建筑沉降观测和基坑变形监测讲解
- 格式:docx
- 大小:23.65 KB
- 文档页数:5
建筑物沉降观测和基坑变形监测点布设及报告建筑物沉降观测和基坑变形监测是建筑工程中非常重要的一项工作,它可以帮助工程师及时掌握建筑物的沉降情况和基坑变形情况,为工程施工提供科学的数据支持,保障工程质量和安全。
在进行建筑物沉降观测和基坑变形监测时,点布设非常关键,下面我将介绍一下点布设的原则和方法,并给出一份监测报告。
一、建筑物沉降观测点布设原则1.观测点的数量:观测点的数量要充足,一般建议在建筑物的不同部位设置观测点,以确保全面的观测情况。
2.观测点的布设密度:观测点的布设密度应根据工程的具体情况来确定,一般来说,关键部位和薄弱部位需要密集的观测点,一般部位需要适量的观测点,这样可以更准确地掌握沉降情况。
3.观测点的位置选择:观测点的位置选择要考虑到建筑物的结构特点和沉降情况的分布规律,尽量选择稳定的区域,避免突兀或易变形的部位。
4.观测点的间距:观测点之间的间距要合理,一般来说,要根据建筑物的大小和形态来确定,以确保对整个建筑物的观测覆盖。
二、基坑变形监测点布设原则1.基坑变形监测点的数量:基坑变形监测点的数量应根据基坑的大小和复杂程度来确定,通常情况下,在基坑的四周设置监测点,并在基坑内设置适量的监测点。
2.基坑变形监测点的布设密度:基坑变形监测点的布设密度应根据基坑的变形情况来确定,一般来说,在基坑周边设置密集的监测点,以掌握变形情况的变化趋势。
3.基坑变形监测点的位置选择:基坑变形监测点的位置选择要考虑到基坑的结构特点和变形情况的分布规律,尽量选择变形范围较大或易发生变形的区域。
4.基坑变形监测点的间距:基坑变形监测点之间的间距要合理,一般来说,要根据基坑的大小和形态来确定,以确保对整个基坑的变形情况进行全面监测。
三、监测报告监测报告是对沉降观测和基坑变形监测结果的综合汇总和分析,下面是一份监测报告的基本内容:1.报告概述:报告简要介绍了监测的目的、范围和时间,以及监测的主要内容和方法。
2.观测结果:报告详细说明了各观测点的测量数值,并通过图表的形式展示了沉降和变形的分布情况。
基坑水平位移与沉降监测方案1.概况1.1 工程概况这个项目是一项大型的建筑工程,旨在建造一座现代化的大楼。
该建筑将包括商业和住宅用途,是当地城市发展的一个重要组成部分。
1.2 基坑概况该项目需要进行基坑开挖,以便为建筑物的地基做好准备工作。
基坑的深度将达到20米左右,需要进行支护工作以确保工人的安全。
1.3 工程地质概况该项目的地质条件复杂,地下水位较高,土质较软,需要采取特殊的施工方法来确保基坑的稳定性和安全性。
此外,还需要进行地质勘探和监测工作,以确保施工过程中不会对周围环境造成不良影响。
1.4 环境概况该项目位于城市中心,周围有许多居民和商业企业,需要采取特殊的措施来减少施工对周围环境的影响。
此外,还需要进行噪音、粉尘和污水处理等工作,以确保施工过程中不会对周围环境造成不良影响。
2.基坑支护及施工方案为确保基坑的稳定性和安全性,我们采取了多种支护措施,包括钢支撑、混凝土墙和土钉墙等。
此外,我们还采用了先进的施工技术,如挖孔桩、土钉墙和钻孔灌注桩等,以确保基坑的稳定性和安全性。
我们还将采取噪音、粉尘和污水处理等措施,以确保施工过程中不会对周围环境造成不良影响。
3、监测目的、范围、依据、原则及监测内容3.1 监测目的:本次监测的目的是为了解决公司在生产过程中存在的环境污染问题,以及对环境影响的评估。
3.2 监测范围:本次监测的范围包括公司生产厂区及周边区域,主要监测点包括废水排放口、废气排放口、噪声等。
3.3 监测依据:本次监测的依据主要包括国家环境保护法规、公司环境保护标准以及国家环境监测标准等。
3.4 编制原则:本次监测的编制原则主要包括科学性、规范性、客观性、可比性等原则。
同时,为了保证监测结果的准确性,我们将采用多种监测方法,包括现场监测、实验室分析等。
