3D液晶显示技术解析
- 格式:doc
- 大小:31.50 KB
- 文档页数:3
液晶显示技术的研究与发展液晶显示技术(LCD)是一种常见的显示技术,广泛应用于电视、手机、计算机和其他电子设备中。
LCD显示屏以其节能、高清、超薄等特点,越来越受到人们的青睐。
在这篇文章中,我们将深入探讨液晶显示技术的研究与发展,并展望它的未来发展趋势。
液晶显示技术的历史和发展液晶显示技术最早起源于20世纪60年代,当时有一名物理学家发现了某些有机物质可以在电场的作用下改变其折射率。
这一发现奠定了液晶显示技术的基础。
在20世纪70年代初期,液晶显示技术得以商业化应用,但由于其制造成本过高、可靠性差等问题,一度未能获得广泛应用。
随着技术的不断发展,逐渐出现了多种类型的LCD显示屏,如TN屏、IPS屏、VA屏等。
每种类型的显示屏都有着自己的优劣势,如TN屏刷新率高、价格低,但视角较窄;IPS屏的视角宽,色彩鲜艳,但价格较高。
近年来,随着人们对电子设备的需求不断增加,液晶显示技术也在不断升级,出现了新的技术和解决方案。
其中比较关键的进展包括:1. LED背光技术的应用:LED背光技术可以提高LCD显示屏的亮度和色彩鲜艳度,同时节能效果显著。
2. 3D显示技术的发展:通过特别的3D镜片或者立体显示技术,可以让观众在不戴眼镜的情况下看到立体效果。
3. 4K显示技术的普及:4K技术可以大大提高LCD显示屏的分辨率,画面清晰度更高。
液晶显示技术的未来发展趋势人们对于液晶显示技术的要求越来越高,未来LCD显示屏的发展方向主要包括以下几个方面。
1. 更高的分辨率:随着4K技术的发展,越来越多的设备开始采用4K分辨率的LCD显示屏。
未来,更高的分辨率将会成为必然趋势,LCD的分辨率会不断提高,甚至接近眼睛无法分辨的极限。
2. 更快的刷新率:LCD显示屏的刷新率对于游戏和视频等内容展示非常重要。
未来,随着技术的不断进步和刷新率的逐渐提高,LCD的响应速度将会越来越快,同时图像的显示效果也会更加出色。
3. 更低的耗电量:功耗是电子设备中最重要的因素之一。
3d全息投影技术原理
3D全息投影技术原理是通过激光或者其他光源照射在特定的
透明介质上,产生波前复显现。
这种波前复显现是由于激光光束被介质散射并干涉产生的,它包含了记录原像的全部信息,可以呈现出立体感的全息图像。
在具体实现上,全息投影技术主要通过以下步骤实现:
1. 通过激光或者其他光源产生一束单色、相干的光线。
2. 将这束光线分成两部分:参考光和物体光。
3. 参考光通过一个分束器(例如半透镜)进行传播,并直接映射到记录介质上。
4. 物体光则经过一个空间调制器,如液晶显示器或类似的设备,它对光进行编码和调整。
5. 物体光经过编码后,被汇聚到记录介质上,与参考光汇合在一起。
6. 录制介质中的交叉干涉图样被记录下来,这是物体和参考光交叉干涉的结果。
7. 通过适当的过程,如照相或者数字化,将干涉图样保存在记录介质上。
8. 当需要呈现全息图像时,可以通过将保存的记录介质放置到特定的照明装置中,以恢复干涉图样。
9. 当激光光源重新照射到记录介质上时,干涉图样将会重建,从而形成可观察的3D全息图像。
需要注意的是,全息投影技术的原理基于干涉的概念。
当物体光与参考光交叉干涉时,它们的相位差和幅度差会产生干涉条纹。
这些干涉条纹的特性包含物体的深度和形状的信息,因此在观察时可以产生立体的效果。
总的来说,3D全息投影技术原理是利用干涉条纹记录和重建物体的光场信息,从而实现逼真的全息图像显示。
裸眼3D显示技术原理裸眼3D显示技术是一种可以让人们在不使用特殊眼镜的情况下观看3D图像或视频的显示技术。
它在电子产品的设计中有很大的应用潜力,可以为用户提供更加真实和沉浸感的观看体验。
本文将介绍裸眼3D显示技术的原理和工作原理。
裸眼3D显示技术利用立体视觉原理来实现。
人眼通过两只眼睛同时观察到场景的略有差异,这种差异会被大脑解析为3D立体效果。
而通常的2D显示器只能提供平面图像,无法呈现立体效果。
因此,裸眼3D显示技术通过模拟眼睛略有差异的输入来创造立体效果。
最常用的裸眼3D显示技术是基于视差的原理。
视差是指当我们改变视点时,我们所看到的物体的位置在视网膜上的位置发生变化。
