计,制成了如下两幅不完整的统计图:(1)该校近四年保送生人数的极差是,请将折线统计图补充完整;(2)该校2009年指标到校保送生中只有1位女同学,学校打算从中随机选出2位同学了解他们进入高中阶段的学习情况.请用列表法或画树状图的方法,求出所选两位同学恰好是1位男同学和1位女同学的概率.24.(本题10分)已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD 于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.25.(本题10分)企业的污水处理有两种方式,一种是输送到污水厂进行集中处理,另一种是通过企业的自身设备进行处理.某企业去年每月的污水量均为12 000吨,由于污水厂处于调试阶段,污水处理能力有限,该企业投资自建设备处理污水,两种处理方式同时进行.1至6月,该企业向污水厂输送的污水量y 1(吨)与月份x(1≤x ≤6,且x 取整数)之间满足的函数关系如下表:月份x(月) 1 2 3 4 5 6输送的污水量y 1(吨)12 000 6 000 4 000 3 000 2 400 2 0007至12月,该企业自身处理的污水量y 2(吨)与月份x(7≤x ≤12,且x 取整数)之间满足二次函数关系式y 2=ax 2+c,其图象如图所示.1至6月,污水厂处理每吨污水的费用z 1(元)与月份x 之间满足函数关系式z 1=12x,该企业自身处理每吨污水的费用z 2(元)与月份x 之间满足函数关系式z 2=34x-112x 2;7至12月,污水厂处理每吨污水的费用均为2元,该企业自身处理每吨污水的费用均为1.5元.(1)请观察题中的表格和图象,用所学过的一次函数、反比例函数或二次函数的有关知识,分别直接写出y 1,y 2与x 之间的函数关系式;(2)请你求出该企业去年哪个月用于污水处理的费用W(元)最多,并求出这个最多费用; (3)今年以来,由于自建污水处理设备的全面运行,该企业决定扩大产能并将所有污水全部自身处理,估计扩大产能后今年每月的污水量都将在去年每月的基础上增加a%,同时每吨污水处理的费用将在去年12月份的基础上增加(a-30)%.为鼓励节能降耗,减轻企业负担,财政对企业处理污水的费用进行50%的补助.若该企业每月的污水处理费用为18 000元,请计算出a 的整数值.(参考数据:√231≈15.2,√419≈20.5,√809≈28.4)26.(本题12分)已知:如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=6,AB=3.E为BC边上一点,以BE为边作正方形BEFG,使正方形BEFG和梯形ABCD在BC的同侧.(1)当正方形的顶点F恰好落在对角线AC上时,求BE的长;(2)将(1)问中的正方形BEFG沿BC向右平移,记平移中的正方形BEFG为正方形B'EFG,当点E与点C重合时停止平移.设平移的距离为t,正方形B'EFG的边EF与AC交于点M,连结B'D,B'M,DM.是否存在这样的t,使△B'DM是直角三角形?若存在,求出t的值;若不存在,请说明理由;(3)在(2)问的平移过程中,设正方形B'EFG与△ADC重叠部分的面积为S,请直接写出S与t 之间的函数关系式以及自变量t的取值范围.。
重庆市2012年初中毕业暨高中招生考试数学试题(全卷共五个大题,满分150分,考试时间120分钟)注意事项:1. 试题的答案书写在答题卡(卷)上,不得在试卷上直接作答.2. 作答前认真阅读答题卡(卷)上的注意事项.3. 考试结束,由监考人员将试题和答题卡(卷)一并收回. 一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑(或将正确答案的代号填入答题卷中对应的表格内). 1.在31--,,0,2这四个数中,最小的数是( ) (A )3- (B )1- (C )0 (D )2 2.下列图形中,是轴对称图形的是( )(A) (B) (C) (D) 3.计算2()ab 的结果是( )(A )2ab (B )2a b (C )22a b (D )2ab4.已知:如图,OA OB ,是O ⊙的两条半径,且OA OB ⊥,点C 在O ⊙上,则ACB ∠的度数为( )(A )45 (B )35 (C )25 (D )20 5.下列调查中,适宜采用全面调查(普查)方式的是( ) (A )调查市场上老酸奶的质量情况 (B )调查某品牌圆珠笔芯的使用寿命(C )调查乘坐飞机的旅客是否携带了危禁物品 (D )调查我市市民对伦敦奥运会吉祥物的知晓率6.已知:如图,BD 平分ABC ∠,点E 在BC 上,EF AB ∥.若100CEF =∠,则ABD ∠的度数为( )(A )60 (B )50 (C )40 (D )307.已知关于x 的方程290x a +-=的解是2x =,则a 的值是( ) (A )2 (B )3 (C )4 (D )5 8.2012年“国家攀岩比赛”在重庆举行.小丽从家出发开车前去观看,途中发现忘了带门票,于是打电话让妈妈马上从家里送来,同时小丽也往回开,遇到妈妈后聊了一会儿,接着继续开车前往比赛现场.设小丽从家出发后所用时间为t ,小丽与比赛现场的距离为S .下面能反映S 与t 的函数关系的大致图象是( )9.下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为( )(A )50 (B )64 (C )68 (D )72 10.