以上是本次监测的目的、范围、依据、原则及监测内容的简要介绍。
我们将严格按照以上要求进行监测,确保监测结果的准确性和可靠性。
3.5 监测内容64、基坑监测项目和监测方法要求汇总表75、监测方法5.1 水平位移观测:水平位移观测是指对基坑周边建筑物、道路等进行水平位移监测。
深基坑变形监测深基坑是指建筑工程中所挖的较深的方形或圆形坑,一般用于地下车库、地下商场、地下工程等。
由于基坑承受来自周围土体的向内挤压力和自身重力的作用,会导致基坑变形,因此需要进行变形监测。
深基坑变形监测是指通过监测基坑周围土体和基坑本身在施工过程中的变形情况,及时掌握变形信息,以便采取相应的加固措施,保证基坑的安全施工和使用。
深基坑变形监测一般包括以下几个方面的内容:1. 地表沉降监测:通过在基坑周围设置沉降观测点,测量地表的沉降量,了解基坑附近土体的变形情况。
常用的监测方法包括测量地表高程、GPS定位等。
通过地表沉降监测可以判断基坑的变形是否存在异常情况。
2. 周边建筑物变形监测:在基坑周边设置监测点,通过使用位移传感器等监测设备,对周边建筑物的变形进行监测。
一旦发现附近建筑物有明显的位移现象,说明基坑造成了周边土体的变形,需要采取相应的措施进行加固。
3. 土体应力监测:通过设置土压力计、应变仪等监测设备,测量土体的水平应力和垂直应力。
监测土体的应力变化可以判断基坑周围土体是否存在破坏的趋势,及时采取措施减小土体应力。
4. 混凝土结构变形监测:通过在深基坑的混凝土结构内设置测量点,使用变形测量仪等设备,对混凝土结构的变形进行实时监测。
常见的监测参数包括混凝土的裂缝宽度、混凝土结构的变形速度等。
通过混凝土结构变形监测可以判断深基坑的变形是否达到设计要求,并根据实际情况进行相应的加固措施。
深基坑的变形监测是保证基坑施工和使用安全的重要手段。
通过实时监测基坑的变形情况,可以及时发现问题并采取措施进行处理,避免因基坑变形导致的事故发生。
深基坑变形监测是建筑工程施工的必要环节,也是保障施工质量和安全的重要措施。
测绘技术中的沉降监测与变形分析方法解析近年来,随着城市建设的不断迅猛发展,沉降和地面变形问题成为一个亟待解决的重要课题。
确保建筑物的安全和城市基础设施的稳定是保障人民生命财产安全的关键。
测绘技术中的沉降监测与变形分析方法为我们提供了一种精确判断沉降和地面变形情况的手段。
一、沉降监测方法沉降监测是指通过测量技术获取某一地区在一定时间范围内发生的沉降情况,并利用测量数据进行分析和评价。
在测绘技术中,我们常用的沉降监测方法主要有测量基准面高程、GPS监测与大地水准网测量。
1.测量基准面高程测量基准面高程是一种常用的沉降监测方法。
基准面高程具有稳定性好、精度高等特点,通过建立测量基准面高程的监测站点,通过定期测量该监测站点的高程变化,可以有效判断该区域的沉降情况。
2.GPS监测全球定位系统(GPS)是一种通过卫星测距和定位所得的技术,可以用来测量地表沉降情况。
通过在地面埋设GPS测量点,可以实时地获取地面的位置信息,并进行沉降分析。
3.大地水准网测量大地水准网是指根据天文测量和大地测量方法,在地球表面选择基准点,通过水准测量建立的空间基准系统。
通过在大地水准网上选取一定数量的水准点,并定期进行测量,可以获得地面沉降的准确数据。
二、变形分析方法变形分析是指通过测量和分析地表或结构物在一定时间内的变形情况,判断和评价土地、建筑物等结构物的稳定性。
在测绘技术中,常用的变形分析方法主要有全站仪变形监测、摄影测量变形监测和遥感技术。
1.全站仪变形监测全站仪是一种高精度、多功能的测量仪器,通过测量站点的水平角、垂直角和斜距,可以实时获得地表或结构物的形变信息。
利用全站仪进行变形监测可以精确记录结构物的变形情况,提供可靠的数据支持。
2.摄影测量变形监测摄影测量是利用相机拍摄地面或物体影像,并通过解算这些影像来测量地表或物体的方法。