裸眼3D 显示技术利用这种视差来创建3D图像或视频。
空间复用是通过将左眼和右眼的不同图像交替显示在同一个屏幕上来实现的。
这可以通过使用特殊的显示器或屏幕来实现。
这种显示器可以在一个屏幕上同时显示两种不同视点的图像,并使这些图像只能被对应的眼睛看到。
这样,当人眼在不断变换视点时,它们将分别看到左眼和右眼的图像,从而产生立体效果。
时间复用是在一个屏幕上交替显示左眼和右眼的图像。
这种方法可以使用快速刷新率的显示器来实现。
在这种情况下,屏幕将在非常短的时间内交替显示两个眼睛的图像。
由于人眼的视觉暂留效应,我们认为这些图像是同时在屏幕上呈现的。
这样,当人眼改变视点时,它们会看到交替出现的左眼和右眼图像,从而产生立体效果。
除了视差,裸眼3D显示技术还可以使用其他辅助技术来增强立体效果。
例如,深度映射技术可以根据物体的远近在图像上添加深度信息。
这可以帮助人眼更好地感知场景中物体的距离和位置。
在实际应用中,裸眼3D显示技术还需要考虑视角、分辨率、亮度和色彩等因素。
为了提供最佳的观看体验,设计者需要选择合适的显示设备、算法和图像处理技术。
总结起来,裸眼3D显示技术通过模拟人眼的立体视觉来创造3D图像或视频的立体效果。
它利用立体视觉原理中的视差来实现,通过交替显示左眼和右眼的图像,或者利用时间复用和空间复用等方法。
LED液晶显示器八大技术要生产出质量好的LED显示屏,需在以下几方面做好技术控制:1、防静电LED显电子示屏装配工厂应有良好的防静电措施。
专用防静电地、防静电地板、防静电烙铁、防静电台垫、防静电环、防静电衣、湿度控制、设备接地(尤其切脚机)等都是基本要求,并且要用静电仪定期检测。
2、驱动电路设计LED显示屏模块上的驱动电路板驱动IC的排布亦会影响到LED的亮度。
由于驱动IC输出电流在PCB板上传输距离过远,会使得传输路径压降过大,影响LED的正常工作电压导致其亮度降低。
我们常会发现LED显示屏模块四周的LED亮度比中间低一些,就是这个原因。
故要保证显示屏亮度的一致性,就要设计好驱动电路分布图。
3、设计电流值LED的标称电流为20mA,一般建议其最大使用电流为不超过标称值的80%,尤其对于点间距很小的显示屏,由于散热条件不佳,还应降低电流值。
根据经验,由于红、绿、蓝LED衰减速度的不一致性,有针对性地降低蓝、绿LED的电流值,以保持显示屏长时间使用后白平衡的一致性。
4、混灯同一种颜色不同亮度档的LED需要混灯,或者按照离散规律设计的插灯图进行插灯,以保证整屏每种颜色亮度的一致性。
此工序如果出现问题,会出现显示屏局部亮度不一致的现象,直接影响LED 显示屏的显示效果。
5、控制好灯的垂直度对于直插式LED来说,过炉时要有足够的工艺技术保证LED垂直于PCB板。
任何的偏差都会影响已经设置好的LED壹亮度一致性,出现亮度不一致的色块。
6、过波峰焊温度及时间须严格控制好波锋焊的温度及过炉时间,建议为:预热温度100℃±5℃,最高不超过120℃,且预热温度上升要求平稳,焊接温度为 245℃±5℃,焊接时间建议不超过3秒,过炉后切忌振动或冲击LED,直到恢复常温状态。
波峰焊机温度参数要定期检测,这由LED特性决定,过热或波动的温度会直接损坏LED或造成LED质量隐患,尤其对于小尺寸如3mm的圆形和椭圆形LED。
3d投影仪原理
3D投影仪的原理主要基于人眼对视觉图像的感知特性,即通过左右眼看到不同图像来实现立体视觉效果。
以下是几种常见的3D投影技术:
1.DLP Link技术。
这种技术通过快速切换DMD芯片上的画面,使得左眼和右眼分别看到不同的图像,从而在大脑中形成3D效果。
2.光屏障式技术。
这种技术使用液晶层和偏振膜制造出一系列方向为90°的垂直条纹,这些条纹在立体显示模式下会遮挡住另一只眼睛的非对应图像,从而产生深度感。
3.柱状透镜技术。
这种技术通过使用双凸透镜或微柱透镜,使得左眼和右眼分别看到略有区别的图像,实现3D效果。
4.偏振式3D技术。
这种技术通过在3D眼镜和投影机中使用偏振滤镜,使得左眼和右眼分别看到不同偏振方向的图像,从而在大脑中形成3D画面。
这些技术利用了人眼对不同偏振方向或频率的图像有不同的感知特性,通过在视觉上制造差异,使观者感受到立体效果。
