随机变量及其分布函数习题
- 格式:doc
- 大小:940.00 KB
- 文档页数:16
第三章 多维随机变量及其分布答案 一、填空题(每空3分)1.设二维随机变量(X,Y)的联合分布函数为22213,0,0(1)(1)(1)(,)0,A x y x y x y F x y ⎧+-≥≥⎪++++=⎨⎪⎩其他,则A=_____1____. 2.若二维随机变量(X,Y)的分布函数为F(x,y)则随机点落在矩形区域[x 1《<x<x 2,y 1<y<y 2]内的概率为___ ____ _(,)(,)(,)(,)22211112F x y F x y F x y F x y -+-.3.(X,Y)的联合分布率由下表给出,则α,β应满足的条件是13αβ+=;当=α 29 ,=β 19 时X 与Y 相互独立.4.设二维随机变量的密度函数2,01,02(,)30,xyx x y f x y ⎧+≤≤≤≤⎪=⎨⎪⎩其他,则(1)P X Y +≥=__6572____. 5.设随机变量X,Y 同分布,X 的密度函数为23,02(,)80,x x f x y ⎧≤≤⎪=⎨⎪⎩其他,设A=(X>b )与B =(Y>b )相互独立,且3()4P A B ⋃=,则6.在区间(0,1)内随机取两个数,则事件“两数之积大于14”的概率为_ _ 31ln 444- .7. 设X 和Y 为两个随机变量,且34(0,0),(0)(0)77P X Y P X P Y ≥≥=≥=≥=,则(max{,}0)P X Y ≥=_57. 8.(1994年数学一)设相互独立的两个随机变量,X Y 具有同一分布律,且X 的分布律为则随机变量max{,}Z X Y =的分布律为 .9.(2003年数学一)设二维随机变量(),X Y 的概率密度为6,01,(,)0,x x y f x y ≤≤≤⎧=⎨⎩其它. 则{1}P x y +≤= 1/4 . 二、单项选择题(每题4分)1.下列函数可以作为二维分布函数的是( B ).A .⎩⎨⎧>+=.,0,8.0,1),(其他y x y x FB .⎪⎩⎪⎨⎧>>⎰⎰=--.,0,0,0,),(00其他y x dsdt e y x F y x t s C . ⎰⎰=∞-∞---y x ts dsdt ey x F ),( D .⎪⎩⎪⎨⎧>>=--.,0,0,0,),(其他y x e y x F yx2.设平面区域D 由曲线1y x=及直线20,1,x y y e ===围成,二维随机变量在区域D 上服从均匀分布,则(X,Y)关于Y 的边缘密度函数在y=2处的值为(C ).A .12 B .13 C .14 D .12-3.若(X,Y)服从二维均匀分布,则( B ).A .随机变量X,Y 都服从一维均匀分布B .随机变量X,Y 不一定服从一维均匀分布C .随机变量X,Y 一定都服从一维均匀分布D .随机变量X+Y 服从一维均匀分布4.在[0,]π上均匀地任取两数X 和Y ,则{cos()0}P X Y +<=( D ).A .1B .12 C . 23 D .345.(1990年数学三)设随机变量X 和Y 相互独立,其概率分布律为则下列式子正确的是( C ).A .;X Y = .{}0;P X Y == C .{}12;P X Y ==.{} 1.P X Y ==6.(1999年数学三)设随机变量101(1,2)111424i X i -⎡⎤⎢⎥=⎢⎥⎣⎦,且满足{}1201,P X X ==则12{}P X X =等于( A )..0; .14; C .12; .1.8.(2002年数学四)设1X 和2X 是任意两个相互独立的连续型随机变量,它们的概率密度分别为1()f x 和2()f x ,分布函数分别为1()F x 和2()F x ,则.12()()f x f x +必为某一随机变量的分布密度;.12()()F x F x 必为某一随机变量的分布函数;C .12()()F x F x +必为某一随机变量的分布函数;.12()()f x f x 必为某一随机变量的分布密度.B D A B D A B D三、计算题(第一题20分,第二题24分)1.已知2(),(),(1,2,3),a bP X k P Y k k X Y k k===-==与相互独立. (1)确定a ,b 的值; (2)求(X,Y)的联合分布律;解:(1)由正则性()1kP X k ==∑有,612311a a a a ++=⇒= ()1kP Y k =-=∑有,3614949b b b b ++=⇒=(2)(X,Y)的联合分布律为2. 设随机变量(X,Y)的密度函数为(34),0,0(,)0,x y ke x y p x y -+⎧>>=⎨⎩其他(1)确定常数k ; (2)求(X,Y)的分布函数; (3)求(01,02)P X Y <≤<≤.解:(1)∵0(34)01x y ke dx dy ∞∞-+⎰=⎰∴400011433()()430||112yy x x e dx k e e dy k k e∞-∞∞∞---=--⎰⋅==⎰∴k=12(2)143(34)(,)1212(1)(1)1200y x yx u v F x y e dudv e e ---+==⋅--⎰⎰43(1)(1)0,0y xe e x y --=-->>∴34(1)(1),0,00,(,)x y ee x y F x y ⎧--⎪-->>⎨⎪⎩=其他(3)(01,02)(1,2)(0,0)(1,0)(0,2)P X Y F F F F <≤<≤=+--38(1)(1)e e --=--3.设随机变量X,Y 相互独立,且各自的密度函数为121,0()20,0x X e x p x x ⎧≥⎪=⎨⎪<⎩,131,0()30,0x Y e y p y y ⎧≥⎪=⎨⎪<⎩,求Z=X+Y 的密度函数 解:Z=X+Y 的密度函数()()()Z XY p z px p z x dx ∞-∞=-⎰∵()X p x 在x ≥0时有非零值,()Y p z x -在z-x ≥0即x ≤z 时有非零值 ∴()()X Y p x p z x -在0≤x ≤z 时有非零值336362000111()[]|236zzz x z x z x xzZ p z e e dx e e dx e e -------=⋅==-⎰⎰ 36(1)zz e e --=--当z<0时,()0Z p z =所以Z=X+Y 的密度函数为36(1),0()0,0z zZ e e z p z z --⎧⎪--≥=⎨⎪<⎩4.设随机变量X,Y 的联合密度函数为3412,0,0(,)0,x y e x y p x y --⎧>>=⎨⎩其他,分别求下列概率密度函数.(1) {,}M Max X Y =; (2) {,}N Min X Y =.解:(1)因为3430()(,)123x yx X p x p x y dy edy e ∞∞----∞===⎰⎰3440()(,)124x y y Y p y p x y dx e dy e ∞∞----∞===⎰⎰所以(,)()()X Y p x y p x p y =即X 与Y 独立. 所以当z<0时,()0M F z =当z ≥0时,()()(,)()()M F z P M z P X z Y z P X z P Y z =≤=≤≤=≤≤34()()(1)(1)z z X Y F z F z e e --==--所以34430,0()3(1)4(1),0M z z z z z p z e e e e z ----<⎧=⎨-+-≥⎩3470,0347,0z z zz e e e z ---<⎧=⎨+-≥⎩ (2) 当z<0时,()0N F z =当z ≥0时,()()(,)1()()N F z P N z P X z Y z P X z P Y z =>=>>=->>7z e -=所以70,0()7,0M z z p z e z -<⎧=⎨≥⎩3470,0347,0zz zz e e e z ---<⎧=⎨+-≥⎩6.设随机变量(X,Y)的联合密度函数分别为3,01,0(,)0,x x y xp x y <<<<⎧=⎨⎩其他,求X和Y 的边际密度函数.解:2()(,)33,01xX p x p x y dy xdy x x ∞-∞===<<⎰⎰1223()(,)3(1),012Y yp y p x y dx xdx y x y ∞-∞===-<<⎰⎰。
