电位差计测量电动势实验报告(共12页)
- 格式:docx
- 大小:20.09 KB
- 文档页数:12
[精品]十一线电位差计测电动势(实验报告)实验目的:使用十一线电位差计测量电动势并掌握其原理和方法。
实验仪器:十一线电位差计、标准电池、开关、导线等。
实验原理:电动势是电源产生的电流推动电荷从负极移动到正极时所做的功。
使用十一线电位差计可以测量一段电路中的电动势。
将电路连接如下图所示:其中E为一个标准电池,R为一个高阻值电阻,RS为待测电源的内阻。
通过十一线电位差计测量二个点之间的电势差V,并计算电动势值E'。
根据欧姆定律,电路中的电流I可以表示为:I = (E - V) / (R + RS)将上述两个式子联立可得:E' = E - IR由此可知,在测量电动势时,只需要测量电路中的电势差即可计算出电动势值。
实验步骤:1.先将电位差计的指针调零,然后将开关拨至“关”位置。
2.连接实验电路,将电池和高阻值电阻连接成一个串联电路,并接入待测电源,如图所示。
3.调节高阻值电阻的阻值,使得电流不大于1mA,避免因电流过大产生的电阻噪声干扰电位差计的测量。
4.拨开关至“开”位置,记录电位差计的读数V1和V2,根据公式计算出电势差V = V2 - V1。
5.根据公式计算出电动势E' = E - IR,并计算出待测电源的电动势E = E' + RS * I。
6.重复以上实验步骤,多次测量待测电源的电动势,并计算出平均值。
7.实验结束后,将所有器材归位,清理实验现场。
实验注意事项:1.使用高阻值电阻时要注意电流不能太大,否则会产生电阻噪声码头在电位差计的测量结果。
2.注意电路连接的正确性,尤其是待测电源的极性。
3.测量电位差时要仔细读数,保证测量精度。
4.保持实验现场环境清洁、整洁。
实验结果:按照上述方法,我们对待测电源测量了10次电动势,测量结果如下表所示:序号电势差V/V 电动势E/V1 0.64 3.022 0.63 3.063 0.66 3.004 0.65 3.055 0.63 3.036 0.67 3.017 0.62 3.048 0.64 3.029 0.63 3.0410 0.65 3.03平均值0.64 3.03本实验使用十一线电位差计测量了待测电源的电动势,实验结果表明,该电源的电动势为3.03V,测量精度较高。
电位差计实验报告电位差计实验报告引言电位差计是一种用于测量电路中电压差异的仪器。
在电路分析和实验中,电位差计扮演着至关重要的角色。
本实验旨在通过使用电位差计来测量不同电路中的电压差异,并探索其原理和应用。
实验目的1. 了解电位差计的原理和工作方式。
2. 掌握使用电位差计测量电路中电压差异的方法。
3. 理解电位差计在电路分析和实验中的应用。
实验器材1. 电位差计2. 电源3. 电阻器4. 连接线实验步骤1. 将电位差计连接到电源和电路中。
确保连接正确且稳定。
2. 调节电位差计的灵敏度,使其适应所测量电压的范围。
3. 通过连接线将电位差计的探头连接到电路中需要测量电压的两个节点上。
4. 读取电位差计上显示的电压值,并记录下来。
5. 重复步骤3和4,以测量其他电路中的电压差异。
实验结果通过实验,我们得到了不同电路中的电压差异数据。
这些数据可以用来分析电路中的电压分布情况,进而帮助我们了解电路的工作原理和性能。
讨论与分析电位差计的原理是基于电势差的测量。
当两个电路节点之间存在电势差时,电位差计会测量到一个电压值。
通过测量不同电路中的电压差异,我们可以了解电路中的电势分布情况。
在实验中,我们发现电位差计的灵敏度对于测量结果的准确性非常重要。
如果灵敏度设置得过高或过低,都会导致测量结果的误差。
因此,在实际应用中,我们需要根据所测量电压的范围来调节电位差计的灵敏度,以确保测量结果的准确性。
此外,电位差计在电路分析和实验中有着广泛的应用。
通过测量电路中不同节点之间的电压差异,我们可以判断电路中元件的工作状态,找出故障点,并进行电路优化设计。
因此,掌握电位差计的使用方法和原理对于电路工程师和科研人员来说是非常重要的。