通过定期拍摄同一地区的影像,可以通过比对分析来获取地表或建筑物的变形情况。
3.遥感技术遥感技术是利用航空遥感或卫星遥感获得地面的信息和数据。
建筑物位移及沉降观测的要点建筑物位移及沉降观测的要点随着城市化进程的推进,建筑物的建设成为了城市发展的主要方向。
然而,由于土地下陷、地质构造等因素的影响,建筑物在使用过程中可能会发生位移和沉降,严重时甚至会威胁到建筑物的安全。
因此,对于大型建筑物或设施,需要进行位移和沉降观测以及相关监测工作。
在这篇文章中,我们将介绍建筑物位移及沉降观测的基本要点。
一、建筑物位移与沉降的定义建筑物位移是指建筑物在垂直或水平方向上的移动,可分为垂直位移和水平位移两种,常见的垂直位移有竖向位移和倾斜位移两种。
沉降则是指建筑物地基沉降而引起的位移现象,可分为整体沉降和局部沉降两种。
二、建筑物位移及沉降观测的方法建筑物位移及沉降观测主要有以下几种方法:1. 滑动尺法滑动尺法是一种简单、易行的测量方法,适用于小型建筑物的位移观测。
测量时需在建筑物外侧设置控制点,在建筑物内侧设置被测点,然后以纵向方向滑动尺子,直至控制点与被测点对齐。
再通过记录控制点和被测点间距离的变化,来计算建筑物的位移情况。
2. 建筑物形变法建筑物形变法是利用位移传感器测量被测物体形变的一种方法。
该法通过设置多个位移传感器,以测量建筑物的形变变化,进而推算出建筑物的位移信息。
该方法精度较高,适用于大型建筑物的位移观测。
3. 天文测量法天文测量法是利用天文测量仪器,以测量天空中行星和恒星等天体的位置的方法。
该方法采用远距离测量,因此其精度较高。
但是由于使用的仪器较为昂贵,且需要在建筑物周围设置参考基点等因素影响,天文测量法并不常用于建筑物位移观测。
三、建筑物位移及沉降观测的注意事项在进行建筑物位移及沉降观测时,需要注意以下事项:1. 观测周期观测周期是指进行位移及沉降观测的时间间隔。
观测周期应该根据建筑物的特征及周围环境等因素来进行定制,以保证观测精度。
2. 观测时间观测时间是指在观测周期内进行测量的时间。
由于环境因素的影响,建筑物的位移和沉降通常不是一个连续的过程,而是会受到季节、气候等因素的影响而发生变化,因此观测时间也应该根据不同的季节、气候等因素来进行定制。
2、监测点的布设2.0.1基坑顶部竖向位移监测点布设在基坑边坡顶部的,应沿基坑周边布置,基坑周边中部、阳角处应布置监测点。
监测点间距不宜大于20m,每边监测点数目不应少于3个。
监测点宜设置在基坑边坡坡顶上。
监测点布设在在围护墙上的,应沿围护墙的周边布置,围护墙周边中部、阳角处应布置监测点。
监测点间距不宜大于20m,每边监测点数目不应少于3个。
监测点宜设置在冠梁上。
2.0.2基坑顶部水平位移监测点的布设同2.1 基坑顶部竖向位移,宜为共用点。
2.0.3坑外土体深层水平位移深层水平位移监测孔宜布置在基坑边坡、围护墙周边的中心处及代表性的部位,数量和间距视具体情况而定,但每边至少应设1个监测孔。
2.0.4 地下水位水位监测点应沿基坑周边、被保护对象(如建筑物、地下管线等)周边或在两者之间布置,监测点间距宜为20~50m。
相邻建(构)筑物、重要的地下管线或管线密集处应布置水位监测点;如有止水帷幕,宜布置在止水帷幕的外侧约2m处。
2.0.5 锚(杆)索拉力锚(杆)索的拉力监测点应选择在受力较大且有代表性的位置,基坑每边跨中部位和地质条件复杂的区域宜布置监测点。
每层锚杆的拉力监测点数量应为该层锚杆总数的1~3%,并不应少于3根。
每层监测点在竖向上的位置宜保持一致。
每根杆体上的测试点应设置在锚头附近位置。
2.0.6支护桩桩身力. .支护桩桩身力监测点应布置在受力、变形较大且有代表性的部位,监测点数量和横向间距视具体情况而定,但每边至少应设1处监测点。
竖直方向监测点应布置在弯矩较大处,监测点间距宜为3~5m。