一、3D显示技术原理简介3D 技术原理分类1立体图像对技术:原理:先产生场景的两个视图或多个视图,然后用某种机制(如佩戴眼镜)将不同视图分别传送给左右眼,确保每只眼睛只看到对应的视图而看不到其他视图,从而产生立体视觉。
这种技术的本质只是在空间中产生两张或多张平面图像,通过“欺骗”人眼视觉系统而立体成像,会使人眼产生矛盾的晶状体焦距调节和视线汇聚调节,长时间观看会产生视觉疲劳。
目前市面上的3D显示技术都属于立体图像对技术范畴。
2体显示技术:此种技术是在物理上显示了三个维度,能在空间中产生真正的3D效果。
成像物体就像在空间中真实存在,观察者能看到科幻电影中一般“悬浮”在半空中的3D透视图像。
从数字图像处理技术来说,平面图像对应了二维数组,每个元素被称为像素;而三维图像对应三维数组,每个元素被称为体素。
体显示技术正是在空间中表现了这个三维数组。
3全息技术:全息技术是利用光波的干涉和衍射原理记录并再现物体的真实感的一种成像技术。
全息技术再现的图像立体感强,具有真实的视觉效应。
除用光波产生全息图外,现在已发展到可用计算机产生全息图,然而需要的计算量极其巨大。
全息术应该是3D显示的终极解决方案,但目前还有很多技术问题有待解决,短期内难有成熟产品量产。
图片中的女士即全息虚拟影像二、眼镜式3D技术1色差式最早出现3D显示技术就是色差式,从技术层面上来看也是最为初级的一种3D效果显示方法,这种3D显示的辅助设备只需购买一付红青(红淡蓝)色差眼镜就可以了。
成本也最为低廉。
色差式3D显示可以称为分色立体成像技术,是用两台不同视角上拍摄的影像分别以两种不同的颜色印制在同一副画面中。
用肉眼观看的话会呈现模糊的重影图像,只有通过对应的红蓝等立体眼镜才可以看到立体效果,就是对色彩进行红色和蓝色的过滤,红色的影像通过红色镜片蓝色通过蓝色镜片,两只眼睛看到的不同影像在大脑中重叠呈现出3D立体效果。
缺点:显示效果有限,3D效果体验不足但是其低廉的成本却使很多财力有限的3D影片爱好者选择他的一个主要原因。
3D立体显示技术综述引言理想的视觉显示与日常经历中的场景对比,在质量、清晰度和范围方面应该是无法区分的,但是当前的技术还不支持这种高真实度的视觉显示。
随着2009年底卡梅隆导演的《阿凡达》热映,三维立体(3D Stereo)显示技术成为目前火热的技术之一,通过左右眼信号分离,在显示平台上能够实现的立体图像显示。
立体显示是VR虚拟现实的一个实现沉浸交互的方式之一,3D(3 dimensional)立体显示可以把图像的纵深,层次,位置全部展现,观察者更直观的了解图像的现实分布状况,从而更全面了解图像或显示内容的信息。
电影《阿凡达》热映的后时代,全民步入了3D立体的时代,随着技术的发展和对3D 技术关注度的剧增,3D显示技术的普及化应用已进入紧锣密鼓的实用阶段。
本文旨在介绍目前各种系统或设备对三维立体实现方式,推广三维立体的认知度。
1、3D立体显示原理3D立体显示的基本原理如图表1所示。
图中表示两眼光轴平行的情况,相当于两眼注视远处。
内瞳距(IPD)是两眼瞳孔之间的距离。
两眼空间位置的不同,是产生立体视觉的原因。
F是距离人眼较近的物体B上的一个固定点。
右面的两眼的视图说明,F点在视图中的位置不同,这种不同就是立体视差。
人眼也可以利用这种视差,判断物体的远近,产生深度感。
这就是人类的立体视觉,由此获得环境的三维信息。
图表 1 立体显示原理人眼的另一种工作方式是注视近处的固定点F。
这时两眼的光轴都通过点F。
两个光轴的交角就是图中的会聚角。
因为两眼的光轴都通过点F,所以F点在两个视图中都在中心点。
这时,与F相比距离人眼更远或更近的其他点,会存在视差。
人眼也可以利用这种视差,判断物体的远近,产生深度感。
目前市场上的3D立体技术的产品主要围绕着裸眼立体和非裸眼立体两种方式,其中涉及的主要产品有:液晶显示设备、等离子显示设备、便携式显示终端设备、投影设备等。
2、立体显示分类3D立体显示技术可主要分为:裸眼立体显示、便携式立体显示、佩带眼镜的立体三种方式,下面分别介绍不同的显示技术。
眼镜式3D电视有哪几种技术眼镜式3D电视3D显示技术可以分为眼镜式和裸眼式两大类。
裸眼3D目前主要用于公用商务场合,将来还会应用到手机等便携式设备上。