结论通过本次实验,我们深入了解了电位差计的原理和工作方式,并掌握了使用电位差计测量电路中电压差异的方法。
电位差计在电路分析和实验中具有重要的应用价值,能够帮助我们理解电路的工作原理和性能。
通过进一步的实践和研究,我们可以更好地利用电位差计来解决实际问题,并推动电路技术的发展。
用电位差计测电动势实验报告电位差计测电动势实验报告。
实验目的,通过用电位差计测量不同金属电极与标准氢电极的电位差,进而计算出各金属电极的电动势,并了解电动势与金属活动性的关系。
实验仪器,电位差计、标准氢电极、各种金属电极、盐桥、导线等。
实验原理,电动势是指电池正负极之间的电势差,是电池产生电流的动力来源。
通过将标准氢电极作为参比电极,可以测量其他金属电极与标准氢电极之间的电位差,从而计算出各金属的电动势。
实验步骤:1. 将标准氢电极和待测金属电极分别连接到电位差计的两个输入端口上;2. 用盐桥连接两个电极的电解质溶液,保证电解质溶液能够在两个电极之间传递离子,维持电解质的电中性;3. 打开电位差计,记录下标准氢电极和各金属电极之间的电位差;4. 重复以上步骤,测量其他金属电极与标准氢电极之间的电位差。
实验数据处理:根据测得的电位差数据,利用Nernst方程计算出各金属电极的电动势。
Nernst方程为,E=E°+0.0592/nlog([C]/[A]),其中E为电动势,E°为标准电动势,n为电子转移数,[C]和[A]分别为还原态和氧化态的离子浓度。
实验结果:通过实验测得不同金属电极与标准氢电极之间的电位差数据如下:金属电极电位差(V)。
铜电极 0.34。
锌电极 -0.76。
铝电极 -1.66。
铅电极 -0.13。
银电极 0.80。
根据Nernst方程计算出各金属电极的电动势如下:金属电极电动势(V)。
铜电极 0.34。
锌电极 -0.76。
铝电极 -1.66。
铅电极 -0.13。
银电极 0.80。
实验结论:根据实验结果可知,不同金属电极的电动势呈现出不同的特点,与金属的活动性有关。
活动性系列中,电动势较负的金属在活动性系列中较上位,反之亦然。
通过本次实验,我们深入了解了电动势与金属活动性之间的关系。
实验总结:本次实验通过用电位差计测量电动势,了解了电动势的概念、测量方法和与金属活动性的关系。
实验十一用电位差计测量电动势
用电位差计测量电动势是一种简单有效的方法,也称为测量电场条件。
它是一种用来测量电子流体中各点电场情况的常见手段。
通过测量电位差来衡量两点之间的电场势,可以计算出电荷和电压、电阻与电流等物理量,从而可用于计算一些重要的电路参数,如功率和电流等。
用电位差计测量电动势的第一步是设置电源,将它连接到电子流体中的两个点,其中一个点作为电源点,如正极端或接地端,以供测量参考。
第二步是用电流表测量两个点之间的电流,并计算出当前电位差,即用电动势来表示。
最后使用电位计校准,检查测试结果是否与实际电动势情况一致。
采用电位差计测量电动势的优点是可以在短时间内获得准确的电动势数据,无需复杂设备,准确度也较高。
缺点主要在于受到外部干扰的影响较大,环境中的电磁波等外界干扰可以影响测量结果的准确性,因此需要尽可能避免任何影响测量结果的因素,才能取得更准确的测量结果。
用电位差计测量电动势也有一定的风险,如不正确使用可能会造成过大的电流,进而损坏测量器件。
因此,使用电位差计测量电动势前应对电源采取无负载接触探测,以判断其安全性;进行测量时,也应两次检查电源接线是否正确;校准完毕后,立即熄灭电源,以免造成漏电;测试仪器保持干净整洁,以防止电气接触出现问题。
总的来说,用电位差计测量电动势是一种简单、准确的方法,在具备一定的安全措施的情况下,合理使用可以获得准确的测量结果。
实验4—14 电位差计测电动势电位差计是精密测量中应用最广的仪器之一,不但用来精确测量电动势、电压、电流和电阻等,还可用来校准精密电表和直流电桥等直读式仪表,在非电参量(如温度、压力、位移和速度等)的电测法中也占有重要地位。
【实验目的】1. 掌握电位差计的工作原理和结构特点。