概率论与数理统计练习题系 专业 班 姓名 学号第六章 随机变量数字特征一.填空题1. 若随机变量X 的概率函数为1.03.03.01.02.043211pX-,则=≤)2(X P ;=>)3(X P ;=>=)04(X X P .2. 若随机变量X 服从泊松分布)3(P ,则=≥)2(X P 8006.0413≈--e.3. 若随机变量X 的概率函数为).4,3,2,1(,2)(=⋅==-k c k X P k则=c1516. 4.设A ,B 为两个随机事件,且A 与B 相互独立,P (A )=,P (B )=,则()P AB =____________.() 5.设事件A 、B 互不相容,已知()0.4=P A ,()0.5=P B ,则()=P AB6. 盒中有4个棋子,其中2个白子,2个黑子,今有1人随机地从盒中取出2个棋子,则这2个棋子颜色相同的概率为____________.(13) 7.设随机变量X 服从[0,1]上的均匀分布,则()E X =____________.(12) 8.设随机变量X 服从参数为3的泊松分布,则概率密度函数为 __.(k 33(=,0,1,2k!P X k e k -==L )) 9.某种电器使用寿命X (单位:小时)服从参数为140000λ=的指数分布,则此种电器的平均使用寿命为____________小时.(40000)10在3男生2女生中任取3人,用X 表示取到女生人数,则X 的概率函数为11.若随机变量X 的概率密度为)(,1)(2+∞<<-∞+=x xa x f ,则=a π1;=>)0(X P ;==)0(X P 0 .12.若随机变量)1,1(~-U X ,则X 的概率密度为 1(1,1)()2x f x ⎧∈-⎪=⎨⎪⎩其它13.若随机变量)4(~e X ,则=≥)4(X P ;=<<)53(X P .14..设随机变量X 的可能取值为0,1,2,相应的概率分布为 , ,,则()E X =15.设X 为正态分布的随机变量,概率密度为2(1)8()x f x +-=,则2(21)E X -= 916.已知X ~B (n,p ),且E (X )=8,D (X )=,则n= 。
第二章 随机变量及其分布18.[十七] 设随机变量X 的分布函数为⎪⎩⎪⎨⎧≥<≤<=.,1,1,ln ,1,0)(e x e x x x x F X ,求(1)P (X<2), P {0<X ≤3}, P (2<X<25);(2)求概率密度f X (x ). 解:(1)P (X ≤2)=F X (2)= ln2, P (0<X ≤3)= F X (3)-F X (0)=1,45ln 2ln 25ln )2()25(252(=-=-=<<X X F F X P (2)⎪⎩⎪⎨⎧<<==其它,0,1,1)(')(e x x x F x f24.[二十二] 设K 在(0,5)上服从均匀分布,求方程02442=+++K xK x 有实根的概率∵ K 的分布密度为:⎪⎩⎪⎨⎧<<-=其他50051)(K K f要方程有根,就是要K 满足(4K )2-4×4× (K+2)≥0。
解不等式,得K ≥2时,方程有实根。
∴53051)()2(5522=+==≥⎰⎰⎰∞+∞+dx dx dx x f K P 25.[二十三] 设X ~N (3.22)(1)求P (2<X ≤5),P (-4)<X ≤10),P {|X|>2},P (X>3)∵ 若X ~N (μ,σ2),则P (α<X ≤β)=φ-⎪⎭⎫ ⎝⎛-σμβφ⎪⎭⎫ ⎝⎛-σμα ∴P (2<X ≤5) =φ-⎪⎭⎫ ⎝⎛-235φ⎪⎭⎫ ⎝⎛-232=φ(1)-φ(-0.5) =0.8413-0.3085=0.5328P (-4<X ≤10) =φ-⎪⎭⎫ ⎝⎛-2310φ⎪⎭⎫ ⎝⎛--234=φ(3.5)-φ(-3.5) =0.9998-0.0002=0.9996P (|X |>2)=1-P (|X |<2)= 1-P (-2< P <2 )=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--Φ-⎪⎭⎫ ⎝⎛-Φ-2322321 =1-φ(-0.5) +φ(-2.5) =1-0.3085+0.0062=0.6977P (X >3)=1-P (X ≤3)=1-φ⎪⎭⎫⎝⎛-233=1-0.5=0.5(2)决定C 使得P (X > C )=P (X ≤C )∵P (X > C )=1-P (X ≤C )= P (X ≤C )得 P (X ≤C )=21=0.5 又P (X ≤C )=φ023,5.023=-=⎪⎭⎫ ⎝⎛-C C 查表可得∴ C =3 28.[二十六] 一工厂生产的电子管的寿命X (以小时计)服从参数为μ=160,σ(未知)的正态分布,若要求P (120<X ≤200==0.80,允许σ最大为多少?∵ P (120<X ≤200)=80.04040160120160200=⎪⎭⎫ ⎝⎛-Φ-⎪⎭⎫ ⎝⎛Φ=⎪⎭⎫ ⎝⎛-Φ-⎪⎭⎫ ⎝⎛-Φσσσσ 又对标准正态分布有φ(-x )=1-φ(x )∴ 上式变为80.040140≥⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛Φ--⎪⎭⎫ ⎝⎛Φσσ 解出9.040:40≥⎪⎭⎫ ⎝⎛Φ⎪⎭⎫ ⎝⎛Φσσ便得 再查表,得25.31281.140281.140=≤≥σσ 31.[二十八] 设随机变量X 在(0,1)上服从均匀分布 (1)求Y=e X 的分布密度∵ X 的分布密度为:⎩⎨⎧<<=为其他x x x f 0101)(Y=g (X ) =e X 是单调增函数 又 X=h (Y )=lnY ,反函数存在且α = min [g (0), g (1)]=min (1, e )=1=βmax [g (0), g (1)]=max (1, e )= e∴ Y 的分布密度为:⎪⎩⎪⎨⎧<<⋅=⋅=为其他y e y yy h y h f y ψ0111|)('|)]([)((2)求Y=-2lnX 的概率密度。
第二章随机变量及其分布习题(1)随机变量及其分布1.一袋中有5只乒乓球,编号为1、2、3、4、5,在其中同时取三只,以X 表示取出的三只球中的最大号码,写出随机变量X 的分布律2.分析下列函数是否是分布函数.若是分布函数,判断是哪类随机变量的分布函数.(1)⎪⎩⎪⎨⎧≥<≤--<=.0,1,02,21,2,0)(x x x x F (2)⎪⎩⎪⎨⎧≥<≤<=.,1,0,sin ,0,0)(ππx x x x x F (3)⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤+<=.21,1,210,21,0,0)(x x x x x F 3.盒中装有大小相等的球10个,编号分别为0、1、2、…、9.从中任取1个,观察号码是“小于5”、“等于5”、“大于5”的情况.试定义一个随机变量,求其分布律和分布函数.4.已知随机变量X 的概率密度为||1()2x f x e -=,x -∞<<+∞.求X 的分布函数.5.设随机变量X 的密度函数为⎪⎩⎪⎨⎧<-=其它,01,1)(2x x c x f ,试求:(1)常数c ;(2)}210{≤≤X P ;(3)X 的分布函数.6.设随机变量X 的分布函数为⎪⎩⎪⎨⎧≥<≤<=.,1,1,ln ,1,0)(e x e x x x x F X ,求(1)P (X<2),P {0<X ≤3},P (2<X<25);(2)求概率密度f X (x ).7.设随机变量X 的概率密度)(x f 为(1)⎪⎩⎪⎨⎧≤≤--=其它01112)(2x x x f π,(2)⎪⎩⎪⎨⎧≤≤-<≤=其他021210)(x x x x x f 求X 的分布函数F (x ),并作出(2)中的f (x )与F (x )的图形。