而在家用消费领域,无论是显示器、投影机或者电视,现在大多数的3D显示设备都需要配合3D眼镜使用。
在眼镜式3D技术中,我们又可以细分出三种主要的类型:色差式、偏光式和主动快门式,也就是平常所说的色分法、光分法和时分法。
色差式3D技术色差式3D电视的眼镜色差式3D技术,英文为Anaglyphic 3D,配合使用的是被动式红-蓝(或者红-绿、红-青)滤色3D眼镜。
这种技术历史最为悠久,成像原理简单,实现成本相当低廉,眼镜成本仅为几块钱,但是3D画面效果也是最差的。
色差式3D先由旋转的滤光轮分出光谱信息,使用不同颜色的滤光片进行画面滤光,使得一个图片能产生出两幅图像,人的每只眼睛都看见不同的图像。
这样的方法容易使画面边缘产生偏色。
由于效果较差,色差式3D技术没有广泛使用。
偏光式3D技术(不闪式3D技术)偏光式3D电视显示的图像偏光式3D技术也叫偏振式3D技术,英文为Polarization3D,配合使用的是被动式偏光眼镜。
偏光式3D技术的图像效果比色差式好,而且眼镜成本也不算太高,目前比较多电影院采用的也是该类技术,不过对显示设备的亮度要求较高。
偏光式3D是利用光线有“振动方向”的原理来分解原始图像的,先通过把图像分为垂直向偏振光和水平向偏振光两组画面,然后3D眼镜左右分别采用不同偏振方向的偏光镜片,这样人的左右眼就能接收两组画面,再经过大脑合成立体影像,在同一屏幕下显示两个画面,两只眼睛分别接收两个在屏幕上占一半的的画面导致清晰度减半3D效果也随之减半。
目前在偏光式3D系统中,市场中较为主流的有RealD 3D、MasterImage 3D、杜比3D三种,RealD 3D技术市占率最高,且不受面板类型的影响,可以使任何支持3D功能的电视还原出3D影像。
在液晶电视上,应用偏光式3D技术要求电视具备240Hz以上刷新率。
LED显示屏3D技术应用初探摘要:文章介绍了4种led显示屏3d显示技术应用的原理及方法,并说明了每种方法的优缺点,通过进一步分析比较,提出采用分时技术的优势及具体建议。
关键词:分色;分光;光栅;分时中图分类号:tn873 文献标识码:a 文章编号:1674-7712 (2013)06-0041-01led显示屏技术逐步取代投影技术走上历史舞台,以其显示效果好、低能耗、长寿命、高亮度、大视角、易维护等诸多优点而具有极为广阔的发展空间,目前,随着制造成本及性能指标的不断提升,led显示屏已逐渐应用于各行各业,尤其是对显示性能要求较高的场所。
数据显示,在全球经济紧缩的背景下,2012年中国国内led 显示屏的市场增长率仍达到了30%的高增长。
同时伴随led显示屏使用越来越广泛,led显示屏上涉及的3d显示技术成为新的研究领域与方向。
利用视差原理,在观看者观看画面时,只要提供拍摄位置稍微错开的两组图像,分别供左、右眼观看,便可以看到一组具有立体感的画面。
万变不离其宗,以视差原理为基础,目前共有4种方法实现3d显示,分别为分色、分光、分时和光栅方法。
一、分色方法实现分色技术其实就是色差式3d显示技术。
使用红蓝、红绿、棕蓝三种分色眼镜(互补色眼镜)实现两眼观看图像的交替与叠加,通过两眼观看不同图像从而实现立体成像。
分色眼镜的主要区别在于镜片的不同,同时对片源的要求与对眼镜的要求是一样的,比如,红蓝的眼镜要红蓝的片源,红绿的眼镜要红绿的片源,棕蓝的眼镜要棕蓝的片源,其中又以红蓝的片源居多。
以红蓝眼镜为例,红色部分图像是送给左眼,蓝色部分图像送给右眼,然后在大脑里融合便形成了具有立体效果的图像。
虽然分色方法具有实现简单,成本较低,可实现2d到3d转换等诸多优点,但是由于这种技术实现的led显示屏3d显示使用到的三种滤色镜一样都会降低到达观看者眼睛的图像亮度及特定的颜色信息。
观看时,左右两眼接收到的输入信息不能做到平衡一致,虽然经大脑的后期加工可以将两侧眼睛观看到的信息重新组合在一起,但会引起视神经的疲劳,所以分色眼镜不能长时间使用。
六种3D技术全解析你看《阿凡达》了吗?是不是3D版?2010年伊始,国人讨论《阿凡达》的频率已经超过了吃饭和天气。
因为《阿凡达》,3D技术在2009年的寒冬彻底火了一把。