已知二次函数2(0)y ax bx c a =++≠的图象如图所示对称轴为12x =-.下列结论中,正确的是( )(A )0abc > (B )0a b += (C )20b c +> (D )42a c b +< 二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡(卷)中对应的横线上.11.据报道,2011年重庆主城区私家车拥有量近380000辆,将数380000用科学记数法表示为____________.12.已知ABC DEF △∽△,ABC △的周长为3,DEF △的周长为1,则ABC △与DEF △的面积之比为_____________. 13.重庆农村医疗保险已经全面实施.某县七个村中享受了住院医疗费用报销的人数分别为:20,24,27,28,31,34,38,则这组数据的中位数是__________.14.一个扇形的圆心角是120,半径为3,则这个扇形的面积为_________(结果保留π). 15.将长度为8厘米的木棍截成三段,每段长度均为整数厘米,如果截成的三段木棍长度分别相同算作同一种截法(如:5,2,1和1,5,2),那么截成的三段木棍能构成三角形的概率是___________.16.甲、乙两人玩纸牌游戏,从足够数量的纸牌中取牌.规定每人最多两种取法,甲每次取4张或(4)k -张,乙每次取6张或(6)k -张(k 是常数,04k <<).经统计,甲共取了15次,乙共取了17次,并且乙至少取了一次6张牌,最终两人所取牌的总张数恰好相等,那么纸牌最少有_________张. 三、解答题:(本大题4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上.172020121()5(1)3-⎛⎫π-2--+-+ ⎪⎝⎭.18.已知:如图,AB AE B E =,∠1=∠2,∠=∠.求证:BC ED =.19.解方程:2112x x =--.20.已知:如图,在Rt ABC △中,BAC ∠=90,点D 在BC 边上,且ABD △是等边三角形.若2AB =,求ABC △的周长.(结果保留根号)四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上. 21.先化简,再求值:2234221121x x x x x x ++⎛⎫-÷ ⎪---+⎝⎭,其中x 是不等式组40251x x +>⎧⎨+<⎩的整数解.22.已知:如图,在平面直角坐标系中,一次函数(0)y ax b a =+≠的图象与反比例函数(0)ky k x=≠的图象交于一、三象限内的A 、B 两点,与x 轴交于C 点,点A 的坐标为(2)m ,,点B 的坐标为(2)n ,,tan BOC 2∠=5.(1) 求该反比例函数和一次函数的解析式; (2) 在x 轴上有一点E (O 点除外),使得BCE △与BCO △的面积相等,求出点E 的坐标.23.高中招生指标到校是我市中考招生制度改革的一项重要措施.某初级中学对该校近四年指标到校保送生人数进行了统计,制成了如下两幅不完整的统计图:(1)该校近四年保送生人数的极差是________.请将折线统计图补充完整; (2)该校2009年指标到校保送生中只有1位女同学,学校打算从中随机选出2位同学了解他们进入高中阶段的学习情况.请用列表法或画树状图的方法,求出所选两位同学恰好是1位男同学和1位女同学的概率.24.已知:如图,在菱形ABCD 中,F 为边BC 的中点,DF 与对角线AC 交于点M ,过M 作ME CD ⊥于点E ,∠1=∠2. (1)若1CE =,求BC 的长; (2)求证AM DF ME =+.五、解答题:(本大题2个小题,第25小题10分,第26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上. 25.企业的污水处理有两种方式,一种是输送到污水厂进行集中处理,另一种是通过企业的自身设备进行处理.某企业去年每月的污水量均为12000吨,由于污水厂处于调试阶段,污水处理能力有限,该企业投资自建设备处理污水,两种处理方式同时进行.1至6月,该企业向污水厂输送的污水量1y (吨)与月份(1x x x ≤≤6,且取整数)之间满足的函数关系如下表:7至12月,该企业自身处理的污水量2y (吨)与月份(7x x x ≤≤12,且取整数)之间满足二次函数关系式为22(0)y ax c a =+≠.其图象如图所示.1至6月,污水厂处理每吨污水的费用:1z (元)与月份x 之间满足函数关系式:112z x =,该企业自身处理每吨污水的费用:2z (元)与月份x 之间满足函数关系式:2231412z x x =-.7至12月,污水厂处理每吨污水的费用均为2元,该企业自身处理每吨污水的费用均为1.5元.(1)请观察题中的表格和图象,用所学过的一次函数、反比例函数或二次函数有关知识,分别直接写出1y 、2y 与x 之间的函数关系式;(2)请你求出该企业去年哪个月用于污水处理的费用W (元)最多,并求出这个最多费用; (3)今年以来,由于自建污水处理设备的全面运行,该企业决定扩大产能并将所有污水全部自身处理,估计扩大产能后今年每月的污水量都将在去年每月的基础上增加a %,同时每吨污水处理的费用将在去年12月份的基础上增加(30)a -%,为鼓励节能降耗,减轻企业负担,财政对企业处理污水的费用进行50%的补助.若该企业每月的污水处理费用为18000元,请计算出a 的整数值.15.220.528.4)26.