8.设随机变量X 的分布律为(0>α为参数)2,1,1)(===k ak X P k 求(1)(5)P X ≥;(2)(3)P X 为的倍数。
+随机变量及其分布习题解答(共16页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--1第二章 随机变量及其分布1、解:设公司赔付金额为X ,则X 的可能值为; 投保一年内因意外死亡:20万,概率为 投保一年内因其他原因死亡:5万,概率为投保一年内没有死亡:的分布律为:2、一袋中有53、4、5,在其中同时取三只,以X 表示取出的三只球中的最大号码,写出随机变量X 的分布律解:X 可以取值3,4,5,分布律为1061)4,3,2,1,5()5(1031)3,2,1,4()4(1011)2,1,3()3(352435233522=⨯====⨯====⨯===C C P X P C C P X P C C P X P 中任取两球再在号一球为中任取两球再在号一球为号两球为号一球为也可列为下表 X : 3, 4,5 P :106,103,1013、设在15只同类型零件中有2只是次品,在其中取三次,每次任取一只,作不放回抽样,以X 表示取出次品的只数,(1)求X 的分布律,(2)画出分布律的图形.解:任取三只,其中新含次品个数X 可能为0,1,2个.3522)0(315313===C C X P 3512)1(31521312=⨯==C C C X P 351)2(31511322=⨯==C C C X P 再列为下表 X : 0, 1, 2 P : 351,3512,352224、进行重复独立实验,设每次成功的概率为p ,失败的概率为q =1-p (0<p <1)(1)将实验进行到出现一次成功为止,以X 表示所需的试验次数,求X 的分布律.(此时称X 服从以p 为参数的几何分布.)(2)将实验进行到出现r 次成功为止,以Y 表示所需的试验次数,求Y 的分布律.(此时称Y 服从以r, p 为参数的巴斯卡分布.)(3)一篮球运动员的投篮命中率为45%,以X 表示他首次投中时累计已投篮的次数,写出X 的分布律,并计算X 取偶数的概率.解:(1)P (X=k )=q k -1p k=1,2,……(2)Y=r+n={最后一次实验前r+n -1次有n 次失败,且最后一次成功} ,,2,1,0,)(111 ===+=-+--+n p q C p p q C n r Y P r n n n r r n n n r 其中 q=1-p ,或记r+n=k ,则 P {Y=k }= ,1,,)1(11+=----r r k p p C rk r r k (3)P (X=k ) = k -k=1,2…P (X 取偶数)=311145.0)55.0()2(1121===∑∑∞=-∞=k k k k X P5、 一房间有3扇同样大小的窗子,其中只有一扇是打开的.有一只鸟自开着的窗子飞入了房间,它只能从开着的窗子飞出去.鸟在房子里飞来飞去,试图飞出房间.假定鸟是没有记忆的,鸟飞向各扇窗子是随机的.(1)以X 表示鸟为了飞出房间试飞的次数,求X 的分布律.(2)户主声称,他养的一只鸟,是有记忆的,它飞向任一窗子的尝试不多于一次.以Y 表示这只聪明的鸟为了飞出房间试飞的次数,如户主所说是确实的,试求Y 的分布律.(3)求试飞次数X 小于Y 的概率;求试飞次数Y 小于X 的概率. 解:(1)X 的可能取值为1,2,3,…,n ,…P {X=n }=P {前n -1次飞向了另2扇窗子,第n 次飞了出去}=31)32(1⋅-n , n=1,2,……(2)Y 的可能取值为1,2,3 P {Y=1}=P {第1次飞了出去}=31P {Y=2}=P {第1次飞向 另2扇窗子中的一扇,第2次飞了出去} =312132=⨯P {Y=3}=P {第1,2次飞向了另2扇窗子,第3次飞了出去} =31!3!2=3∑∑===<===<==<3231}|{}{}|{}{}{)3(k k k Y Y X P k Y P k Y Y X P k Y P Y X P ⎪⎪⎭⎫⎝⎛==<0}1|{Y Y X P 全概率公式并注意到 278313231313131}{}{32=⎥⎦⎤⎢⎣⎡⨯+⨯+⨯=<==∑=k k X P k Y P }{}|{,k X P k Y Y X P Y X <==<独立即注意到同上,∑======31}|{}{}{k k Y Y X P k Y P Y X P81192743192313131}{}{31=⨯+⨯+⨯====∑=k k X P k Y P故8138){}{1}{==-<-=<Y X P Y X P X Y P 6、一大楼装有5个同类型的供水设备,调查表明在任一时刻t 每个设备使用的概率为,问在同一时刻(1)恰有2个设备被使用的概率是多少0729.0)9.0()1.0()2(322525225=⨯⨯===-C q p C X P (2)至少有3个设备被使用的概率是多少00856.0)1.0()9.0()1.0()9.0()1.0()3(5554452335=⨯+⨯⨯+⨯⨯=≥C C C X P (3)至多有3个设备被使用的概率是多少3225415505)9.0()1.0()9.0(1.0)9.0()3(⨯⨯+⨯⨯+=≤C C C X P99954.0)9.0()1.0(2335=⨯⨯+C(4)至少有一个设备被使用的概率是多少 40951.059049.01)0(1)1(=-==-=≥X P X P7、设事件A 在每一次试验中发生的概率为,当A 发生不少于3次时,指示灯发出信号.(1)进行了5 次独立试验,求指示灯发出信号的概率 .(2)进行了7次独立试验,求指示灯发出信号的概率解: 设X 为 A 发生的次数. 则()0.3,.X B n n=5,7B:“指示等发出信号“① (){}3P B P X =≥55530.30.70.163k k k k C -===∑②(){}3P B P X =≥={}{}7231k P X K P X K ===-=∑∑71622510.70.30.70.30.70.353G G =--⋅⨯-⨯≈ 8、甲、乙二人投篮,投中的概率各为, ,令各投三次.求4(1)二人投中次数相等的概率. 记X 表甲三次投篮中投中的次数 Y 表乙三次投篮中投中的次数由于甲、乙每次投篮独立,且彼此投篮也独立. P (X =Y )=P (X =0, Y=0)+P (X =2, Y=2)+P (X=3, Y=3)= P (X =0) P (Y=0)+ P (X =1) P (Y=1)+ P (X =2) P (Y=2)+ P (X =3) P (Y=3)= 3× 3+ [])3.0(7.0[])4.0(6.0213213⨯⨯⨯⨯⨯C C3223223)6.0(]3.)7.0([]4.0)6.0([+⨯⨯⨯⨯⨯+C C 321.0)7.0(3=⨯(2)甲比乙投中次数多的概率.P (X>Y )=P (X =1, Y=0)+P (X =2, Y=0)+P (X=2, Y=1)+ P (X =3) P (Y=0)+ P (X =3) P (Y=1)+ P (X =3) P (Y=2) =P (X =1) P (Y=0) + P (X =2, Y=0)+ P (X=2, Y=1)+ P (X =3) P (Y=0)+ P (X =3) P (Y=1)+ P (X =3) P (Y=2)=+⨯⨯⨯+⨯⨯⨯82233213)3.0(]4.0)6.0([)3.0(])4.0(6.0[C C 3213223)6.0(])3.0(7.0[]4.0)6.0([+⨯⨯⨯⨯⨯C C321333)6.0(])3.0(7.0[)6.0()3.0(+⨯⨯⨯+⨯C 243.0]3.0)7.0([223=⨯⨯⨯C9、有一大批产品,其验收方案如下,先做第一次检验:从中任取10件,经验收无次品接受这批产品,次品数大于2拒收;否则作第二次检验,其做法是从中再任取5件,仅当5件中无次品时接受这批产品,若产品的次品率为10%,求(1)这批产品经第一次检验就能接受的概率 (2)需作第二次检验的概率(3)这批产品按第2次检验的标准被接受的概率(4)这批产品在第1次检验未能做决定且第二次检验时被通过的概率(5)这批产品被接受的概率解:X 表示10件中次品的个数,Y 表示5件中次品的个数,由于产品总数很大,故X~B (10,),Y~B (5,)(近似服从) (1)P {X =0}=≈(2)P {X ≤2}=P {X =2}+ P {X =1}=581.09.01.09.01.0911082210≈+C C (3)P {Y =0}= 5≈(4)P {0<X ≤2,Y=0} ({0<X ≤2}与{ Y=2}独立) = P {0<X ≤2}P {Y=0}=×≈(5)P {X =0}+ P {0<X ≤2,Y=0} ≈+=510、有甲、乙两种味道和颜色极为相似的名酒各4杯.