数与代数初中知识点梳理
- 格式:docx
- 大小:37.44 KB
- 文档页数:2
数学知识点初中总结万唯一、数与代数1. 整数和有理数- 整数包括正整数、零和负整数,它们是实数的一个子集。
- 有理数是由整数和分数构成的数集,可以表示为两个整数的比,形式为a/b,其中a和b是整数,b不等于零。
2. 无理数和实数- 无理数是不能表示为分数的实数,例如圆周率π和黄金比例φ。
- 实数是包括有理数和无理数的数集,可以表示所有可能的数值。
3. 代数表达式- 代数表达式是由数字、字母(代表变量)和运算符(加、减、乘、除)组成的式子。
- 单项式和多项式是代数表达式的两种类型,其中多项式可以进一步分解为单项式的和或差。
4. 方程与不等式- 方程是两个表达式通过等号连接的式子,求解方程就是找到使得等式成立的变量值。
- 不等式表示两个表达式之间的大小关系,可以用符号>、<、≥、≤表示。
5. 函数- 函数是一种特殊的关系,每个输入值(自变量)对应一个确定的输出值(因变量)。
- 函数可以用公式、表格或图形表示,其中图形表示可以直观地展示函数的性质。
二、几何1. 平面几何- 平面几何研究二维空间中的图形,包括点、线、面的基本性质。
- 直线、射线和线段是线的基本类型,它们具有不同的特性和定义。
- 角是由两条射线共享一个端点形成的图形,根据大小可以分为锐角、直角和钝角。
2. 三角形- 三角形是三条线段在平面上围成的图形,根据边和角的性质可以分为等边、等腰和直角三角形。
- 三角形的性质包括内角和定理、海伦公式等。
3. 圆- 圆是由所有与给定点(圆心)距离相等的点组成的平面图形。
- 圆的性质包括圆周率、直径、半径、弦、弧等。
4. 立体几何- 立体几何研究三维空间中的图形,包括多面体和旋转体。
- 常见的多面体有正方体、长方体、棱锥、棱柱等。
- 旋转体如圆柱、圆锥和球体,它们由平面图形旋转而成。
5. 坐标几何- 坐标几何使用坐标系来研究几何图形,通过点的坐标可以计算距离、斜率等。
- 直线和圆的方程可以在坐标系中表示,便于分析和解决几何问题。
初中数学知识点整理一、数与代数。
1. 有理数。
- 有理数的概念:整数和分数统称为有理数。
整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。
- 数轴:规定了原点、正方向和单位长度的直线叫做数轴。
任何有理数都可以用数轴上的点来表示。
- 相反数:绝对值相等,符号相反的两个数互为相反数。
0的相反数是0。
- 绝对值:一个数在数轴上所对应的点与原点的距离,叫做这个数的绝对值。
正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
- 有理数的运算。
- 加法:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数。
- 减法:减去一个数,等于加上这个数的相反数。
- 乘法:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘都得0。
- 除法:除以一个不等于0的数,等于乘以这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数都得0。
- 乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
a的n次方中,a叫做底数,n叫做指数。
- 有理数的混合运算顺序:先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的。
2. 实数。
- 无理数:无限不循环小数叫做无理数。
如√(2)、π等。
- 实数的概念:有理数和无理数统称为实数。
- 实数与数轴:每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是一一对应的。
- 实数的运算:实数的运算顺序和有理数的运算顺序相同,在进行实数运算时,有理数的运算律和运算法则同样适用。
3. 代数式。
- 代数式的概念:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式。
单独的一个数或者一个字母也是代数式。