已知:如图,在直角梯形ABCD 中,263.A D B C B A D B C A B ===∥,∠=90,,,E为BC 边上一点,以BE 为边作正方形BEFG ,使正方形BEFG 和梯形ABCD 在BC 的同侧.(1)当正方形的顶点F 恰好落在对角线AC 上时,求BE 的长;(2)将(1)问中的正方形BEFG 沿BC 向右平移,记平移中的正方形BEFC 为正方形B EFG ',当点E 与点C 重合时停止平移,设平移的距离为t ,正方形B EFG '的边EF 与AC 交于点M ,连接B D B M DM '',,,是否存在这样的t ,使BDM '△是直角三角形?若存在,求出t 的值;若不存在,请说明理由;(3)在(2)问的平移过程中,设正方形B EFG '与ADC △重叠部分的面积为S ,请直接写出S 与t 之间的函数关系以及自变量t 的取值范围.重庆市2012年初中毕业暨高中招生考试数学试题参考答案及评分意见二、填空题:11.53.810⨯ 12.9:1 13.28 14.3π 15.1516.108 三、解答题:17.解:原式=2+1-5+1+9 ····································································· (5分) =8. ················································································· (6分) 18.证明:∠1=∠2,BAD BAD ∴=∠1+∠∠2+∠.即BAC EAD ∠=∠. ································· (2分) 又AB AE B E =,∠=∠,ABC AED ∴△≌△. ·········································································· (5分) BC ED ∴=.19.解:2(2) 1.x x -=- ···································································· (2分) 24 1.x x -=- ···································································· (4分) 3.x = ······································································ (5分) 经检验,3x =是原方程的解,所以原方程的解是3x =. ····························· (6分) 20.解:ABD △是等边三角形,B ∴∠=60. 在Rt BAC △中,cos ,tan AB ACB B BC AB==, 24,cos cos60AB BC B ∴=== ······························································· (2分) tan 2tan 6023AC AB B =∙== ···················································· (4分)ABC ∴△的周长为:246AB BC AC ++=++=+·················· (6分) 四、解答题: 21.解: 原式=2342(1)2(1)(1)(1)(1)(1)x x x x x x x x ⎡⎤+++-÷⎢⎥-+-+-⎣⎦ ··························· (3分) =22(1)(1)(1)2x x x x x +-∙-++ ·················································· (5分)=1.1x x -+ ······································································· (6分) 解不等式组4025 1.x x +>⎧⎨+<⎩,得42x -<<-. ·················································· (8分)x 为整数,3x ∴=-. ······································································· (9分)当3x =-时,原式=31231--=-+. ··························································· (10分) 22.解:(1)过点B 作BD x ⊥轴于点D.点B 的坐标为(2)2n BD -∴=,,. 在Rt BDO △中,tan BDBOC OD=∠, 2tan 5.5BOC OD OD ∴=∴=2∠=, ······················································ (1分) 又点B 在第三象限,∴点B 的坐标为(5,2).