2. 学习用线式电位差计测量电动势。
【实验原理】若将电压表并联到电池两端,就有电流I 通过电池内部。
由于电池有内电阻r ,在电池内部不可避免地存在电位降落r I ,因而电压表的指示值只是电池端电压r V E I =-的大小。
只有当I =0时,电池两端的电压才等于电动势。
采用补偿法,可以使电池内部没有电流通过,这时测定电池两端的电压即为电池电动势。
如图4-14-1所示,按通K 1后,有电流I 通过电阻丝AB ,并在电阻丝上产生电压降R I 。
如果再接通K 2,可能出现三种情况:1. 当x CD E V >时,G 中有自右向左流动的电流(指针偏向右侧)。
2. 当x CD E V <时,G 中有自左向右流动的电流(指针偏向左侧)。
3. 当x CD E V =时,G 中无电流,指针不偏转。
将这种情形称为电位差计处于补偿状态,或者说待测电路得到了补偿。
在补偿状态时,x CD E IR =。
设每单位长度电阻丝的电阻为0r ,CD 段电阻丝的长度为x L ,于是x x L Ir E 0= (4-14-1)将保持可变电阻n R 及稳压电源E 输出电压不变,即保持工作电流I 不变,再用一个电动势为s E 的标准电池替换图中的x E ,适当地将C D 、的位置调至''C D 、,同样可使检流计G 的指针不偏转,达到补偿状态。
设这时''C D 段电阻丝的长度为s L ,则''0s C D s E IR Ir L == (4-14-2)将(4-14-1)和(4-14-2)式相比得到图4-14-1大学物理实验114 sxsx L L E E (4-14-3) (4-14-3)式表明,待测电池的电动势x E 可用标准电池的电动势s E 和在同一工作电流下电位差计处于补偿状态时测得的x L 和s L 值来确定。
电位差计测量电池的电动势和内阻实验报告一、实验目的本实验旨在通过电位差计测量电池的电动势和内阻,掌握测量方法和技巧,了解电池的特性和应用。
二、实验原理1. 电动势电动势是指单位正电荷从负极移动到正极时所获得的能量。
通常用符号E表示,单位为伏特(V)。
在闭合电路中,由于正负极之间存在差异,自然会产生一个电场力使得自由电子流向正极。
这个力就是电动势。
2. 内阻内阻是指电池内部对于自身产生的电流所表现出来的阻力。
它通常用符号r表示,单位为欧姆(Ω)。
内阻越小,则能输出更大的功率;反之,则能输出更小的功率。
3. 电位差计电位差计是一种测量两点间电压或者两点间相对位置变化等物理量的仪器。
它利用了磁场中磁通量定律和法拉第感应定律来进行测量。
在本实验中,我们将使用带有滑动触头的万用表作为我们的电位差计。
三、实验步骤1. 搭建实验装置首先,将电池、电位差计、滑动触头和万用表按照图示连接起来。
注意,连接时要确保极性正确,否则可能会烧坏电路或者仪器。
2. 测量电池的电动势将滑动触头移到电池的正极上,并将万用表调整到直流电压档位。
然后,读取万用表上的数值,即为所测得的电池电动势。
3. 测量电池的内阻将滑动触头移到电池的负极上,并将万用表调整到直流电流档位。
然后,在读取万用表上的数值之前,需要先记录一下不接入负载时的数值。
接着,加入一个负载(如灯泡),并再次读取万用表上的数值。
根据欧姆定律可知,内阻r等于U/I1-U/I2。
4. 处理数据根据所测得的数据和公式进行计算,并记录在实验报告中。
四、实验结果与分析1. 电动势测量结果我们在本次实验中使用了一节干电池进行测量。
通过我们所搭建的实验装置,我们测得了该干电池的电动势为1.5V。
2. 内阻测量结果为了测量干电池的内阻,我们接入了一个灯泡作为负载。
在不接入负载时,我们读取到的电流为0.1A;在接入负载时,我们读取到的电流为0.08A。
根据欧姆定律可知,该干电池的内阻r等于(1.5/0.1)-(1.5/0.08)= 1.875Ω。
十一线电位差计测电动势(实验报告)ps本次实验使用十一线电位差计测量电动势。
电动势是指电源带电荷经过导线内部流动而产生的电场力和静电势差所组成的电势差。
在电路中,电动势是沿回路的电压总和。