- 代数式的值:用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果叫做代数式的值。
数与代数知识点整理一、数的认识。
1. 整数。
- 自然数:像0、1、2、3……这样的数叫自然数,最小的自然数是0,没有最大的自然数。
自然数包括0和正整数。
- 整数的数位顺序表:从右到左依次是个位、十位、百位、千位、万位……计数单位分别是一(个)、十、百、千、万……每相邻两个计数单位间的进率都是10。
例如,10个一是十,10个十是一百。
- 整数的读法和写法。
- 读法:从高位到低位,一级一级地读,每一级末尾的0都不读出来,其他数位连续几个0都只读一个零。
如3005读作三千零五。
- 写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。
- 整数的大小比较:先看位数,位数多的数大;如果位数相同,从最高位比起,相同数位上的数大的那个数就大。
例如,5678>3456,89>78。
2. 小数。
- 小数的意义:把整数“1”平均分成10份、100份、1000份……这样的一份或几份是十分之几、百分之几、千分之几……可以用小数表示。
例如,0.3表示十分之三。
- 小数的数位顺序表:小数点右边第一位是十分位,计数单位是0.1;第二位是百分位,计数单位是0.01;第三位是千分位,计数单位是0.001……- 小数的读法和写法。
- 读法:整数部分按照整数的读法来读,小数点读作“点”,小数部分顺次读出每一位上的数字。
如3.25读作三点二五。
- 写法:整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。
- 小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
如3.2 = 3.20。
- 小数的大小比较:先比较整数部分,整数部分大的数大;如果整数部分相同,再比较十分位,十分位上数大的数大;如果十分位相同,再比较百分位……以此类推。
例如,3.56>3.28。
3. 分数。
- 分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。
例如,把一个蛋糕看作单位“1”,平均分成4份,其中的1份就是(1)/(4)。
浙江初中数学知识点总结一、数与代数1. 有理数- 有理数的定义与分类:整数、分数、正有理数、负有理数、零。
- 有理数的运算:加法、减法、乘法、除法、乘方、开方。
- 有理数的性质:绝对值、相反数、倒数。
2. 整数- 整数的性质:奇数、偶数、质数、合数、最大公约数和最小公倍数。
- 整数的运算:加法、减法、乘法、除法、整除、余数。
3. 分数与小数- 分数的表示与性质:真分数、假分数、带分数、最简分数。
- 分数的运算:加减乘除、分数的通分与约分。
- 小数的表示与性质:小数点的位置、小数与分数的互化。
- 小数的运算:加减乘除、小数的近似与四舍五入。
4. 代数表达式- 代数式的概念:单项式、多项式。
- 代数式的运算:加减、乘法、除法、因式分解。
- 代数式的化简:合并同类项、分配律、结合律、交换律。
5. 一元一次方程- 方程的概念:未知数、系数、常数项。
- 方程的解法:移项、合并同类项、系数化为1。
- 方程的应用:实际问题中的一元一次方程。
6. 二元一次方程组- 方程组的概念:联立方程、未知数的个数。
- 方程组的解法:代入法、消元法、图解法。
- 方程组的应用:实际问题中的二元一次方程组。
7. 不等式与不等式组- 不等式的概念:未知数、不等号。
- 不等式的解法:移项、合并同类项、不等式的性质。
- 不等式组的解法:代入法、消元法、图解法。
8. 函数- 函数的概念:定义域、值域、函数关系式。
- 函数的性质:单调性、奇偶性、反函数。
- 常见函数:一次函数、二次函数、指数函数、对数函数。
二、几何1. 平面几何- 点、线、面的基本性质。
- 角的概念:邻角、对角、同位角、内角、外角。
- 三角形:分类、性质、内角和定理、海伦公式。
- 四边形:分类、性质、对角线定理。
- 圆的基本性质:圆心、半径、直径、弦、弧、切线。
2. 立体几何- 立体图形的基本概念:体积、表面积。
- 常见立体图形:长方体、正方体、圆柱、圆锥、球体。
- 空间图形的构造与性质:多面体、旋转体。