-- ······································ (2分)将(5,2)B --代入k y x =,得210.5kk -=∴=-, ······································· (3分) ∴该反比例函数的解析式为10y x=. ······················································· (4分)将点(2)A m ,代入10y x =,得1052m ==,(25).A ∴,····························· (5分) 将(25)A ,和(52)B --,分别代入y ax b =+,得 255 2.a b a b +=⎧⎨-+=-⎩,解得13.a b =⎧⎨=⎩,·································································· (6分) ∴该一次函数的解析式为 3.y x =+························································ (7分)(2)在3y x =+中,令0y =,即30 3.x x +=∴=-,∴点C 的坐标为(3,0) 3.OC -∴=, ························································ (8分)又在x 轴上有一点E (O 点除外),BCE BCO S S =△△,3CE OC ∴==,················································································ (9分) 6(60).OE E ∴=∴-,, ······································································· (10分)23.解:(3)5. ·················································································· (2分)补图如下:··················································································· (6分)(2)由(1)知该校2009年保送生中共有4位同学,除去1位女同学外,还有3位男同学,记这3位男同学分别为123A A A ,,,这位女同学为B ,画树状图如下:······································································································· (8分) 或列表:······································································································· (8分) 由树状图或列表可知,共有12种等可能情况,其中是1位男同学和1位女同学的有6种.所以,所选两位同学恰好是1位男同学和1位女同学的概率61.122P == ····· (10分) 24.解:四边形ABCD 是菱形,∴ BC CD DAC DCA ACB =,∠1=∠=∠=∠. .DCA ∴∠1=∠2,∠2=∠.DM CM ∴= ·············································································· (1分)又1ME CD CE ⊥=,, 2 2.CD CE ∴== ········································································· (2分) 2.BC CD ∴== ··········································································· (3分) (2)证明:延长AB 和DF 相交于点G .············································ (4分)F 为BC 的中点,22.2.BC CF BF CD CE BC CD CE CF ∴====∴=,, 又ECM FCM CM CM =∠=∠,, CEM CFM ∴△≌△..ME MF ∴= ·········································································· (6分) 四边形ABCD 是菱形, .AB CD G ∴∴∥,∠2=∠ 又DFC GFB CF BF ∠=∠,=,DCF GBF ∴△≌△..DF GF ∴= ·········································································· (8分) ,G ∠2=∠∠1=∠2,.G ∴∠1=∠ .AM GM ∴= ········································································· (9分) MG GF MF DF GF ME MF =+==,,,.AM DF ME ∴=+ ······························································· (10分)五、解答题: 25.