如果从中挑4杯,能将甲种酒全部挑出来,算是试验成功一次.(1)某人随机地去猜,问他试验成功一次的概率是多少(2)某人声称他通过品尝能区分两种酒.他连续试验10次,成功3次.试问他是猜对的,还是他确有区分的能力(设各次试验是相互独立的.)解:(1)P (一次成功)=701148=C(2)P (连续试验10次,成功3次)= 100003)7069()701(73310=C .此概率太小,按实际推断原理,就认为他确有区分能力.11. 尽管在几何教科书中已经讲过用圆规和直尺三等分一个任意角是不可能的.但每年总有一些“发明者”撰写关于用圆规和直尺将角三等分的文章.设某地区每年撰写此类文章的篇数X 服从参数为6的泊松分布.求明年没有此类文章的概率.解: ().6~πX 6=λ{}0025.01066≈===∴-ee X P12. 一电话交换台每分钟收到呼唤的次数服从参数为4的泊松分布.求(1)每分钟恰有8次呼唤的概率.(2)某一分钟的呼唤次数大于3的概率.()4~πX 4=λ(1){}∑∑∞=∞=--⋅-⋅==899484!!8r r r e r e X P λλ 029771.0021363.0051134.0=-= (2)566530.0}4{}3{=≥=>X P X P13. 某一公安局在长度为t 的时间间隔内收到的紧急呼救的次数X 服从参数为(1/2)t 的泊松分布,而与时间间隔的起点无关(时间以小时计).(1)求某一天中午12时至下午3时没有收到紧急呼救的概率.(2)求某一天中午12时至下午5时至少收到1次紧急呼救的概率.解:2tλ= ()X πλ①32λ= {}3200.2231P X e -===②52λ= {} 2.512.510.918!k k e P X k -∞=≥==∑14、解:~(2)X t π(1)、10t =分钟时16t =小时,6{}131310.2388!1k ee P X k κλ--====(2)、{}00.5P X =≥故()0220.50.346571tt e t -≥⇒≥(小时)所以0.34657*6020.79t ≥≈(分钟) 15、解:{}()(){}10500005000100.001510.0015100.8622k kk P X k P X -=⎛⎫≤=- ⎪⎝⎭≤≈∑ 16、解:{}{}{}011000,0.0001,0.12101110.99530.00470!1!n p np P X P X P X e e λλλλλ--====≥=-=-==--≈-=17、解:设X 服从()01分布,其分布率为{}()11,0,1kk P X k p p k -==-=,求X 的分布函数,并作出其图形.解一:X 0 1 k p1p - p()0,1XX 的分布函数为:()0010111x F x p x x , <⎧⎪=- , ≤<⎨⎪ , ≥⎩718.在区间[]0,a 上任意投掷一个质点,以X 表示这个质点的坐标.设这个质点落在[]0,a 中任意小区间内的概率与这个小区间的长度成正比例,试求X 的分布函数.解:① 当0X <时.{}X x ≤是不可能事件,(){}0F X P X x =≤=②当0x a ≤≤时, {}0P X x kx ≤≤= 而 {}0X a ≤≤是必然事件 {}101P X x ka k a∴≤≤==⇒= {}0x P X x kx a∴≤≤==则 (){}{}{}00x F x P X x P X P X x a=≤=≤+≤≤=③当x a >时,{}X x ≤是必然事件,有(){}1F x P X x =≤=()0001x x F x x a a x a , < ⎧⎪⎪∴ , ≤≤⎨⎪ , >⎪⎩19、以X 表示某商店从早晨开始营业起直到第一顾客到达的等待时间(以分计),X 的分布函数是⎩⎨⎧<≥-=-000,1)(4.0x x e x F x X求下述概率:(1)P {至多3分钟};(2)P {至少4分钟};(3)P {3分钟至4分钟之间};(4)P {至多3分钟或至少4分钟};(5)P {恰好分钟} 解:(1)P {至多3分钟}= P {X ≤3} =2.11)3(--=e F X (2)P {至少4分钟} P (X ≥4) =6.1)4(1-=-e F X(3)P {3分钟至4分钟之间}= P {3<X ≤4}=6.12.1)3()4(---=-e e F F X X (4)P {至多3分钟或至少4分钟}= P {至多3分钟}+P {至少4分钟} =6.12.11--+-e e (5)P {恰好分钟}= P (X ==020、设随机变量X 的分布函数为⎪⎩⎪⎨⎧≥<≤<=.,1,1,ln ,1,0)(e x e x x x x F X ,求(1)P (X<2), P {0<X ≤3}, P (2<X<25);(2)求概率密度f X (x ).解:(1)P (X ≤2)=F X (2)= ln2, P (0<X ≤3)= F X (3)-F X (0)=1,45ln 2ln 25ln )2()25(252(=-=-=<<X X F F X P8(2)⎪⎩⎪⎨⎧<<==其它,0,1,1)(')(e x x x F x f21、设随机变量X 的概率密度)(x f 为(1)⎪⎩⎪⎨⎧≤≤--=其它01112)(2x x x f π(2)⎪⎩⎪⎨⎧≤≤-<≤=其他021210)(x x x x x f求X 的分布函数F (x ),并作出(2)中的f (x )与F (x )的图形.解:(1)当-1≤x ≤1时:21arcsin 111arcsin 211212120)(212121++-=⎥⎦⎤⎢⎣⎡+-=-+=---∞-⎰⎰x πx x πx x x πdx x πdx x F Xx当1<x 时:10120)(11121=+-+=⎰⎰⎰--∞-xdx dx x πdx x F故分布函数为:⎪⎩⎪⎨⎧<≤≤-++--<=x x x πx x πx x F 111121arcsin 11110)(2解:(2)⎰∞-=≤=xdt t f x X P x F )()()(⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰=+-++=<--=-++=≤≤=+=<≤==<∞-∞-∞-∞-122121120010)2(0)(,2122)2(0)(,2120)(,1000)(,0xxxxdt dt t dt t dt x F x xx dt t dt t dt x F x x dt t dt x F x dt x F x 时当时当时当时当故分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤≤--<≤<=xx x x x x x x F 212112210200)(22(2)中的f (x )与F (x )的图形如下f (x )(Maxwell)分布,其概率密度为()220xbAx e xf x-⎧⎪ , >=⎨,⎪⎩其它其中2b m kT=,k为Boltzmann常数,T为绝对温度,m是分子的质量.试确定常数A.