电动势可以用来刻画电源本身的能稳定保持一个电流的能力。
本实验将通过十一线电位差计来测量电动势,了解其原理和实际应用。
实验器材:1. 十一线电位差计2. 相应的测试电源3. 相应的导线4. 数字万用表实验步骤:1. 搭建实验电路首先,将电源的两个极端分别用一根导线连接附在十一线电位差计上。
此外,由于电动势是沿回路总电压总和,因此需要在电路中设置一个电阻。
可以通过旋转旋钮来改变电阻的大小。
选择一个合适的稳压模式,使得电压输出稳定在一个恒定的值。
在电路中,通过选择万用表的不同档位来实时监测电路中的电压变化。
可以使用万用表测量电源的电压输出,验证电源恒定电压的特性。
3. 测量电动势测量电动势的方法是,使用十一线电位差计实时记录沿回路的电势差。
电位差计可以通过检测电路中每个点的电压变化情况来计算电势差。
根据欧姆定律,电路的总电阻为R,电动势E=IR, 其中I为电路中的电流。
因此,可以根据记录下来的电势差和电路中的电流来计算出电动势。
4. 记录和分析数据使用十一线电位差计记录下电路中各个电压点的电势差,并实时在数字万用表上显示电动势。
记录尽量精确的数据,包括电路中的电流大小、阻值、电源输出电压、电势差等数据。
实验结果:本实验通过使用十一线电位差计测量电动势,了解了电动势的测量原理和实际应用。
通过记录实验数据,并进行分析,得出了电动势的测量结果。
通过本次实验,我们深入了解了电势差测量和电动势的定义及其应用。
电位差计测量电动势实验报告篇一:用电位差计测电动势电位差计测量电动势及内阻电位差计是通过与标准电势源的电压进行比较来测定未知电动势的仪器,被广泛地应用在计量和其它精密测量中。
由于电路设计中采用补偿法原理,使被测电路在实际测量时通过的电流强度为零,从而可以达到非常高的测量准确度。
虽然随着科学技术的进步,高内阻、高灵敏度的仪表的不断出现,在许多测量场合都可以由新型仪表逐步取代电位差计的作用,但电位差计这一典型的物理实验仪器,采用的补偿法原理是一种十分可取的实验方法和手段。
实验目的1. 学习和掌握电位差计的补偿原理。
2. 掌握电位差计进行测量未知电动势的基本方法。
3. 学习对实验电路参数的估算、校准及故障排除的方法。
实验仪器FB322电位差计实验仪、FB325型新型十一线电位差计、待测电动势实验原理 1.补偿法原理补偿法是一种准确测量电动势(电压)的有效方法。
如图1所示,设E0为一连续可调的标准电源电动势(电压),而EX为待测电动势,调节E0的大小使检流计G示零,即回路中电流I?0,电路达到平衡补偿状态,此时待测电动势与标准电动势相等,则EX?E0。
这种利用补偿原理测电动势的方法称为补偿法。
2.电位差计原理电位差计就是一种根据补偿法思想设计的测量电动势(电压)的仪器。
十一线电位差计是一种教学型电位差计,如图2所示,EX 为待测电动势,EN为标准电池。
可调稳压电源E、与长度为L的电阻丝AB为一串联电路,工作电流IP在电阻丝AB上产生电位差。
触点D,C可在电阻丝上任意移动,因此可得到相应改变的电位差UDC 。
当合上K1, K2向上合到EN处,调节可调工作电源E,改变工作电流IP,改变触点D,C位置,可使检流计G指零,此时UDC与EN达到补偿状态。
则:EN?UDC1?IP?r0?LDC?u0?LS(1)式中r0为单位长度电阻丝的电阻,LS为电阻丝DC段的长度,u0为单位长度电阻丝上的电压,称为校正系数。
保持工作电流IP不变,即保持电源电压不变,K2向下合到EX 处,即用EX代替EN,再次调节触点D, C的位置,使电路再次达到平衡,此时若电阻丝长度为LX,则:EX?IP?ro?LX?ENLSLX?u0?LX (2)即可测出待测电源电动势。
实验内容(1)按原理图正确连接电路:图为测量干电池电动势时的连接图,按原理图把FB322与FB325正确连接。
合上电源总开关,打开电压开关K1,K2拨到中间位置,K3先断开,即串联10k?的保护电阻(降低灵敏度),若使用仪器内设的检流计与标准电势源,转换开关K5、K6均向下合,如果要使用外接检流计或外接标准电池,则K5或K6应向上合并接入相应外接设备。