解:(1)112000(1y x x x=≤≤6,且取整数). ································ (1分) 2210000(7y x x x =+≤≤12,且取整数). ··········································· (2分)(2)当1x x ≤≤6,且取整数时,211121************(12000)(12000)()2412W y z y z x x x x x =∙+-∙=∙+-∙- =21000100003000.x x -+- ····························································· (3分)10000512ba x x a=-<=-=,,≤≤6,5x W ∴=最大当时,=22000(元). ······················································· (4分) 当7x x ≤≤12,且取整数时,22222(12000) 1.52(1200010000) 1.5(10000)W y y x x =⨯-+=⨯--+⨯+ =2119000.2x -+ ················································································ (5分) 10022b a x a=-<=-=,, 当7x W x ≤≤12时,随的增大而减小. 718975.5x W ∴==最大当时,(元).2200018975.5>,∴去年5月份用于污水处理的费用最多,最多费用是22000元. ···················· (6分)(3)由题意,得12000(1%) 1.5[1(30)%](150%)18000.a a +⨯⨯+-⨯-= ·························· (8分)设%t a =,整理,得21017130t t +-=.解得t = 1809t t ∴2≈28.4,≈0.57,≈-2.27(舍去).a ∴≈57.答:a 的整数值为57. ········································································ (10分)26.解:(1)如答图①,设正方形BEFG 的边长为x ,则.BE FG BG x ===36AB BC ==,, 3.AG AB BG x ∴=-=-AGF ABC △∽△,3..36AG GF x x AB BC -∴==即 ··································································· (1分) 解得2 2.x BE ==,即 ········································································ (2分)(2)存在满足条件的t ,理由如下:如答图②,过.D DH BC H ⊥作于点则2 3.BH AD BH AB ====, 由题意,得24BB HE t HB t EC t ''===-=-,,,在Rt B ME '△中,222222112(2)28.24B M ME B E t t t ''=+=+-=-+ MEC ABC △∽△, 4.36ME EC ME t AB BC -∴==,即 12.2ME t ∴=- 在Rt DHB '△中,2222223(2)413.B D DH B H t t t ''=+=+-=-+过M 作MN DH ⊥于点N . 则122MN HE t NH ME t ====-,, 113(2) 1.22DN DH NH t t ∴=-=--=+ 在Rt DMN △中,22225 1.4DM DN MN t t =+=++ (Ⅰ)若DB M '∠=90,则222DM B M B D ''=+, 即222511(28)(413).44t t t t t t ++=-++-+解得20.7t = ·························· (4分) (Ⅱ)若B MD '∠=90,则222B D B M MD ''=+, 即22215413(28)(1).44t t t t t t ++=-++++解得1233t t =-=-03t t ∴=-≤≤4, ································································ (6分) (Ⅲ)若B DM '∠=90,则222B M B D MD ''=+, 即2221528(413)(1).44t t t t t t -+=-++++ 此方程无解. ······················································································· (8分)综上所述,当2037t =-或时,B DM '△是直角三角形. (3)①如图③,当F 在CD 上时,:EF DH CE CH =:,即8842362.333CE t BB BC B E EC CE ''∴=∴==--=--=,,:=:4 112.22ME t FM t =-∴=, 当0t 4≤≤3时,2111.224FMN S S t t t ==⨯⨯=△ ······································ (9分) ②当G 在AC 上时,2t =.33tan (4)344DH EK EC DCB EC t t CH =∙=∙=-=-∠, 32 1.4FK EK t ∴=-=- 244.333NL AD FL t ==∴=-, ∴当43t ≤≤2时, 