解: ①()1x dx+∞-∞=⎰即()22xbf x dx Ax e dx-+∞+∞-∞=⎰⎰222xbAb xxe db-+∞⎛⎫=--⎪⎝⎭⎰22200()|222x x xb b bAb Ab Abxd e xe e dx---+∞+∞+∞=-=-+⎰⎰2212002xbAbe dx d x--+∞+∞⎤==⎥⎦⎰1122Ab==221122uduπ+∞-⎛⎫=⎪⎪⎝⎭⎰A∴=②当0t<时,()00tTF t dt-∆=⋅=⎰当0t≥时,()()()2411241xt tT TF t f x dt F t e dt--∞=⋅==⎰⎰2411te-=-()2410,01,0tTtF te t-<⎧⎪∴=⎨⎪- ≥⎩{}{}{}()()501001005010050P T P T P T F F∴<<=<-≤=-50100e e--=-或{}()1005050100P T f t dt<<=⎰50100100241241241501241te dt e e---==-⎰xF (x)923、某种型号的电子的寿命X (以小时计)具有以下的概率密度:⎪⎩⎪⎨⎧>=其它010001000)(2x x x f现有一大批此种管子(设各电子管损坏与否相互独立).任取5只,问其中至少有2只寿命大于1500小时的概率是多少解:一个电子管寿命大于1500小时的概率为32)321(1)1(1000110001)1500(1)1500(15001000150010002=--=⎭⎬⎫⎩⎨⎧--=-=≤-=>⎰x dx x X P X P令Y 表示“任取5只此种电子管中寿命大于1500小时的个数”.则)32,5(~B Y ,{}24323224311132511)31()32()31(1)1()0(1)2(1)2(54155=-=⨯+-=⎭⎬⎫⎩⎨⎧⋅⋅+-==+=-=<-=≥C Y P Y P Y P Y P24、设顾客在某银行的窗口等待服务的时间X (以分计)服从指数分布,其概率密度为:⎪⎩⎪⎨⎧>=-其它,00,51)(5x e x F xX某顾客在窗口等待服务,若超过10分钟他就离开.他一个月要到银行5次.以Y 表示一个月内他未等到服务而离开窗口的次数,写出Y 的分布律.并求P (Y ≥1).解:该顾客“一次等待服务未成而离去”的概率为21051051051)()10(-∞+-∞+-∞+=-===>⎰⎰e edx edx x f X P xx X因此5,4,3,2,1(,)1(5)().,5(~5222=-⎪⎭⎫ ⎝⎛==----k e e k k Y P e B Y kk 即.5167.04833.018677.01)1353363.01(1)389.711(1)1(1)0(1)1(1)1(55552=-=-=--=--=--==-=<-=≥-e Y P Y P Y P 25、设K 在(0,5)上服从均匀分布,求方程02442=+++K xK x 有实根的概率∵K 的分布密度为:⎪⎩⎪⎨⎧<<-=其他50051)(K K f要方程有根,就是要K 满足(4K )2-4×4× (K+2)≥0. 解不等式,得K ≥2时,方程有实根. ∴53051)()2(5522=+==≥⎰⎰⎰∞+∞+dx dx dx x f K P 26、设X ~N ()(1)求P (2<X ≤5),P (-4)<X ≤10),P {|X|>2},P (X>3) ∵ 若X ~N (μ,σ2),则P (α<X ≤β)=φ-⎪⎭⎫ ⎝⎛-σμβφ⎪⎭⎫ ⎝⎛-σμα∴P (2<X ≤5) =φ-⎪⎭⎫ ⎝⎛-235φ⎪⎭⎫ ⎝⎛-232=φ(1)-φ(- =-=P (-4<X ≤10) =φ-⎪⎭⎫⎝⎛-2310φ⎪⎭⎫ ⎝⎛--234=φ-φ(-=-=P (|X |>2)=1-P (|X |<2)= 1-P (-2< P <2 )=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--Φ-⎪⎭⎫ ⎝⎛-Φ-2322321 =1-φ(- +φ(- =1-+=P (X >3)=1-P (X ≤3)=1-φ⎪⎭⎫⎝⎛-233=1-= (2)决定C 使得P (X > C )=P (X ≤C )∵ P (X > C )=1-P (X ≤C )= P (X ≤C ) 得 P (X ≤C )=21=又P (X ≤C )=φ023,5.023=-=⎪⎭⎫⎝⎛-C C 查表可得∴ C =327、某地区18岁的女青年的血压(收缩区,以mm-Hg 计)服从)12,110(2N 在该地区任选一18岁女青年,测量她的血压X .求(1)P (X ≤105),P (100<X ≤120). (2)确定最小的X 使P (X>x ) ≤ .解:3384.06616.01)4167.0(1)4167.0()12110105()105()1(=-=Φ-=-Φ=-Φ=≤X P 5952.017976.021)8333.0(21)65(2)65()65()12110100()12110120()120100(=-⨯=-Φ=-Φ=-Φ-Φ=-Φ--Φ=≤<X P.74.129.74.12974.19110.645.112110.95.0)12110(05.0)12110(1)(1)()2(==+≥⇒≥-≥-Φ⇒≤-Φ-=≤-=>X x x x x x X P x X P 故最小的查表得28、由某机器生产的螺栓长度(cm )服从参数为μ=,σ=的正态分布.规定长度在范围±内为合格品,求一螺栓为不合格的概率是多少设螺栓长度为X P {X 不属于-, + =1-P -<X <+=1-⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡--Φ-⎥⎦⎤⎢⎣⎡-+Φ06.005.10)12.005.10(06.005.10)12.005.10( =1-{φ(2)-φ(-2)}=1-{-} =29、一工厂生产的电子管的寿命X (以小时计)服从参数为μ=160,σ(未知)的正态分布,若要求P (120<X ≤200==,允许σ最大为多少∵ P (120<X ≤200)=80.04040160120160200=⎪⎭⎫ ⎝⎛-Φ-⎪⎭⎫ ⎝⎛Φ=⎪⎭⎫ ⎝⎛-Φ-⎪⎭⎫⎝⎛-Φσσσσ又对标准正态分布有φ(-x )=1-φ(x )∴ 上式变为80.040140≥⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛Φ--⎪⎭⎫ ⎝⎛Φσσ 解出9.040:40≥⎪⎭⎫ ⎝⎛Φ⎪⎭⎫ ⎝⎛Φσσ便得 再查表,得25.31281.140281.140=≤≥σσ30、解:[]{}{}{}223120~(120,2) ~(0,1)2P 118,122P 1181222P 12(10.8413)0.31745(1)0.32042V V N X N V V V X p p -=∉=<⋃>=->=-=⎛⎫∴-= ⎪⎝⎭则p=31、解:0 ,0()0.20.8/30 ,0301 ,30x F x x x x <⎧⎪=+≤<⎨⎪≥⎩32、解:[]()0,()0,01()(1)()0()(1)()()(1)()(1)1f xg x a af x a g x af x a g x dx a f x dx a g x dx a a ∞∞∞-∞-∞-∞≥≥<<∴+-≥+-=+-=+-=⎰⎰⎰且所以()(1)()af x a g x +-为概率密度函数 33、设随机变量X 的分布律为: X :-2, -1, 0, 1, 3P :51,61, 51, 151,3011求Y=X 2的分布律 ∵ Y=X 2:(-2)2 (-1)2 (0)2(1)2(3)2 P : 516151 1513011 再把X 2的取值相同的合并,并按从小到大排列,就得函数Y 的分布律为:∴ Y : 0 1 4 9P : 5115161+ 51301134、设随机变量X 在(0,1)上服从均匀分布 (1)求Y=e X 的分布密度 ∵ X 的分布密度为:⎩⎨⎧<<=为其他x x x f 0101)(Y=g (X ) =e X 是单调增函数 又 X=h (Y )=lnY ,反函数存在 且 α = min [g (0), g (1)]=min (1, e )=1 =βmax [g (0), g (1)]=max (1, e )= e∴ Y 的分布密度为:⎪⎩⎪⎨⎧<<⋅=⋅=为其他y e y yy h y h f y ψ0111|)('|)]([)((2)求Y=-2lnX 的概率密度.∵ Y= g (X )=-2lnX 是单调减函数又 2)(Y e Y h X -== 反函数存在. 