2.0.7支撑力支撑力监测点的布置应符合下列要求:1、监测点宜设置在支撑力较大或在整个支撑系统中起关键作用的杆件上;2、每道支撑的力监测点不应少于3个,各道支撑的监测点位置宜在竖向保持一致;3、钢支撑的监测截面根据测试仪器宜布置在支撑长度的1/3部位或支撑的端头。
钢筋混凝土支撑的监测截面宜布置在支撑长度的1/3部位;4、每个监测点截面传感器的设置数量及布置应满足不同传感器测试要求。
深基坑变形监测
深基坑是指在建筑施工过程中需要挖掘较深的地下空间,一般用于地下停车场、地下
商场、地下室等项目。
在深基坑的施工过程中,由于地质条件的复杂性及施工作业的影响,会产生基坑的变形问题。
为了确保施工安全和工程质量,需要对深基坑进行变形监测。
深基坑变形监测是指通过安装一系列的监测设备和仪器,对深基坑的变形情况进行实
时监测和记录。
通过监测数据的分析,可以及时发现基坑变形的趋势和变化情况,为施工
方提供科学、准确的数据支持,从而采取相应的措施进行调整和改进。
1. 地表沉降监测:通过安装地表沉降监测装置,对基坑周边地表的沉降情况进行监测。
地表沉降是指地下空间开挖过程中,由于土体的压缩和沉降等原因,导致地表下沉的
现象。
地表沉降监测可以及时发现地表沉降的异常情况,为施工方提供相关的参考数据。
2. 深层水平位移监测:通过在基坑周围钻取深孔,并安装监测设备,对深层土体的
水平位移进行监测。
深层水平位移是指地下空间开挖过程中,由于土体的变形和位移等原因,导致深层土体发生水平位移的现象。
深层水平位移监测可以及时发现深层土体的变形
和位移情况,为施工方提供相应的参考数据。
3. 基坑内部变形监测:通过在基坑内部安装变形监测仪器,对基坑内部结构及土体
的变形情况进行监测。
基坑内部变形是指由于土体的应力和位移等原因,导致基坑内部结
构及土体发生变形的现象。
基坑内部变形监测可以及时发现基坑内部变形的情况,为施工
方提供相关的参考数据。
建设工程深基坑变形与主体沉降监测技术研究一、研究背景及意义随着城市化进程的加快,建设工程在城市建设中的地位日益重要。
由于建筑物的高度和地下设施的复杂性,深基坑工程在施工过程中容易出现变形和主体沉降等问题,这些问题不仅会影响建筑物的安全性和使用寿命,还会对周围环境和人们的生活产生不利影响。
对深基坑变形与主体沉降进行监测技术研究具有重要的现实意义。
通过对深基坑变形与主体沉降的监测技术研究,可以为工程设计提供科学依据。
在深基坑施工过程中,通过对变形和沉降的实时监测,可以及时发现潜在的问题,为设计部门提供准确的数据支持,从而优化设计方案,提高建筑物的安全性和稳定性。
通过对深基坑变形与主体沉降的监测技术研究,可以降低工程事故的发生率。
通过对变形和沉降的实时监测,可以及时发现问题并采取相应的措施进行处理,避免因变形和沉降过大而导致的工程事故,减少人员伤亡和财产损失。
通过对深基坑变形与主体沉降的监测技术研究,可以提高工程质量。
通过对变形和沉降的监测,可以确保建筑物的质量达到设计要求,提高建筑物的使用性能和使用寿命。
通过对变形和沉降的监测,可以为后期的维护和管理提供依据,降低维护成本。
对深基坑变形与主体沉降进行监测技术研究具有重要的现实意义。
通过研究深基坑变形与主体沉降的规律,可以为工程设计、工程施工和工程管理提供科学依据,降低工程事故的发生率,提高工程质量,促进城市建设的可持续发展。
1.1 建设工程深基坑的发展历程随着城市化进程的加快,高层建筑、大型基础设施等建筑工程的建设日益增多,深基坑工程作为其中的重要组成部分,其安全性和稳定性对于整个建筑工程的质量至关重要。
自20世纪初以来,深基坑工程技术经历了从简单到复杂、从低级到高级的发展过程。
20世纪初,深基坑工程技术主要采用人工开挖的方法,施工过程中存在较大的安全隐患,如地下水位较高时容易导致地面沉降、建筑物倾斜等问题。
为了解决这些问题,人们开始研究采用机械挖掘、土钉墙等方法进行深基坑支护。