22114312()(1).423483FMN FKL S S S t t t t t =-=---=-+-△△ ···················· (10分) ③如图⑤,当G 在CD 上时,:B C CH B G DH ''=:,即423B C '=::,解得:83B C '=,242.3EC t B C '∴=-=-= 10.3t ∴= 111(6)3222B N BC t t ''==-=-, 112GN GB B N t ''=-=-, ∴当2t <10≤3时, 111143*********FKL GNMF S S S t t t t ⎛⎫⎛⎫⎛⎫=-=⨯⨯-+--- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭△梯形 2352.83t t =-+- ··········································································· (11分) ④如图⑥,当103t <≤4时, 333311(6)(4)(6)444422B L BC t EK EC t B N B C t ''''==-==-==-,,, 11(4)22EM EC t ==-. 15.22MNLK B EKL B EMN S S S S t ''==-=-+梯形梯形梯形 ···································· (12分) 综上所述:当0t 4≤≤3时,21.4S t = 当43t ≤≤2时,212.83S t t =-+-。
超级推荐:2012年重庆中考专题复习函数问题附答案MicrosoftWord中考复习题经典例题姓名_____ 时间:20XX年3月10日初20XX年级中考数学专题复习一函数问题中考解读:以20XX年中考为例,对本知识模块的考察主要集中在第7、8、22、25、26题。
难度为中难度题,分值第7题4分,第8题4分,第22题10分,25题10分,26题第2问4分,共计32分。
占21%;函数题型是拉开分数档次的题,要引起考生的足够重视。
平时多加强训练,做到思维缜密,不丢分!1、已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.a>0 B.当x>1时,y随x的增大而增大C.c<0 D.3是方程ax2+bx+c=0的一个根2、如图,C为⊙O直径AB上一动点,过点C的直线交⊙O 于D、E两点,且∠ACD=45°,DF⊥AB于点F,EG⊥AB于点G,当点C在AB上运动时,设AF=x,DE=y,下列中图象中,能表示y与x的函数关系式的图象大致是()3、如图,点G、D、C在直线a上,点E、F、A、B在直线b上,若a∥b,Rt△GEF从如图所示的位置出发,沿直线b向右匀速运动,直到EG与BC重合.运动过程中△GEF与矩形ABCD 重合部分的面积(S)随时间....(t)变化的图象大致是()ab E(第2题)ABCD4、矩形ABCD中,AD 8cm,AB 6cm.动点E从点C开始沿边CB-BA以2cm/s的速度运动,动点F从点C同时出发沿边CD向点D以1cm/s的速度运动至点D停止.如图可得到矩形CFHE,设运动时间为x(单位:s),此时矩形ABCD去掉矩形CFHE 后剩余部分的面积为y(单位:cm),则y与x之间的函数关系用图象表示大致是下图中的()A DF BC5、5月23日8时40分,哈尔滨铁路局一列满载着2400吨“爱心”大米的专列向四川灾区进发,途中除3次因更换车头等原因必须停车外,一路快速行驶,经过80小时到达成都.若用y 表示列车距离成都的路程,用t表示所用的时间,则描述上述过程的大致图象是(t t C.D.6、为了建设社会主义新农村,我市积极推进“行政村通畅工程”。
1
16题专题训练
1.第三届中国大学生方程式汽车比赛赛前,甲、乙两辆参赛小汽车在一个封闭的环形跑道内
进行耐久测试。两车从同一地点沿相同方向同时起步后,乙车速超过甲车速,在第15分钟时
甲车提速,在第18分钟时甲车追上乙车并且开始超过乙,在第23分钟时,甲车再次追上乙
车。已知在测试中甲、乙两车均是匀速行驶,那么如果甲车不提速,乙车首次超过甲车所用
的时间是 分钟。
3.已知AB是一段只有3米宽的窄道路,由于一辆小汽车与一辆大卡车在AB段相遇,必须倒
车才能继续通行.如果小汽车在AB段正常行驶需10分钟,大卡车在AB段正常行驶需20分
钟,小汽车在AB段倒车的速度是它正常行驶速度的51,大卡车在AB段倒车的速度是它正
常行驶速度的81,小汽车需倒车的路程是大卡车需倒车的路程的4倍.问两车都通过AB这
段狭窄路面的最短时间是_____________分钟.
5.一组工作人员要把两个车间的机器组装完,甲车间的机器比乙车间的机器多一倍。上午全
部工作人员在甲车间组装;下午一半工作人员仍留在甲车间(上、下午的工作时间相等),到
下班前刚好把甲车间的机器组装完,另一半工作人员去乙车间组装机器,到下班前还剩下一
小部分未组装,最后由一人再用一整天的工作时间刚好组装完。如果这组工作人员每人每天
组装机器的效率是相等的,则这组工作人员共有 人。
2
6.为积极响应我区“创卫创模”工作精神,甲、乙两苗圃基地去年年底种植了同一品种的花
卉,计划今年全部供应我区,这样两基地所供花卉就能占我区所需花卉的54,由于受今
年年初持续低温和霜冻影响,甲基地仅有21的花卉能供应,乙基地仅有31的花卉能供应,
现两基地能供应的花卉仅占了我区所需花卉的103,则甲基地的计划量与乙基地的计划量
的比为 .