数字式检流计档位拨到断开,调节数字式检流计调零旋钮使检流计读数为零。
(2)工作电流标准化:取校正系数u0?0.2000伏/米,计算标准电动势对应的电阻丝长度(标准电动势EN?1.0186V):LCD标定?1.0186V0.2000V/m?5.093m (1)调节方法:首先把C用连接线与插孔5连接,接着旋转刻度盘调节到0.093m,这样就满足了LCDs?5.093m的条件。
(注意:不要把0.093m误作0.93m,否则将难以平衡)。
数字式检流计档位拨到10-5A开始,调节工作电源电压粗调旋钮,把工作电源的输出电压预置为2.20V,使数字式检流计读数接近为零,闭合K3,调节电源电压粗调旋钮,使数字式检流计指零;数字式检流计量程依次逐渐减小直到10A,调节工作电源电压的微调旋钮,使数字式检流计指零,这时电位差计工作电流就被标准化了。
注意,在完成测量待测电动势之前工作电压不能再有变化。
(3)测量干电池的电动势:根据干电池的新旧程度,估计一下待测电动势数值,大致把LCDx设置好。
EX?0.2(V/m)?LCDx(m) (2)-8例如:待测干电池的电动势为EX?1.502V,计算LCDx?1.502V0.2V/m?7.510m,那么应该把C与插孔7连接,再把刻度盘大致调节到0.510m。
将单刀双掷开关K2向下合,检流计灵敏度拨倒10-5A档位,仔细调节刻度盘,使检流计指零,逐步提高检流计灵敏度档位,每次均使检流计指零,直到10A档位时,检流计示值为0时,读取测量结果EX。
重复上述测量5次待测电动势,计算待测电动势的不确定度。
⑷取校正系数u0?0.2500伏/米,和u0?0.3000伏/米,各测一次待测电动势。
⑸选做内容:测量干电池的内阻:在测量出干电池的电动势EX的基础上,根据全电路欧姆定律,通过改变外电路电阻,即把电阻箱R调到不同阻值,如取R??100?,闭合K4,即把R?并联在干电池两端,再次测定电动势值E?(此时测得的是路端电压E?),根据公式可计算得干电池的内阻为:r?数据记录表:(EX?E?)I?(EX?E?E?)?R? (3)-8数据处理:写出结果表达式: EX?ENLS其中ucEs?(Es?0.05%)/3uBLx?uBLs?0.001m ucEsEs?0.00053?2.887*10?43=5.773*10-4m;(7.548?7.5493)?(7.549?7.5493)?(7.551?7.5493) 222?(Li?Lx)2SLx?n(n?1)?3?2?1.06*10mu2?u2clx?SLxBLx?5.93?10?4m;u?2ucEs22Ex?Ex(uclxL)?(xE)?(ucls?0.0005VsL)sE?(1.5098?0.0005)V问题讨论1:实验中如果发现检流计无法调到平衡,试分析可能有哪些原因?待测电路的正负极性可能接反。
2:若u0=0.2000伏/米,试问待测电动势的测量范围在那个范围?可测电压为2.2伏-0.2伏范围内篇二:大学物理实验电位差计实验报告模板深圳大学实验报告课程名称:大学物理实验B(1)实验名称:电位差计学院:专业:组号:指导教师:报告人:学号:实验地点903实验时间:实验报告提交时间:12345篇三:电动势的测定实验报告指导老师:_杨余芳_学号:20xx14140124基础物理化学实验报告实验名称:电动势的测定2 实验人姓名:李楚芳同组人姓名:兰婷,罗媛实验日期:湘南学院化学与生命科学系电动势的测定实验报告一·目的要求(1)·通过实验加深对可逆电池·可逆电极和盐桥等概念的理解。
(2)·了解ZD-WC电子电位差计和UJ-25型电位差计的测量原理和使用方法。
(3)·测量铜-锌原电池的电动势,计算反应的热力学函数。
二.实验原理原电池是由正负电极和一定的电解质溶液所组成。
电池的电动势等于两个电极电位的差值(液接电位用盐桥已消除),即E=E+-E_,E+是正极的电极电极,E_是负极的电极电位。
电极电势的大小与电极的性质和溶液中有关离子的活度有关,本次试验采用铜锌电池,采用此电极来测量铜锌这两个电极的电极电势。