且 α = min [g (0), g (1)]=min (+∞, 0 )=0 β=max [g (0), g (1)]=max (+∞, 0 )= +∞∴ Y 的分布密度为:⎪⎩⎪⎨⎧+∞<<=-⋅=⋅=--为其他y y e ey h y h f y ψy y 0021211|)('|)]([)(2235、设X ~N (0,1) (1)求Y=e X 的概率密度 ∵ X 的概率密度是+∞<<∞-=-x e πx f x ,21)(22Y= g (X )=e X 是单调增函数 又 X= h (Y ) = lnY 反函数存在 且 α = min [g (-∞), g (+∞)]=min (0, +∞)=0 β = max [g (-∞), g (+∞)]= max (0, +∞)= +∞ ∴ Y 的分布密度为:⎪⎩⎪⎨⎧+∞<<⋅=⋅=-为其他y y y e πy h y h f y ψy 00121|)('|)]([)(2)(ln 2 (2)求Y=2X 2+1的概率密度.在这里,Y=2X 2+1在(+∞,-∞)不是单调函数,没有一般的结论可用. 设Y 的分布函数是F Y (y ), 则 F Y ( y )=P (Y ≤y )=P (2X 2+1≤y ) =⎪⎪⎭⎫⎝⎛-≤≤--2121y X y P 当y<1时:F Y ( y )=0当y ≥1时:⎰----=⎪⎪⎭⎫ ⎝⎛-≤≤--=212122212121)(y y x y dx e πy X y P y F故Y 的分布密度ψ( y )是:当y ≤1时:ψ( y )= [F Y ( y )]' = (0)' =0当y>1时,ψ( y )= [F Y ( y )]' ='⎪⎪⎭⎫⎝⎛⎰----21212221y y x dx eπ=41)1(21---y ey π(3)求Y=| X |的概率密度. ∵ Y 的分布函数为 F Y ( y )=P (Y ≤y )=P ( | X |≤y ) 当y<0时,F Y ( y )=0当y ≥0时,F Y ( y )=P (| X |≤y )=P (-y ≤X ≤y )=⎰--y yx dx e π2221∴ Y 的概率密度为:当y ≤0时:ψ( y )= [F Y ( y )]' = (0)' =0当y>0时:ψ( y )= [F Y ( y )]' =2222221y y yx e πdx e π---='⎪⎪⎭⎫⎝⎛⎰36、(1)设随机变量X 的概率密度为f (x ),求Y = X 3的概率密度. ∵ Y=g (X )= X 3 是X 单调增函数, 又 X =h (Y ) =31Y ,反函数存在, 且 α = min [g (-∞), g (+∞)]=min (0, +∞)=-∞ β = max [g (-∞), g (+∞)]= max (0, +∞)= +∞ ∴ Y 的分布密度为:ψ( y )= f [h ( h )]·| h' ( y )| = 0,,31)(3231≠+∞<<∞-⋅-y y y y f 但0)0(=ψ(2)设随机变量X 服从参数为1的指数分布,求Y=X 2的概率密度.法一:∵ X 的分布密度为:⎩⎨⎧≤>=-00)(x x e x f xY =x 2是非单调函数当 x<0时 y =x 2 反函数是y x -= 当 x<0时 y =x 2y x =∴ Y ~ f Y (y ) = ))(())(('+'--y y f y y f -y y=⎪⎩⎪⎨⎧≤>=+--00,21210y y e ye yyy法二:)()()()()(~y X P y X P y X y P y Y P y Y F Y -≤-≤=≤<-=≤=⎪⎩⎪⎨⎧≤>-=+--⎰,00,100y y e dx e y y x∴ Y ~ f Y (y ) =⎪⎩⎪⎨⎧≤>-.0,0.0,21y y e y y37、设X 的概率密度为⎪⎩⎪⎨⎧<<=为其他x πx πxx f 002)(2xOyy=x 2求Y =sin X 的概率密度. ∵ F Y ( y )=P (Y ≤y ) = P (sin X ≤y ) 当y<0时:F Y ( y )=0当0≤y ≤1时:F Y ( y ) = P (sin X ≤y ) = P (0≤X ≤arc sin y 或π-arc sin y ≤X ≤π)=⎰⎰-+πy πy dx πx dx πxarcsin 2arcsin 0222当1<y 时:F Y ( y )=1∴ Y 的概率密度ψ( y )为:y ≤0时,ψ( y )=[ F Y ( y )]' = (0 )' = 0 0<y <1时,ψ( y )=[ F Y ( y )]' ='⎪⎭⎫⎝⎛+⎰⎰-πy πydx πx dx πxarcsin 2arcsin 0222=212yπ-1≤y 时,ψ( y )=[ F Y ( y )]' = )1(' = 038、设电流I 是一个随机变量,它均匀分布在9安11安之间.若此电流通过2欧的电阻,在其上消耗22.W I =求W 的概率密度.解:I 在()9,11上服从均匀分布I ∴的概率密度为:()1,1120,q x f x ⎧ <<⎪=⎨⎪ ⎩其它22W I =的取值为162242W <<分布函数 (){}{}2222w w F w P W w P I w P I ⎧⎫=≤=≤=≤⎨⎬⎩⎭()q P Q i f x dx ⎧⎪=<≤=⎨⎪⎩12q q ⎫==⎪⎪⎭()()',1622420,w w w f w F w <<∴== ⎩其它 39、某物体的温度T (o F )是一个随机变量,且有T ~N (,2),试求θ(℃)的概率密度.[已知)32(95-=T θ]法一:∵ T 的概率密度为+∞<<∞-=⨯--t et f t ,221)(22)6.98(2π又 )32(95)(-==T T g θ 是单调增函数. 3259)(+==θθh T 反函数存在.且 α = min [g (-∞), g (+∞)]=min (-∞, +∞)=-∞ β = max [g (-∞), g (+∞)]= max (-∞, +∞)= +∞ ∴ θ的概率密度ψ(θ)为59221|)('|)]([)(4)6.983259(2⋅=⋅=-+-θeπθh θh f θψ +∞<<∞-=--θeπθ,109100)37(812法二:根据定理:若X ~N (α1, σ1),则Y=aX+b ~N (aα1+b, a 2 σ2 ) 由于T ~N (, 2)故 ⎥⎥⎦⎤⎢⎢⎣⎡⨯⎪⎭⎫ ⎝⎛=⎥⎥⎦⎤⎢⎢⎣⎡⨯⎪⎭⎫⎝⎛-⨯-=295,9333295,91606.9895~91609522N N T θ故θ的概率密度为:+∞<<∞-==--⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫⎝⎛--θππθψθθ,10929521)(100)37(8129529333222ee。
随机变量及其分布方法总结经典习题及解答一、离散型随机变量及其分布列1、离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量。
常用大写英文字母X、Y等或希腊字母ξ、η等表示。
2、分布列:设离散型随机变量ξ可能取得值为:x1,x2,…,x3,…,ξ取每一个值xi(i=1,2,…)的概率为,则称表ξx1x2…xi…PP1P2…Pi…为随机变量ξ的分布列3、分布列的两个性质:⑴Pi≥0,i=1,2,… ⑵P1+P2+…=1、常用性质来判断所求随机变量的分布列是否正确!二、热点考点题型考点一: 离散型随机变量分布列的性质1、随机变量ξ的概率分布规律为P(ξ=n)=(n=1,2,3,4),其中a是常数,则P(<ξ<)的值为A、B、C、D、答案:D考点二:离散型随机变量及其分布列的计算2、有六节电池,其中有2只没电,4只有电,每次随机抽取一个测试,不放回,直至分清楚有电没电为止,所要测试的次数为随机变量,求的分布列。
解:由题知2,3,4,5∵ 表示前2只测试均为没电,∴ ∵ 表示前两次中一好一坏,第三次为坏,∴ ∵ 表示前四只均为好,或前三只中一坏二好,第四个为坏,∴ ∵ 表示前四只三好一坏,第五只为坏或前四只三好一坏第五只为好∴ ∴ 分布列为2345P三、条件概率、事件的独立性、独立重复试验、二项分布与超几何分布1、条件概率:称为在事件A发生的条件下,事件B发生的概率。