“3D太逼真了,绝对的身临其境,电影中的子弹打过来你绝对会下意识的躲避!”——看过3D版《阿凡达》的人总是在这样津津乐道。
3D《阿凡达》来袭!没看的都OUT了?但是笔者今天告诉你的是“3D不仅只有阿凡达,立体生活其实很简单”。
在前不久刚刚结束的CES消费电子展上,3D成为了当之无愧的核心关键词;从电视、显示器到投影机、MP4等显示设备已经全部推出了3D产品;2010年南非世界杯将实现3D转播;专门提供3D画面的电视台将于2010年正式开播;电影巨头梦工厂宣布2009年之后制作的动画片都是3D形式;支持3D的游戏已经数以百计;互联网上已经有了3D网页……号外!号外!南非世界杯将3D转播啦!继高清之后,3D已经成为显示设备下一个重心。
虽然无数读者对3D已经耳熟能详,但是3D究竟是什么,3D能给我们带来什么,我们需要为3D付出什么,3D技术有什么缺点呢?大部分的读者还有着这样的疑问。
今天,笔者就和大家一起对3D技术进行剥丝抽茧,对3D技术进行全面系统的了解。
D是英文Dimension(线度、维)的字头,3D便是指三维空间。
相比普通的2D画面,3D更加立体逼真,让观众有身临其境的感觉。
目前的3D技术可以分为裸眼式和眼镜式两种,裸眼式3D技术目前主要应用在工业商用显示方面(以后还将应用于手机等显示设备中);眼镜式3D技术则集中于消费级市场,此次世界上观看《阿凡达》采用的全部是眼镜式3D技术。
如果细分的话,眼镜式3D技术可分为色差式、快门式和偏光式(也叫色分法、时分法、光分法)三种,而裸眼式3D技术可分为透镜阵列、屏障栅栏和指向光源三种,每种技术的原理和成像效果都有一定的差别。
下面笔者就为大家简单的介绍一下这六种3D技术的原理和优缺点。
眼镜式3D技术色差式色差式3D历史最为悠久,成像原理简单,实现成本低廉,但是3D画面效果也是最差的,需要配合色差式3D眼镜才能看到3D效果。
选快门还是偏光,选左右还是上下?这次给你终极答案~偏振3D显示方案深度解析!
很多朋友现在纠结于选快门还是偏光,选了偏光的朋友又在纠结是选左右格式还是选上下格式的图片电影,今天我不辞辛苦发文给大家深入剖析下,有些资料是转载,有些是原创分析,希望能给大家一个明确的答案!
http://bbs.cnliti.com/thread-98177-1-1.html 第1章:立体3D愈来愈热,两大技术针锋相对 3D立体显示是当前最热门的话题,是未来图像技术的主要发展方向。目前3D立体显示技术已经广泛应用到民用产品中来,为我们日常的娱乐带来新的体验,相信很多用户都很关注。
3D显示技术的原理是“欺骗”人的双眼,让左右眼分别看到不同的画面,之后在大脑中接受到的画面由于视觉差而产生凹凸感,从而体验到立体的画面。 而这个“欺骗”方案,主要有“红蓝式”、“快门式”和“偏振式”三种,“偏振式”又被称为“不闪式”,最近被炒得很火。“红蓝式”因为显示效果太差,被用户慢慢的唾弃。因此市面上主流的3D显示设备基本就是“快门式”与“偏振式”的天下。 无论哪种3D技术,其原理都是让左右眼看到有一定位移差的图像
在家用领域,3D显示技术目前争的火热,目前两大主流技术是快门式和偏振式。快门式3D主要由NVIDIA、SAMSUNG等厂商主推,偏振式则以LG为首。偏振式由于其画面不闪烁的特点,又被起了个新名字:不闪式。那么不闪式相比“有闪”的“快门式”有何优缺点呢? 第2章:3D显示原理解析:快门式 (时分法) 首先我们来看看比较普及的3D显示技术:快门式。这并不是最近才发明的技术,其实早在CRT显示器时代就出现了,它曾经被称为“液晶分时技术”。
● 快门式(液晶分时)3D显示技术 这项技术根据字面意思就很容易理解其工作原理,它的主要技术在眼镜上。它的眼镜片是可以分别控制开闭的两扇小窗户,在同一台放映机上交替播放左右眼画面时,通过液晶眼镜的同步开闭功能,在放映左画面时,左眼镜打开右眼镜关闭,观众左眼看到左画面,右眼什么都看不到(眼镜片处于黑屏状态)。同样翻转过来时,右眼看右画面,左眼看不到画面,就这样让左右眼分别看到左右各自的画面,从而产生立体效果。
详解4种⽴体显⽰技术详解4种⽴体显⽰技术要使⼀幅画⾯产⽣⽴体感,⾄少要满⾜三个⽅⾯的条件:⼀、画⾯有透视效果透视效果是观看三维世界时的基本规律,是画⾯产⽣⽴体感的基本要求。