建筑基坑沉降、位移监测的内容及方法一、深基坑监测的意义随着城市建设的发展,基坑施工的开挖深度越来越深,从最初的5~7m发展到目前最深已达20m多。
由于地下土体性质、荷载条件、施工环境的复杂性,对在施工过程中引发的土体性状、环境、邻近建筑物、地下设施变化的监测已成了工程建设必不可少的重要环节。
对于复杂的大中型工程或环境要求严格的项目,往往难从以往的经验中得到借鉴,也难以从理论上找到定量分析、预测的方法,这就必定要依赖于施工过程中的现场监测。
首先,靠现场监测据来了解基坑的设计强度,为今后降低工程成本指标提供设计依据。
第二,可及时了解施工环境--地下土层、地下管线、地下设施、地面建筑在施工过程中所受的影响及影响程度。
第三,可及时发现和预报险情的发生及险情的发展程度,为及时采取安全补救措施充当耳目。
二、深基坑监测的内容及方法深基坑施工,必须要有一定的围护结构用以挡土、挡水。
围护设施必须安全有效。
浅基坑的围护结构以前常用的是钢板桩或混凝土板桩;深基坑则大多采用现场浇灌的地下连续墙结构或排桩式灌注桩结构,并配以混凝土搅拌桩或树根桩止水。
开挖时,坑内必须抽去地下水,7~15m深的基坑,中间必须配二到三道水平支撑,水平支撑采用钢管式结构或钢筋混凝土结构。
围护结构必须安全可靠,并能确保施工环境稳定。
从经济角度来讲,好的围护设计应把安全指标取在临界点附近,再靠现场监测提供的动态信息反馈来调整施工方案。
1、以下内容是基坑监测目前能够做到的也是应该做到的项目:(1)地下管线、地下设施、地面道路和建筑物的沉降、位移。
(2)围护桩地下桩体的侧向位移(桩体测斜)、围护桩顶的沉降和水平位移。
(3)围护桩、水平支撑的应力变化。
(4)基坑外侧的土体侧向位移(土体测斜)。
(5)坑外地下土层的分层沉降。
(6)基坑内、外的地下水位监测。
地下土体中的土压力和孔隙水压力。
(7)(8)基坑内坑底回弹监测。
2、观测点的布设测点布设合理方能经济有效。
建筑沉降观测和基坑变形监测讲解
建设过程中常有关于基坑变形监测及建筑观测的要求,但可能很
多同事对两者的同学监测要求、频次、周期等不甚了解,本篇结合规
范其要求,与大家分享。
一、《建筑地基基础设计规范》GB50007-2021的规定:
10.3.2基坑开挖应根据设计要求进行设计者监测,开始实施实
施动态装配和信息化施工。
10.3.8下列建筑物应在期间及使用期间进行沉降变形观测:
1地基基础设计等级为甲级建筑物;
2软弱地基上的地基基础设计等级为乙级建筑物;
3处理地基上为的建筑物;
4加层、扩建建筑物;
5受邻近深基坑取土施工影响或受场地地下水等环境因素变化影响的建筑物;
6采用新型基础或新型结构的建筑物。
该规范“条文说明”规定:
10.3.8本条为强制性条文。
本条所指的建筑物沉降侦测本条包
括从施工开始,整个施工期内和使用期间工程预算对建筑物进行的沉
降观测。
并以实测作为资料建筑物地基基础工程质量检查的依据之一,建筑物施工期的观测日期和次数,应根据施工进度确定,塔楼竣工后
的第一年内,每隔2月~3月观测一次,以后适当延长至4月~6月,
直至实现为止沉降变形稳定标准为止。
二、《建筑变形测量规范》JGJ8-2021的规定:
6.1.5建筑场地沉降观测的周期,应根据不同任务要求、产生沉降的不同情况以及沉降速率等因素具体分析确定,并应符合下列明确
规定:
基础施工期间的相邻地基沉降观测,在基坑降水时和基坑土开挖
过程中应每天观测1次。
混凝土底板浇完10d以后,可每2d~3d观测
1次,直至地下室顶板完工和水位恢复,若水位恢复时间较短、恢复速度较快,三周应在水位恢复的前后一周内每2d~3d观测1次,同时应
观测水位起伏。
此后可每周观测1次至回填土完工。
7.1.5沉降观测的周期和观测时间应符合下列路程规定:
1建筑施工阶段的观测应符合下列规定:
1)宜在基础完工后或地下室砌完后开始观测;
2)观测次数与间隔时间应视墙体与荷载增加情况情况确定。