7.第八届中国(重庆)国际园林博览会吉祥物“山娃”深受市民喜欢.某特许商品零售商销
售A、B两种山娃纪念品,其中A种纪念品的利润率为10%,B种纪念品的利润率为30%.当
售出的A种纪念品的数量比B种纪念品的数量少40%时,该零售商获得的总利润率为20%;当
售出的A种纪念品的数量与B种纪念品的数量相等时,该零售商获得的总利润率为
____________.(利润率=利润÷成本)
8.某公司销售A、B、C三种产品,在去年的销售中,高新产品C的销售金额占总销售金额的
40%。由于受国际金融危机的影响,今年A、B两种产品的销售金额都将比去年减少20%,因
而高新产品C是今年销售的重点。若要使今年的总销售金额与去年持平,那么今年高新产品
C的销售金额应比去年增加 %。
9.含有同种果蔬但浓度不同的A、B两种饮料,A种饮料重40千克,B种饮料重60千克现从
这两种饮料中各倒出一部分,且倒出部分的重量相同,再将每种饮料所倒出的部分与另一种
饮料余下的部分混合.如果混合后的两种饮料所含的果蔬浓度相同,那么从每种饮料中倒出的
相同的重量是_____________千克
10.某房地产公司销售电梯公寓、花园洋房、别墅三种类型的房屋,在去年的销售中,花园洋
房的销售金额占总销售金额的35%.由于两会召开国家对房价实施调控,今年电梯公寓和别
墅的销售金额都将比去年减少15%,因而房地产商决定加大花园洋房的销售力度.若要使今
年的总销售金额比去年增长5%,那么今年花园洋房销售金额应比去年增加 __%.(结果保留3
个有效数字)
11.某步行街摆放有若干盆甲、乙、丙三种造型的盆景。甲种盆景由15朵红花、24朵黄花
和25朵紫花搭配而成,乙种盆景由10朵红花和12朵黄花搭配而成,丙种盆景由10朵
红花、18朵黄花和25朵紫花搭配而成。这些盆景一共用了2900朵红花,3750朵紫花,
则黄花一共用了 朵。
3
12.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用,已知甲、乙、丙三辆车每次运货
量不变,且甲、乙两车每次运货物的吨数之比为1:3;•若甲、丙两车合运相同次数运完这批
货物时,甲车共运了120吨,若乙、•丙两车合运相同次数运完这批货物时,乙车共运了180
吨.则这批货物共_____________吨.
13.某果蔬饮料由果汁、疏菜汁和纯净水按一定质量比配制而成,纯净水、果汁、蔬菜汁的价
格比为1:2:2,因市场原因,果汁、蔬菜汁的价格涨了15%,而纯净水的价格降了20%,但并
没有影响该饮料的成本(只考虑购买费用),那么该种饮料中果汁与蔬菜汁的质量和与纯净水
的质量之比为 .
14.小锋骑车在环城路上匀速行驶,每隔5分钟有一辆公共汽车从对面向后开过,每隔20分
钟又有一辆公共汽车从后向前开过,若公共汽车也匀速行驶,不计中途耽误时间,则公交车
车站每隔______________分钟开出一辆公共汽车.
15.某公司生产一种饮料是由BA,两种原料液按一定比例配制而成,其中A原料液的成本价为
15元/千克,B原料液的成本价为10元/千克,按现行价格销售每千克获得70%的利润率.由
于市场竞争,物价上涨,A原料液上涨20%,B原料液上涨10%,配制后的总成本增加了12%,
公司为了拓展市场,打算再投入现总成本的25%做广告宣传,如果要保证每千克利润不变,
则此时这种饮料的利润率是 .