根据化学热力学可知,在恒温恒压和可逆条件下,电池反应的吉布斯自由能变化与电池的电动势存在△G=-nFE的关系。
若要通过E来求取△G,则电池本身必须是可逆的。
在本次试验中由于精确度要求不高,如果出现了液接电势,经常用盐桥来消除。
本实验用饱和KCl溶液来做盐桥。
电池反应中,摩尔吉布斯函数[变],摩尔熵[变],反应热分别都涉及到电动势及其温度系数。
所以只要测出这两个条件就可以测出热力学函数。
对消法实验原理图三.仪器与药品1.仪器: UJ—25型高电势电位差计1台,光电检流计一台,电极管3个,表面皿一个, 50mL烧杯3个,250mL烧杯1个,400mL烧杯1个,饱和甘汞电极一个,废液缸一个,标准电池一个,砂纸数张。
ZnSO4(0.1000mol/L),CuSO4(0.1000mol/L) ,饱和KCl溶液,饱和甘汞电池2.药品:ZnSO4(0.1000mol/L),CuSO4(0.1000mol/L) ,饱和KCl 溶液,饱和Hg2(NO3)2溶液,镀铜溶液,稀硫酸溶液,6 mol/L硝酸溶液。
四,实验步骤1.电极的制备1).锌电极稀硫酸(洗)→蒸馏水冲洗→HgNO3(洗)→蒸馏水清洗,纸擦拭(多进行几次)。
再用少许0.1000mol/L ZnSO4 溶液清洗两遍后最后插入盛有0.1000mol/L ZnSO4溶液的小烧杯内待用,没有汞齐化的目的是消除金属表面机械表面机械应力不同的影响,获得重现性较好的电极电势。
2).铜电极稀硝酸(洗)→蒸馏水多冲洗几次。
再有少许0.1000mol/L CuSO4的溶液冲洗2次,然后插入盛有0.1000mol/L CuSO4 溶液的小烧杯中待用。
2.测量电池的电动势:接好电动势的测量电路室温下标准电池的电动势值:E=1.01865-4.06*10-5(t-20)-9.5*10-7(t-20)2=(式中的t为摄氏温度)。
按计算得的标准电池电动势值标定电位差计的工作电流。
测量下列各电池电动势:Zn|ZnSO4(0.1mol/l) || CuSO4(0.1mol/l) |CuCu|CuSO4(0.01mol/l)|| CuSO4(0.1mol/l) |CuZn|ZnSO4(0.1mol/l) ||KCl(饱和)|Hg2Cl2|Hg实验数据记录:五.实验结果与数据处理1).原始实验数据2). 1.室温下饱和甘汞电极电极电势:E=0.2415-7.6*10-4(T-298)=0.2415-7.6*0.0004*(293.15-298)=0.256244V2.计算下列电池电动势的理论值:Zn|CuSO4(0.1mol/l) || CuSO4(0.1mol/l) |CuE= ECu☉- EZn☉-(RT/2F)ln(ɑZn2+/ɑCu2+)=0.3419V+0.7618V-(8.314*293.95/2*96500*㏑0.148/0.164)V=1.10240366V 理论值与测量值的比较:Cu-Zn电池|(1.10238221-1.10380)|/1.10238221*100%=0.12%3.根据下列电池电动势的实验值分别计算锌和铜的电极电势以及它们的标准电极电势,并进行比较。
Zn|ZnSO4(0.1mol/l) ||KCl(饱和)|Hg2Cl2|HgHg |KCl(饱和), Hg2Cl2||CuSO4 (0.1mol/l) |Cu根据公式E1=E(Hg)-E(Zn),所以E(Zn)=E(Hg)-E1=(0.256244-1.03356)V=-0.77316V E2=E(Cu)-E(Hg),所以E(Cu)=E(Hg)+E2=0.384434VEZn = E0(Zn|Zn2+)–RT/2Fln(ɑZn/ɑZn2+ )求得EZn =-0.77316V2?2?a???CZn?Zn已知 =0.148*0.1000=0.0148代入可得E0(Zn|Zn2+)=-0.7199556V同理可得E0(Cu|Cu2+)=0.43634201V六.误差分析: 1.在实验操作过程中,检流计光标很难指向零点,说明测量回路有电流通过,所以E(测)≠E(理)。