初中数学知识点总结浙教版一、数与代数1. 数的基本概念- 自然数、整数、有理数和无理数的定义及其性质。
- 整数的四则运算规则及其应用。
- 分数的加减乘除运算,分数的化简和比较大小。
- 代数式的基本概念,包括单项式、多项式、同类项和合并同类项。
2. 代数表达式与方程- 代数表达式的书写和简化。
- 一元一次方程、二元一次方程的解法及其应用。
- 不等式及其解集的表示,一元一次不等式和一元一次不等式组的解法。
3. 函数的初步认识- 函数的概念,函数的定义域和值域。
- 线性函数、二次函数的图像和性质。
- 函数的简单运算,包括加减乘除和复合函数。
二、几何1. 几何图形初步- 点、线、面的基本性质。
- 角的概念,包括邻角、对角、同位角等。
- 直线、射线、线段的性质和关系。
2. 平面图形- 三角形的分类和性质,包括等边三角形、等腰三角形和直角三角形。
- 四边形的分类和性质,重点是矩形、正方形、平行四边形、梯形。
- 圆的基本性质,包括圆心、半径、直径、弦、弧、切线等。
3. 几何图形的计算- 三角形、四边形和圆的面积计算公式。
- 矩形、正方形和圆的周长(或称“围长”)计算。
- 体积和表面积的计算,主要是长方体和圆柱体。
4. 几何变换- 平移、旋转和轴对称(反射)的概念及其在几何图形中的应用。
- 通过具体操作改变图形的位置和形状,理解变换的不改变性质。
三、统计与概率1. 统计- 数据的收集、整理和描述。
- 频数分布表和频数分布直方图的绘制和解读。
- 平均数、中位数和众数的概念及其计算方法。
2. 概率- 随机事件的概念和分类。
- 概率的初步认识,包括确定事件和随机事件的概率计算。
- 简单事件发生的可能性分析。
四、应用题1. 数的应用- 利用所学的数的知识解决实际问题,如购物、时间计算等。
- 利率、比例和百分数的应用。
2. 代数的应用- 一元一次方程和不等式在实际问题中的应用。
- 通过代数表达式简化和运算解决实际问题。
初中数学知识点大全一、数与代数1. 有理数- 整数与分数- 正数、负数、零- 有理数的加法、减法、乘法、除法- 绝对值- 有理数的比较2. 整数- 素数与合数- 奇数与偶数- 整数的因数与倍数- 质因数分解3. 代数表达式- 单项式与多项式- 合并同类项- 代数式的简化4. 一元一次方程- 方程的建立与解法- 解方程的应用题5. 二元一次方程组- 代入法与消元法- 方程组的解的几何意义6. 不等式与不等式组- 不等式的建立与解集- 不等式的性质- 解一元一次不等式及不等式组7. 函数- 函数的概念- 一次函数与二次函数的图像与性质 - 函数的应用二、几何1. 平面图形- 点、线、面的基本性质- 角的分类与性质- 三角形的分类与性质- 四边形的分类与性质- 圆的基本性质与圆周角2. 几何图形的计算- 面积与体积的计算公式- 相似三角形的性质与应用- 勾股定理及其应用3. 变换几何- 平移、旋转、对称- 坐标系与图形的变换三、统计与概率1. 统计- 数据的收集与整理- 频数与频率- 统计图表的绘制与解读2. 概率- 随机事件的概率- 概率的计算- 用树状图解决简单概率问题四、综合应用题1. 数列的基本概念与简单计算2. 函数与方程在实际问题中的应用3. 几何知识解决实际问题4. 统计与概率在实际生活中的应用请注意,以上内容为初中数学知识点的概览,具体的教学和学习应结合教材和实际课程标准进行。
每个知识点都需要通过大量的练习来巩固和深化理解。
教师和学生可以根据实际情况调整学习的重点和难度,以达到最佳的学习效果。
初中数学基础知识点总结归纳初中数学的基础知识点总结如下:
1. 数与代数
- 自然数、整数、有理数、无理数
- 数的运算(加减乘除)
- 数的性质(奇数偶数、质数、倍数等)
- 代数表达式的简化和展开
- 一元一次方程和一元一次不等式
- 平方根和立方根
2. 几何
- 点、线、面、角的基本概念
- 直线、射线、线段的性质
- 三角形、四边形、多边形的基本性质
- 圆的基本性质和计算
- 同位角、内错角、对顶角、平行线等概念
- 相似和全等三角形的判定条件
- 平面图形的变换(平移、旋转、对称)
- 平行线与横线、竖线(夹角、顶角)
- 斜率和截距的计算
3. 数据与统计
- 数据的收集和整理
- 表格、图表(条形图、折线图、饼图)的制作和分析