16.一组工作人员要把两个车间的机器组装完,甲车间的机器比乙车间的机器多一倍。上午全
部工作人员在甲车间组装;下午一半工作人员仍留在甲车间(上、下午的工作时间相等),到
下班前刚好把甲车间的机器组装完,另一半工作人员去乙车间组装机器,到下班前还剩下一
小部分未组装,最后由一人再用一整天的工作时间刚好组装完。如果这组工作人员每人每天
组装机器的效率是相等的,则这组工作人员共有 人。
17.“节能减排,低碳经济”是我国未来发展的方向,某汽车生产商生产有大、中、小三种排
量的轿车,正常情况下的小排量的轿车占生产总量的30%,为了积极响应国家的号召,满足
大众的消费需求准备将小排量轿车的生产量提高,受其产量结构调整的影响,大中排量汽车
生产量只有正常情况下的90%,但生产总量比原来提高了7.5%,则小排量轿车生产量应比正
常情况增加 %。
18.重庆长安汽车公司经销豪华级、中高级、中级、紧凑级四种档次的轿车,在去年的销售中,
紧凑级轿车的销售金额占总销售金额的60%,由于受到国际金融危机的影响,今年豪华、中
高、中级轿车的销售金额都将比去年减少30%,因而紧凑级轿车是今年销售的重点,若要使
今年的总销售额与去年持平,那么今年紧凑级轿车的销售金额应比去年增加 %
4
19.某商场销售一批电视机,一月份每台毛利润是售出价的20%(毛利润=售出价-买入价),
二月份该商场将每台售出价调低10%(买入价不变),结果销售台数比一月份增加120%,那
么二月份的毛利润总额与一月份毛利润总额的比是 。
20.某商人经营甲、乙两种商品,每件甲种商品的利润率为40%,每件乙种商品的利润率为
60%,当售出的乙种商品的件数比甲种商品的件数多50%时,这个商人得到的总利润率是
50%;当售出的乙种商品的件数比甲种商品的件数少50%时,这个商人得到的总利润率
是 。
21.某学校九年级的一个研究性学习小组对学生中午在学校食堂的就餐时间进行了调查.发现
在单位时间内,每个窗口买走午餐的人数和因不愿长久等待而到小卖部就餐的人数各是一个
固定数.并且发现若开1个窗口,45分钟可使等待人都能买到午餐;若同时开2个窗口,则
需30分钟.还发现,若在25分钟内等待的学生都能买到午餐,在单位时间内,外出就餐的
人数可减少80%.在学校学生总人数不变且人人都要就餐的情况下,为了方便学生就餐,调
查小组建议学校食堂20分钟内卖完午餐,则至少要同时开 个窗口.
22.某商人经营甲、乙两种商品,每件甲种商品的利润率为40%,每件乙种商品的利润率为
60%,当售出的乙种商品的件数比甲种商品的件数多50%时,这个商人得到的总利润率是
50%;当售出的乙种商品的件数比甲种商品的件数少50%时,这个商人得到的总利润率
是 。
23.某果品店组合销售水果,甲种搭配:2千克A水果,4千克B水果;乙种搭配:3千克A
水果,8千克B水果,1千克C水果;丙种搭配:2千克A水果,6千克B水果,l千克C水
果.A水果价格每千克2元,B水果价格每千克1.2元,C水果价格每千克10元.某天该店
销售三种搭配共得441.2元,其中A水果的销售额为116元,则C水果的销售额为
元.
24.一组工作人员要把两个车间的机器组装完,甲车间的机器比乙车间的机器多一倍。上午全
部工作人员在甲车间组装;下午一半工作人员仍留在甲车间(上、下午的工作时间相等),到
下班前刚好把甲车间的机器组装完,另一半工作人员去乙车间组装机器,到下班前还剩下一
小部分未组装,最后由一人再用一整天的工作时间刚好组装完。如果这组工作人员每人每天
组装机器的效率是相等的,则这组工作人员共有人。
25.有一块牧场,可供10头牛吃20天,15头牛吃10天,则它可供25头牛吃多少天?