如果画⼀个⽴⽅体却不遵照⽴⽅体的透视规律来画,那么画出来的作品就⼀定不会产⽣⽴⽅体所应有的⽴体感,不过即使是这样的作品还是有透视效果的,只不过是别的东西的透视效果。
那么什么是没有透视效果呢?⼀个正⽅形就没有透视效果,如果画⾯中只有⼀个孤零零的正⽅形的话就绝对不会有⽴体感。
⼆、画⾯有正确的明暗虚实变化真实世界中根据光源的亮度、颜⾊、位置和数量的不同,物体会有相应的亮部、暗部、投影和光泽等,同时近处的物体在⾊彩的饱和度、亮度、对⽐度等⽅⾯都相对较⾼,远处的则较低。
如果画⾯中没有这些效果或是违反这些规律,都不会产⽣好的⽴体感。
三、双眼的空间定位效果⼈眼在观看物体时,两只眼睛分别从两个⾓度来观看,看到的两幅画⾯⾃然有细微的差别,⼤脑将两幅画⾯混合成⼀幅完整的画⾯,并根据它们的差别线索感知被视物的距离。
这就是双眼的空间定位,是⼈眼感知距离的最主要的⼿段。
如果重放画⾯的时候不能再现这种空间定位的感觉,那么即使前两点做很不错也总觉得⽋缺点什么。
以上三点只有同时满⾜才能产⽣⽐较完美的⽴体效果,普通显⽰器可以实现前两点却⽆法实现第三点,⽽所谓的⽴体显⽰技术也就是能够再现空间定位感的显⽰技术。
关于为什么普通显⽰器⽆法再现空间定位感,可以藉由观察视差⾓的不同来理解。
视差⾓就是双眼和⼀点的两条连线之间的⾓度,距离近则视差⾓⼤、距离远则视差⾓⼩,物体的表⾯有⽆数个点,那么就有⽆数个视差⾓,我们只需找其中有代表性的⼏个作分析。
如图显⽰,⼈眼在看真实的圆柱体和看屏幕上显⽰的圆柱体时,视差⾓有明显的不同,看屏幕时的视差⾓实际上和看平板玻璃时是⼀样的,因此不管屏幕上显⽰的内容如何变化,⽴体感始终是⼀个平⾯,这也是普通显⽰器⽆法实现⽴体显⽰的原因。
既然如此,⾸先想到的解决办法⾃然就是把显⽰器做成圆柱体形状,这样当然可以完美的显⽰圆柱体,不过这样的显⽰器不管显⽰什么内容时都会机械的制造出中间近、两边远的效果。
到底谁坑了谁?3D显示器为什么火不起【PConline 应用】遥想显示当年,3D初嫁了,雄姿英发。
快门的、偏光的、N家的、A家的、软件的、硬件的……3D显示技术简直目不暇接。
3D显示技术自面世之后,吸引无数目光的关注。
3D液晶电视也保持着稳定的市场表现,但3D液晶显示器方面,也曾经一度大红大紫,各大厂商都曾力推3D显示器,但到最后,真正坚持推广3D 显示器的厂商并不多。
虽不能说3D显示器已然英年早逝,但目前也是温水煮青蛙的状态。
到底谁坑了谁?3D显示器为什么火不起来●3D显示的原理在现实中我们观察物体时,由于双眼之间存在一定距离,观察到物体反射光线的角度是不同的,这光线的不同会使双眼产生不同的视觉信号,我们的大脑在接受到不同的信号之后会启动一套复杂的处理系统,将两组信号进行比对和混合,这个过程在产生物体形状的同时会带来一个副产品——立体感。
通过为双眼送上不同的画面,以产生的错觉“欺骗”双眼,让他们产生“立体感”,这就是3D显示技术的精髓。
原理图目前主流的桌面3D显示技术有三种,分别为红蓝式、光学偏振式以及主动快门式,三者皆需要搭配眼镜来实现。
红蓝式3D技术红蓝3D红蓝式3D技术是最早面世的3D显示技术,它通过为双眼配置不同颜色的镜片,然后将屏幕画面分别过滤成不含红色和不含蓝色并予以输出,这样我们的双眼便可以接收到通过镜片补充正确颜色的不同画面,借以实现3D效果了。
后来出现的琥珀蓝3D技术与红蓝没有区别,仅仅是厂商为了还原更加真实的颜色而进行的改动而已。
红蓝3D是在所有3D技术中使用门栏最低的,只要你有一副红蓝眼镜就能实现。
但是聪明的你已经能想象到红蓝3D最大的劣势在于对光线的过滤会导致更多的红光以及波长更短的蓝色光域光线进入眼球,最直观的表现是颜色严重偏色。
二过多的红光会促使视网膜中的视紫红质吸收更多的光子,蓝光带有更高的能量则会直接伤害视网膜的蓝视锥细胞本身,并导致视黄醛的迅速匮乏,因此会对眼球造成累积性的光损伤。
3D液晶显示技术解析
对于电脑用户而言,在玩3D游戏时,往往会被游戏中华丽的3D场景所征服,而实际上,现有的2D显示器正在欺骗你的眼睛,你所看到的一切只是用2D技术模拟出的3D效果。
我们只有在真正的3D显示器上,才能看到真实的3D画面,因为自然界是三维的,所以立体LCD显示器成为未来发展趋势。