2、相互独立事件:如果事件A(或B)是否发生对事件B (或A)发生的概率没有影响,这样的两个事件叫做相互独立事件。
①如果事件A、B是相互独立事件,那么,A与、与B、与都是相互独立事件②两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。
我们把两个事件A、B同时发生记作AB,则有P(AB)= P(A)P(B)推广:如果事件A1,A2,…An相互独立,那么这n个事件同时发生的概率,等于每个事件发生的概率的积。
《概率论与数理统计》第三单元补充题一、填空题1.设随机变量21,X X 相互独立,分布律分别为2131611011pX -,3231102p X ,则==}{21X X P ,==}0{21X X P ,},max{21X X M =的分布律为,},min{21X X N =的分布律为2.设X 与Y 为两个随机变量,且73}0,0{=≥≥Y X P ,74}0{}0{=≥=≥Y P X P ,则=≥}0),{max(Y X P ,=<}0),{min(Y X P3.设21,X X 的联合分布律为且满足1}0{21==X X P , 则==}{21X X P ,===}1/0{21X X P4.已知,X Y 的分布律为6113101ab XY 且{0}X =与{1}X Y +=独立,则a =________,b =__________5.随机变量Y X ,服从同分布,X 的密度函数为⎪⎩⎪⎨⎧<<=其它02083)(2x xx f ,设}{a X A >= 与}{a Y B >=相互独立,且43)(=⋃B A P ,则a =___________ 6.随机变量Y X ,相互独立且服从N (0,1)分布,Z =X +Y 的概率密度为__________,Z =X -Y 的概率密度为__________7.用二维连续型随机变量),(Y X 的联合分布函数),(y x F 表示下述概率 (1)=<≤≤},{c Y b X a P(2)=<<},{b Y b X P(3)=≤≤}0{a Y P(4)=>≥},{b Y a X P二、选择题1.设随机变量X 与Y 相互独立,其分布律分别为212110PX ,212110P Y ,则以下结论正确的是( )Y X A =).( 1}{).(==Y X P B21}{).(==Y X P C ).(D 以上都不正确 2.随机变量X 、Y 独立,且0}1{}1{>====p Y P X P ,01}0{}0{>-====p Y P X P ,令⎩⎨⎧++=为奇数为偶数Y X Y X Z 01,要使X 与Z 独立,则P 值为( )32).(41).(21).(31).(D C B A3.二维随机变量(X ,Y )具有下述联合概率密度,X 与Y 是相互独立的,为( )⎪⎩⎪⎨⎧≤≤≤≤+=其它20,103),().(2y x xyx y x f A⎩⎨⎧<<<<=其它010,106),().(2y x y x y x f B⎪⎩⎪⎨⎧<<-<<=其它0,1023),().(xy x x x y x f C⎪⎩⎪⎨⎧><<=-其它,2021),().(y x ey x f D y4.设随机变量⎥⎥⎦⎤⎢⎢⎣⎡-412141101~i X (i =1,2),且满足1}0{21==X X P ,则)(}{21==X X P1).(41).(21).(0).(D C B A5.随机变量X ,Y 相互独立,)(x F X 和)(y F Y 分别是X ,Y 的分布函数,令),min(Y X Z =,则随机变量Z 的分布函数)(z F Z 为( ))}(),(min{).(z F z F A Y X )](1)][(1[1).(z F z F B Y X ---)()().(z F z F C Y X )()().(z F z F D Y X 或6.随机变量X ,Y 相互独立,且),(~211σμN X ,),(~222σμN Y ,则Y X Z +=仍具正态分布,且有( )),(~).(22211σσμ+N Z A ),(~).(2121σσμμ+N Z B ),(~).(222121σσμμ+N Z C ),(~).(222121σσμμ++N Z D三、问答题1.事件},{y Y x X ≤≤表示事件}{x X ≤与}{y Y ≤的积事件,为什么},{y Y x X P ≤≤不一定等于}{}{y Y P x X P ≤⋅≤?2.二维随机变量(X ,Y )的联合分布、边缘分布及条件分布之间存在什么样的关系?3.多维随机变量的边缘分布与一维随机变量的分布之间有什么联系与区别?4.两个随机变量相互独立的概念与两个事件相互独立是否相同?为什么?5.两个相互独立的服从正态分布的随机变量1X 与2X 之和仍是正态随机变量,那么它们的线性组合21bX aX ±呢? 四、计算题1.设二维随机变量(X ,Y )在矩形区域}10,20|),{(≤≤≤≤y x y x G 上服从均匀分布,记⎩⎨⎧>≤=YX YX U 10,⎩⎨⎧>≤=Y X Y X V 2120,求U 、V 的联合分布律2.设(X ,Y )的概率密度为 ⎪⎩⎪⎨⎧>>=+-其它0)0,0(),()43(y x Ce y x y x ϕ求(1)常数C ,(2))20,10(≤<≤<Y X P , (3)(X ,Y )的分布函数 ),(y x F3.设(X 、Y )的分布函数为)2)(arctan 2(arctan 1),(2πππ++=y x y x F ,),(+∞<<-∞y x求:(1)X ,Y 的边缘分布函数 (,)(y F x F Y X )(,)(y F x F Y X (2)X 、Y 的边缘分布密度函数 (,)(yf x f Y X )(,)(y f x f Y X4.袋中装有编号为-1,1,1,2的4个球,现从中无放回随机取球两次,每次取一个,以 21,X X 分别表示第一次和第二次取到的球的号码,求 (1)),(21X X 的联合分布律(2)关于 21,X X 和 的边缘分布律,并判别21,X X 和是否相互独立。
第2章随机变量及其分布一、选择题1.设随机变量,且满足,则满足()。
A.B.C.D.【答案】B【解析一】由。
又,从而有,可知。
而,故。
【解析二】由。
又,,当时,则有,从而。
2.设随机变量X服从参数为的指数分布,事件,则下列结论一定正确的是()。
A.A,B,C相互独立B.A,B,D相互独立C.B,C,D相互独立D.A,B,C,D两两独立【答案】B【解析】X服从参数为的指数分布,得,概率为0或1的事件与任何事件都是相互独立的。
又且与均大于零,因此,即B与C不独立,因此答案选B。
3.设随机变量和相互独立且都服从参数为的指数分布,则下列随机变量中服从参数为2的指数分布的是()。
A.B.C.D.【答案】D【解析】依题意,服从参数为的指数分布,,其分布函数为。
A项,B项,C项,D项,即服从参数为的指数分布。
4.设,为随机变量,,,则()。
A.B.C.D.【答案】D【解析】设,则,,于是。
5.对任意正整数,随机变量都满足,记的是()。
,则下列结论中一定不正确...A.B.C.D.【答案】D【解析】离散型随机变量中的几何分布与连续型随机变量中的指数分布都满足题设条件。
若服从几何分布,则P=P{X<1}=0,若服从指数分布,则P=P{X<1}=1-e-λ,且0<P<1,因此P不可能是1,即P=1一定不成立。
6.设随机变量独立同分布,其分布函数为,则随机变量的分布函数为()。
A.B.C.D.【答案】B【解析】7.假设随机变量X的密度函数f(x)是偶函数,其分布函数为F(x),则()。
A.F(x)是偶函数B.F(x)是奇函数C.F(x)+F(-x)=1D.2F(x)-F(-x)=1【答案】C【解析】AB两项,由于F(x)是单调不减的非负函数,所以不成立。
CD两项,已知f(x)是偶函数,因此有,则=1。
1。