- 中心趋势(平均数、中位数、众数)的计算
- 变异趋势(极差、方差、标准差)的计算
- 概率的基本概念和计算
4. 函数
- 直线函数和比例函数的性质和图像
- 一次函数和二次函数的性质和图像
- 函数的定义域、值域和反函数
- 函数的运算(加减乘除、复合函数)
- 线性方程组的解法
这些基础知识点是初中数学学习的核心,也是后续数学知识的基础。
掌握了这些知识点,可以为进一步学习高中数学奠定扎实的基础。
整理和复习1、数与代数(一)数的认识定义:像8,16,+1,0.6,+这样的数叫做正数41正数 写法和读法:正数前面加“+”号。
如+8读作:“正八” “+”号一般可以省略不写数 定义:像-1,-10.2,-7.9,-这样的数叫做负数41负数 写法和读法:负数前面加“-”号。
如-15读作:“负十五” 数字越大负数反而越小比0小的数是负数,比0大的数是正数“0”既不是正数,也不是负数。
正整数自然数 整数 0 数 (小数是特殊的分数)百分数:(1)分母是100的分数叫做百分数。
(2)表示一个数是另一个数的百分之几的数叫做百分数。
百分数又叫百分比或百分率。
百分数通常不写成分数形式,而采用符号“%”来表示,叫做百分号。
知识点一:整数1、读数:从最高位起,一级一级的读。
读万级或亿级的数时要按照个级的读法来读,并在后面加上级名。
每一级末尾的0都不读,其他数位上不论连续有几个0,只读一个0。
写数:先确定最高位是哪一级的哪个数位,然后从高位起,一级一级往下写,哪一整数部分亿级万级个级小数点小数部分数位千 百 十 亿亿 亿 亿位 位 位 位千 百 十 万万 万 万位 位 位 位千 百 十 个位 位 位 位十 百 千......分 分 分计数单位千 百 十 亿亿 亿 亿千 百 十 万万 万 万千 百 十 一 (个).十 百 千......分 分 分......之 之 之......一 一 一......位一个单位也没有,就在哪个数位上写0。
2、数的改写与求近似数:为了读写方便,常把较大的数简写成用“万”或“亿”作单位的数。
如:2365500=236.55万(改写用“万”作单位的数)。
如:2365500≈237万(省略万位后面的尾数,写成近似数),如:7.62983≈7.6(保留一位小数)。
知识点二:小数1、小数的意义: 把整数“1”平均分成10份,100份,1000份……这样的1份或几份是十分之几,百分之几,千分之几…可以用小数来表示。
初中数学知识点总结归纳一、数与代数1. 有理数- 整数和分数的概念- 正数、负数、零的性质- 有理数的加法、减法、乘法、除法运算法则- 绝对值的概念及性质2. 整数的性质- 奇数与偶数- 质数与合数- 约数与倍数- 互质数- 因数分解3. 代数表达式- 单项式与多项式- 同类项与合并同类项- 代数式的加减运算- 代数式的乘法运算- 代数式的除法运算4. 一元一次方程与不等式- 方程与方程的解- 解一元一次方程- 解一元一次不等式- 用方程或不等式解决实际问题5. 二元一次方程组- 二元一次方程组的概念- 代入法解方程组- 加减法解方程组- 方程组的应用6. 函数及其图像- 函数的概念- 函数的表示方法:列表法、图像法、解析式法- 线性函数与图像(正比例函数、一次函数)- 函数的性质:定义域、值域、单调性、增减性二、几何1. 平面图形- 点、线、面的基本性质- 角的概念:邻角、对顶角、同位角- 直线与角的关系:平行线、相交线- 三角形的基本性质与分类:等边、等腰、直角三角形- 四边形的基本性质与分类:平行四边形、矩形、菱形、正方形 - 圆的基本性质:圆心、半径、直径、弦、弧、切线2. 几何图形的计算- 三角形、四边形的面积计算公式- 圆的周长与面积公式- 规则图形的体积与表面积计算- 不规则图形的面积与体积估算方法3. 几何变换- 平移:图形的平移性质- 旋转:旋转的性质与对称性- 轴对称:轴对称图形的性质- 相似与全等:相似三角形的性质,全等三角形的判定与性质4. 解析几何- 坐标系的基本概念:直角坐标系、坐标点- 点的位置由坐标确定- 直线的解析表达式:斜截式、两点式- 圆的解析表达式三、统计与概率1. 统计- 数据的收集与整理- 频数与频率- 统计图表的绘制与解读:条形图、折线图、饼图- 算术平均数、中位数、众数的计算与意义2. 概率- 随机事件的概念- 概率的初步认识:确定事件、随机事件- 概率的计算方法:古典概型、列举法- 事件的可能性与概率的关系四、综合应用题1. 数列的概念与简单计算2. 应用题的解题策略3. 数学在生活中的应用实例4. 数学问题的探索性解决以上是初中数学的主要知识点总结,每个部分都包含了基础概念、性质、公式和解题方法。