那么,到底什么是3D显示器呢?它与普通显示器有什么区别呢?要了解这些,就得从3D显示的原理开始讲起。
一、2D显示器实现3D场景
在信息时代,电脑已经在日常生活、企业办公等场合无所不在。
在大家使用电脑时,如果显示网页、普通文本,眼前只是一张“平”面,但当你在看电影、玩游戏时,你看到的却是一个“3D”场景。
而实际上,这台LCD显示器只是平面的,平面LCD显示器为什么能显示3D效果呢?这就和3D显卡、色彩原理和人眼的视觉原理有关了。
首先要明确一点,现在市场上的LCD显示器,都是2D平面显示器,但在3D显卡的作用下,却能给我们展现3D效果,所谓3D显卡,确切地说应该是“三维立体影像的二维平面投影成像”显卡,它实际上是用透视的方法,将3D影像投影在2D显示平面上,让人看起来“认为”是立体的而已。
为什么人会出现这样的情况呢?我们知道,日常生活中人们是用两只眼睛来观察周围具有空间立体感的外界景物,而平面显示器上的3D,实际上是利用双眼立体视觉原理,使观众能获得三维空间感视觉影像,因为人眼的视觉有近大远小的特性,这样就会形成立体感。
从色彩原理学来说,三维物体边缘的凸出部分一般显高亮度色,而凹下去的部分由于受光线的遮挡而显暗色,当影像显示在2D显示器屏幕上时,因色彩灰度的不同而使人眼产生视觉上的错觉,从而将2D显示器的屏幕感知为三维图像。
这一认识被广泛应用于网页或其他应用中对按钮、3D线条的绘制,比如要绘制3D文字,即在原始位置显示高亮度颜色,而在左下或右上等位置用低亮度颜色勾勒出其轮廓,这样在视觉上便会产生3D文字的效果。
具体实现时,可用完全一样的字体在不同的位置分别绘制两个不同颜色的2D文字,只要使两个文字的坐标合适,就完全可以在视觉上产生出不同效果的3D文字,计算机里的3D有3个方向轴(长、宽、高),而2D只有两个轴(长、宽)。
二、3D立体电影的实现原理
不少人一定还记得,早在上个世纪90年代,电影院流行一种立体电影,观众只要戴上一副电影院提供的眼镜,就能观看到与普通电影不一样的三维立体电影。
立体电影的原理究竟是什么呢?看过立体电影的人都知道,如果在观看时把眼镜拿到,结果电影十分模糊不清,似乎是由两个不同的影像所叠合而成,而戴上眼镜之后,透过立体眼镜对光的选择,而分别呈现在你的右眼以及左眼中,使你产生立体影像的感觉。
从技术原理来看,3D立体电影一般采用两种成像原理,一种是红蓝滤光成像技术,典型的电影有《特工小子3D》,这种电影需要搭配专门的红蓝滤色镜才可以观看;而另一种是偏光滤光成像技术,典型的电影有《IMAX》,此类电影只有使用偏振光眼镜才能看到立体效果。
为什么戴上一副眼镜就可以看到立体电影呢?以偏光滤光成像技术为例,其拍摄同时使用2台摄影机从不同的角度同时拍摄下景物的图像,在放映时,通过两个加装偏正镜片的放映机,把用两个摄影机拍下的两组胶片同步放映,使这略有差别的两幅图像重叠在银幕上。
电影放
映机输出的光线在通过偏正镜片后,就成为了偏正光,而观众使用的偏正光眼镜其实是一个还原过程。
而红蓝滤光成像技术不受现有影像设备的限制,只要搭配一副红蓝滤色镜就可以体验到近乎完美的立体效果。
一些媒体播放软件(如东方影都3D版),在播放电影时,其实就是通过插值运算的方法达到立体效果,其实说白了就是红蓝滤光成像技术。
三、3D显示器的传统实现方案
一般LCD平面显示器无法再现空间立体感,是因为要能使显示画面呈现立体感,具有透视效果是最基本要求;另外是视觉差异角度问题,在双眼和一点的两条连线之间的角度,距离近则视差角大、距离远则视差角小,物体的表面有无数个点,那么就有无数个视差角,因此无法显示立体影像。
回顾立体显示器的发展历史,早在1950年这项立体LCD显示技术雏形就已经被开发出来,甚至目前在研究类似LCD显示技术还运用早年就已经研发而成的部分技术,其原理类似于前面所说的立体电影,同样是使用偏光滤光或红蓝滤光成像技术,以达到在2D平面LCD显示器上实现3D的效果。
前者是利用光栅组件,使观视者产生多焦点影像达成3D显示目的,利用两台水平并列安置的电影摄影机,分别代表人的左、右眼,同步拍摄出两个画面。
而放映时,则将两个胶片分别装入左、右两台具备偏振镜放映机中,而且两个偏振镜互成90度的偏振轴,这样投放在银幕上时,如果用普通肉眼观看就形成了左右双影,但需搭配特殊立体眼镜才能获得立体影像;后者是将正常的画面分解为两份,然后分别进行去掉其中的红色和蓝色,再把两者交错的组合起来。