8.假设随机变量X的分布函数为F(x),概率密度函数f(x)=af1(x)+bf2(x),其中f1(x)是正态分布N(0,σ2)的密度函数,f2(x)是参数为的指数分布的密度函数,已知,则()。
第2章 随机变量及其分布 习题 2 1.设有函数
其它,,0,0,sin)(xxxF
试说明)(xF能否是某随机变量的分布函数。 解: 不能,易知对21xx,有: ),()(}1{}{}{12221xFxFxXPxXPxXxP 又)()(,0}{1221xFxFxXxP,因此)(xF在定义域内必为单调递增函数。 然而)(xF在),0(上不是单调递增函数,所以不是某随机变量的分布函数。
2.-筐中装有7只蓝球,编号为1,2.3,4,5,6,7。在筐中同时取3只,以X表示取出的3只当中的最大号码,写出随机变量X的分布列。 解:X的可能值为3,4,5,6,7。在7只篮球中任取3个共有37C种取法。 }3{X表示取出的3只篮球以3为最大值,其余两个数是1,2,仅有这一种情
况,故3515673211)3(37CXP
}4{X表示取出的3只篮球以4为最大值,其余两个数可以在1,2,3中任取
两个,共有23C种取法,故
35356732113)4(3723CCXP。
}5{X表示取出的3只篮球以5为最大值,其余两个数可在1,2,3,4中任取
2个,共有24C种取法,故
3565673212134)5(3724CCXP,
}6{X表示取出的3只篮球以6为最大值,其余两个数可在1,2,3,4,5中任取2个,共有25C种取法,故 35105673212145)6(3725CCXP,
}7{X表示取出的3只篮球以7为最大值,其余两个数可在1,2,3,4,5,6
中任取2个,共有26C种取法,故
35155673212156)7(3726CCXP
。
3. 设X服从)10(分布,其分布列为,)1(}{1kkppkXP,1,0k 求X的分布函数,并作出其图形。 解:X服从(0-1)分布,其分布律为: X 0 1 P p1 p
当0x时,0}{)(xXPXF 当10x时,pXPxXPXF1}0{}{)(
当1x时,,1)1(}1{}0{}{)(ppXPXPxXPXF 即有:
1100,1,1,0)(xxxpXF (没有图。。。) 4.将一颗骰子抛掷两次,以X表示两次所得点数之和,以Y表示两次中得到的小的点数,试分别求X与Y的分布列。 解 以21XX分别记第一次,第二次投掷时的点数,样本空间为 }6...,21;6...,21|)({2121,,,,XXXXS 个样本点共有3666 12,11,10,9,8,7,6,5,4,3,221所有可能的取值为XXX 12)66(11)56(),65(10)46(),55(),64(9)36(),45(),54(),63(8)26(),35(),44(),53(),62(7)16(),25(),34(),43(),52(),61(6)15(),24(),33(),42(),51(5)14(),23(),32(),41(4)13(),22(),31(3)12(),21(2)11(),(21取,取,,取,,,取,,,,取,,,,,取,,,,,,取,,,,,取,,,,取,,,取,,取,分别为:易知当XXXXXXXXXXXXX 故X的分布列如下: Y的取值为1,2,3,4,5,6 Y的分布列为:
5.试求下列分布列中的待定系数k (1)3,2,1,4}{~..mmkmPvr
(2)3,2,1,34}{~..mkmPvrm
(3)0,,2,1,0,!}{~..mmkmPvrm为常数。 解:(1)由分布列的性质有
6114342411kkkk,
所以 。116k (2)由分布列的性质有 kkmP2)3131(4}{121
,
X 2 3 4 5 6 7 8 9 10 11 12 P 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 1/35 1/36
Y 1 2 3 4 5 6 P 11/36 9/36 7/36 5/36 3/36 1/36 所以 21k。 或解 由
...,3,2,1,34)31(34)(1mkkmPmm
所以服从几何分布,
故有
21,31134kk。
(3)由分布列的性质有 kemkmkmPmmmmm000!!}{1
,
所以ek。
6.进行重复独立试验,设每次试验成功的概率为p失败的概率为)10(1ppq。
(1)将试验进行到出现一次成功为止,以X表示所需的试验次数,求X的分布列。(此时称X服从以p为参数的几何分布。) (2)将试验进行到出现r次成功为止,以X表示所需的试验次数,求X的分布列。(此时称X服从以r,p为参数的巴斯卡分布。) (3)一篮球运动员的投篮命中率为45%。以X表示他首次投中时累汁已投篮的次数,写出X的分布列,并计算X取偶数的概率。 解(1)此试验至少做一次,此即X可能值的最小值。若需做k次,则前k-1次试验均失败最后一次成功,由于各次试验是相互独立的,故分布律为 ,...3,2,1,)1(}k{11kpppqXPkk。
(1)此试验至少做r次,若需做k次,则第k次比为成功,而前k-1次中有r-1次成功,由于各次试验是相互独立的,故分布律为
,...1,,)11(}{rrkqprkkXPrkr。
(2)先写出X的分布律。它是题(1)中p=0.45的情形。所求的分布律为 ,...2,1,)55.0(45.0}{1kkXPk。因),(}{}{kjkXjX故X取偶数的
概率为311155.0155.045.0)55.0(45.0}2{)}2({211211kkkkkXPkXPU.
7.有甲、乙两个口袋,两袋分别装有3个白球和2个黑球。现从甲袋中任取一球放入乙袋,再从乙袋任取4个球,求从乙袋中取出的4个球中包含的黑球数X的分布列。 解:分为以下两种情况,即从甲袋中取一球放入乙袋,取出的球为白球的概率为53,
黑球为52。 (1)假设取出的是白球,乙袋此时为4白球2黑球。从中取出4球,黑球数可为0,1,2,概率如下
151)0(460244CCCXP,
158)1(461234CCCXP,
156)2(462224CCCXP.
(2)假设取出的是黑球,乙袋此时为3白球3黑球,从中取出4球,黑球数可为1,2,3.概率如下
153)1(461333CCCXP,
159)2(462323CCCXP,
153)3(463313CCCXP.
综合以上两种情况,又已知从甲袋取出为白球的概率为53,黑球是52.所以
25215352)3(25121595215653)2(25101535215853)1(25115153)0(XP
XP
XPXP
分布列为 X 0 1 2 3
kP 251 2510 2512 25
2 8. 设X服从Poisson 分布,且已知}2{}1{XPXP,求}4{XP。 解:由于),(~X即X的分布律为,...,2,1,0,!}k{kekXPk 于是有,2}2{,}1{2eXPeXP由条件},2{}1{XPXP可得方程,22ee 解得0.2(舍去) 所以),2(~X于是0902.0e!42}4{2-4XP(查
表)。 9.一大楼装有5套同类型的空调系统,调查表明在任一时刻t每套系统被使用的概率
为0.1,问在同一时刻 (1)恰有2套系统被使用的概率是多少? (2)至少有3套系统被使用的概率是多少? (3)至多有3套系统被使用的概率是多少? (4)至少有1套系统被使用的概率是多少? 解: 以X表示同一时刻被使用的设备的个数,则 )1.0,5(~bX。
(3)所求的概率为
0729.0)1.01(1.0)25(}2{32XP。
(4)所求的概率为 }5{}4{}3{}3{XPXPXPXP
54231.0)1.01(1.0)45()1.01(1.0)35(
00856.000001.000045.00081.0 (5)所求的概率为
99954.000001.000045.01}5{}4{1}3{XPXPXP
(6)所求的概率为 40951.0)1.01(1}0{1}1{5XPXP
10. 在纺织厂里一个女工照顾800个纱锭。每个纱锭旋转时,由于偶然的原因,纱会被扯断。设在某段时间内每个纱锭上的纱被扯断的概率是0.005,求在这段时间内断纱次数不大于10的概率。