初中数学知识点总结一、基本知识一、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
④数轴上两个点表示的数,右边的总比左边的大。
正数大于0,负数小于0,正数大于负数。
绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。
两个负数比较大小,绝对值大的反而小。
有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘得0。
③乘积为1的两个有理数互为倒数。
除法:①除以一个数等于乘以一个数的倒数。
②0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。
②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。
③一个正数有2个平方根/0的平方根为0/负数没有平方根。
④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。
②正数的立方根是正数、0的立方根是0、负数的立方根是负数。
数与代数初中知识点梳理
数学是一门抽象的科学,其中数与代数是数学中的基础。
在初中阶段,学生学
习数与代数的知识,是为了培养他们的逻辑思维能力和解决问题的能力。
下面将梳理数与代数初中知识点,帮助学生更好地理解和应用这些概念。
一、整数与有理数
整数是由正整数、零和负整数构成的数集,可以用来描述没有小数部分的实际
数量。
学生需要学习整数加减法、乘除法的运算规则,以及整数的绝对值和相反数的概念。
有理数是整数和分数的统称,可以表示有小数部分的实际数量。
学生需要学习
有理数的相加、相减、相乘、相除的运算规则,以及有理数的大小比较和有理数的绝对值的概念。
二、多项式与代数式
多项式是由常数、变量和它们的乘积与幂的和组成的代数式。
学生需要学习多
项式的加减法、乘法和因式分解。
此外,学生还需要掌握一元一次方程和一元一次不等式的解法,以及代数式的化简和展开的方法。
三、函数
函数是一个或多个自变量与一个因变量之间存在的依赖关系。
学生需要学习函
数的定义、函数的图象与函数的解析式之间的转换,以及函数的性质和分类。
另外,学生还需要学习函数的运算,包括函数的复合与反函数的概念。
四、几何与三角
几何是研究空间与图形的形状、大小、位置和变化的学科。
学生需要学习线段、角、三角形、四边形和圆等基本图形的性质和计算方法。
同时,学生还需要学习三角函数的定义与性质,以及三角形的相似性和共线性等几何问题的解决方法。
五、概率与统计
概率是研究随机事件发生可能性的学科,统计是研究收集、整理和分析数据的
学科。
学生需要学习事件的概率计算、事件的排列组合和事件的独立性。
此外,学生还需要学习统计图表的绘制和数据的统计分析方法。
六、数序与数列
数序是指数的顺序排列,数列是按照一定规律排列的数序。
学生需要学习数列
的定义、数列的通项公式和递推关系式的求解方法,以及等差数列和等比数列的特性和应用。
七、方程与不等式
方程是含有未知数的等式,不等式是含有未知数的不等式。
学生需要学习一元
一次方程和一元一次不等式的解法,以及二次方程和二次不等式的解法。
此外,学生还需要学习方程与不等式的应用和解决实际问题的方法。
在初中数学学习中掌握以上数与代数的基础知识,对于理解高中数学知识的学
习具有重要的作用。
在实际应用中,数与代数常常被用于解决实际问题,例如计算、建模等。
通过学习和掌握这些知识点,学生可以培养自己的逻辑思维能力和问题解决能力,为将来更深入的数学学习打下坚实的基础。
总结起来,数与代数是初中数学中的重要知识点,包括整数与有理数、多项式
与代数式、函数、几何与三角、概率与统计、数序与数列以及方程与不等式等。
通过学习这些知识点,学生可以提升自己的数学素养和解决实际问题的能力。
因此,初中阶段的数与代数知识的学习是非常重要的,也是理解和掌握高中数学的基础。