观看时需要佩戴一边为红色镜片,一边为蓝色镜片的眼镜,这样就迫使左右眼镜只能看到各自的色光图像,从而欺骗大脑以为看到了立体的图像。
四、新一代立体LCD显示技术
1.扫描式背光显示技术
扫描式背光显示技术是由三菱开发,其原理是利用液晶面板在显示左眼用的视差影像时点亮左侧LED,表示右眼用视察图像时点亮右侧LED,这样不必配戴特殊眼镜,就能从对应的眼中看到各自的视觉影像。
同时,只要以和电视磁场频率数相同的60Hz,分别进行左右视差影像更换跟左右LED闪烁同步时,便能使眼睛感受到2个影像同时稳定,而具有连续性地从面板显示出来,最终便在人脑中左眼影像及右眼影像合成为立体显示影像。
另外还能够100%利用液晶面板清晰度以显示出高精细立体影像,在两侧观看影像时不会产生模糊不清、影像重叠或凹凸逆转影像等问题,而且在一般情况下能够顺利显示二维显示影像。
2.透镜3D液晶显示技术
该技术是由飞利浦和夏普共同创导,其原理与三菱的扫描式背光显示技术有点类似,同样不需要佩戴眼镜,它是利用在液晶的最表层添加了数组透镜,而在这层凸透镜数组上形成影像。
其中每个透镜以液晶像素成一个小的角度摆放,并且对应了7个液晶Cell,每一个液晶像素有3个液晶Cell组成,具备呈现RGB三色的功能,再加上根据特殊的算法,在液晶Cell 中形成不同颜色,而最终形成影像,确保让观看者在左、右眼上形成不同的图像,这样就可以看到逼真的三维效果,缺点是如果观看液晶的角度不同,因为Barrier的效果减弱,而无法看到三维效果,而且多焦点影像极易造成眼睛疲劳。
3.DFD立体显示技术
DFD(Depth-Fused 3D)是日本NTT根据全新的错视原理开发的景深融合型立体影像技术,
其利用两片液晶显示器与half mirror,开发不需特殊眼镜就可以观赏的立体影像的技术,这种立体影像制作原理称为REAL。
REAL立体影像的制作过程是先利用一般摄影机、相机、闪光灯摄影等方式拍摄影像,然后取一般摄影与闪光灯摄影拍摄影像灰色度两者的差分,再与一定峰值比较藉此获得二值化(0与1的数字元元化)的影像,接着抽出所谓的近影像领域,最后再将Relief状景深添加至近影像领域内。
被照物景深形状除了球体比较接近真实景深外,其它物体都会出现某种程度的差异,只要近影像与远影像两者前后关系维持正确,且景深为连续性平滑状的话,通常利用肌理描绘(texture)作补正,就可以获得非常协调的立体影像。
总结:3D LCD显示器市场前景
一位大型电视机厂商的显示器技术人员认为:“3D技术只是实现临场感的一种手段而已,并不是必须的”。
LCD显示器从2D发展到3D,这的确是技术领域上的重大突破,3D立体显示器、电脑主机、播放软件,无需任何辅助设备便可呈现出清晰的3D立体影像,可以播放的香车、名表、美钻悬空旋转的立体影像,带给众多与会者新奇刺激的视觉享受,这一点非常适合喜欢看电影的用户,特别是欧美科幻大片,新一代3D显示器使观看者的视觉纵深最大可达1.5米,直接在显示器上就可以轻松观看立体电影了,但就目前的情况来看,3D显示器难以让普通PC用户接受,因为它的价格太贵了,比如iZ3D公司的22英寸宽屏立体显示器,其运用偏光眼镜及先进技术,可呈现栩栩如生的景深与跳出屏幕的3D图像,但售价要999美元,这是普通消费者难以接受的,也仅适合那些发烧游戏玩家、影像爱好者购买。
从应用角度来看,目前3D显示器比较适合商用市场,比如在医疗、科研、教学、军事等专业领域外,在奢侈品文物艺术品展示、会展、大企业形象展示、新媒体等各领域都正在发挥其独特的视觉作用,这些新兴3D显示器的实现和普及,将会形成下一代极具魅力的新兴图像产业。
从发展趋势来看,3D显示技术有着非常广阔的市场前景。
到2025年前,3D 显示器作为颇具魅力的图像空间显示手段,在各个市场上将会逐步普及。
它能实现可自然立体显视的复合感觉立体显示方式,以及将实现立体图像和观察者间进行交互通信的附加功能。
3D立体显示技术,因其可以再现事物的原貌,给人以身临其境的视觉享受,不仅是人类追求完美视觉效果的终极梦想,也成为全球资本所看好的一块诱人“蛋糕”。