3)施工整个过程中若暂时停工,在停工时及破土动工重新开工时
应各观测1次,停工期间可每隔2月~3月观测1次。
2建筑运营阶段的测量次数,子类应视地基土类型和沉降速率大小确定。
除有特殊要求外,可在第一年观测3次~4次,第二年观测2
次~3次,第三年后每年观测1次,达到至沉降达到稳定状态或满足观测督促为止。
3观测过程中,若发现大规模渗漏、严重不均匀沉降或严重裂缝等,或出现基础附近地面附近荷载立马增减、基础四周大量积水、长时间
连续降雨等情况,应提高观测频率,并应实施生命安全预案。
4建筑沉降达到稳定状态可由沉降量与时间关系曲线判定。
当最后100d的最大沉降速率小于0.01mm/d~0.04mm/d时,可认为已降到稳定状态。
对具体风化观测项目,最大沉降速率的取值宜结合当地地
基土的压缩兼容性来确定。
三、《建筑基坑工程监测技术规范》GB50497-2021规定:
3.0.1开挖深度略高于等于5m或开挖深度小于5m但现场地质情况和周围环境较复杂的基坑工程以及其他需要监测的基坑工程应实施基坑工程监测。
4.1.1基坑工程分析方法的现场监测应采用电子仪器监测与巡视检查相结合的方法。
4.1.2统计分析基坑工程现场监测的对象须要包括:
1支护结构。
2地下水状况。
3基坑底部及周边土体。
4周边建筑。
5周边管线及设施。
6周边重要的道路。
7其他应监测的对象。
7.0.1基坑工程监测频率的确定应满足能系统反映监测的所测项目对象重要变化过程而又不遗漏其变化时刻的要求。
7.0.2基坑工程监测工作应贯穿于基坑建筑工程工程和地下工程施工全过程。
监测期应从基坑工程施工前开始,直至基坑完成为止。
对有特殊要求的基坑周边环境的监测应根据需要延续至变形趋于稳定后结束。
7.0.3检测监测项目的监测频率应综合重新考虑基坑类别、基坑及地下工程的不同施工阶段以及周边环境、自然条件的变化和当地经验而确定。
当监测值相对更稳定时,可适当降低监测频率。
对于应测项目,在无数据异常数据分析和事故征兆的情况下,开挖而后后现场仪器监测频率可按表7.0.3确定。
7.0.4当出现所列情况之一时,应提高监测频率:
1监测数据达到报警值。
2监测数据变化较小或者速率加快。
3存在勘察未发现的不良地质。
4超深、超长开挖或未及时加撑等违反设计工况施工。
5基坑及周边大量积水、长时间连续降雨、市政管道出现泄露。
6基坑附近地面荷载突然增大或超过设计目标值。
7支护结构出现开裂。
8周边地面突发较大出现沉积或出现严重开裂。
9邻近建筑突发较大沉降、不均匀沉降或松脱出现明显严重开裂。
10基坑底部、侧壁出现管涌、渗漏或奥罗讷等现象。
11基坑工程发生事故后重新改建工程组织施工。
12出现其他影响基坑及周边环境安全的异常情况。
7.0.5当有危险事故征兆此时,应实时跟踪监测。
该规范“条文说明”规定:
7.0.2基坑开挖到达设计设计者深度以后,土体变形与应力、支护结构的变形持续保持与内力并非保持不变,而将继续发展,基坑并
不一定是最安全相态,因此,监测工作也须应贯穿于基坑开挖和地下
工程施工全过程。
总的来讲,基坑就是指工程监测是从基坑开挖前的准备工作开始,直至地下工程完成为止。
地下工程完成一般是指地下室结构完成、基
坑回填完毕。
一般情况下,地下工程完成就可以结束监测工作。
对于一些临近基坑的重要建筑及管线的监测,由于基坑的回填或地下水停止抽水,建筑及管线会进一步调整,建筑群及管线变形会会继续发展,监测工作还需要延续保持稳定至变形趋于稳定后才能结束。
7.0.3基坑类别、基坑及地下工程的不同施工各有不同阶段以及周边环境、自然条件的变化等是确定监测频率应考虑主要因素。
一般在基坑修筑期间,房顶土处于卸荷阶段,支护体系管理体制处于逐渐加荷状态,应适当加密监测;当基坑开挖完后一段时间、监测值相对稳定之时,可适当降低监测信噪比。
当显现出异常现象和数据,或临近报警状态时,应提高监测速率甚至连续监测。