稳恒电流和电路
- 格式:ppt
- 大小:1.69 MB
- 文档页数:29
高中物理稳恒电流试题经典及解析一、稳恒电流专项训练1.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质.(1)一段横截面积为S 、长为l 的直导线,单位体积内有n 个自由电子,电子电荷量为e .该导线通有电流时,假设自由电子定向移动的速率均为v .(a )求导线中的电流I ;(b )将该导线放在匀强磁场中,电流方向垂直于磁感应强度B ,导线所受安培力大小为F 安,导线内自由电子所受洛伦兹力大小的总和为F ,推导F 安=F .(2)正方体密闭容器中有大量运动粒子,每个粒子质量为m ,单位体积内粒子数量n 为恒量.为简化问题,我们假定:粒子大小可以忽略;其速率均为v ,且与器壁各面碰撞的机会均等;与器壁碰撞前后瞬间,粒子速度方向都与器壁垂直,且速率不变.利用所学力学知识,导出器壁单位面积所受粒子压力F 与m 、n 和v 的关系.(注意:解题过程中需要用到、但题目没有给出的物理量,要在解题时做必要的说明)【答案】(1)I nvSe =证明见答案 (2)213F P nm S υ== 【解析】(1)(a )电流Q I t=,又因为[()]Q ne v St =,代入则I nvSe = (b )F 安=BIL ,I nvSe =,代入则:F 安=BnvSeL ;因为总的自由电子个数N=nSL ,每个自由电子受到洛伦兹力大小f=Bve ,所以F=Nf =BnvSeL=F 安,即F 安=F .(2)气体压强公式的推导:设分子质量为m ,平均速率为v ,单位体积的分子数为n ;建立图示柱体模型,设柱体底面积为S ,长为l ,则l t υ=柱体体积V Sl =柱体内分子总数N nV =总因分子向各个方向运动的几率相等,所以在t 时间内与柱体底面碰撞的分子总数为’16N N 总总= 设碰前速度方向垂直柱体底面且碰撞是弹性的,则分子碰撞器壁前后,总动量的变化量为2p m N υ∆=,总依据动量定理有Ft p =∆又压力Ft p =∆ 由以上各式得单位面积上的压力2013F F nm S υ== 【点评】本题的第1题中两问都曾出现在课本中,例如分别出现在人教版选修3-1.P42,选修3-1P .42,这两个在上新课时如果老师注意到,并带着学生思考推导,那么这题得分是很容易的.第2问需要利用动量守恒知识,并结合热力学统计知识,通过建立模型,然后进行推导,这对学生能力要求较高,为了处理相应问题,通过建模来处理问题.在整个推导过程并不复杂,但对分析容易对结果造成影响的错误是误认为所有分析都朝同一方向运动,而不是热力学统计结果分子向各个运动方向运动概率大致相等,即要取总分子个数的16. 【考点定位】电流微观表达式、洛伦兹力推导以及压强的微观推导.2.一电路如图所示,电源电动势E=28v ,内阻r=2Ω,电阻R1=4Ω,R2=8Ω,R3=4Ω,C 为平行板电容器,其电容C=3.0pF ,虚线到两极板距离相等,极板长L=0.20m ,两极板的间距d=1.0×10-2m .(1)闭合开关S 稳定后,求电容器所带的电荷量为多少?(2)当开关S 闭合后,有一未知的、待研究的带电粒子沿虚线方向以v0=2.0m/s 的初速度射入MN 的电场中,已知该带电粒子刚好从极板的右侧下边缘穿出电场,求该带电粒子的比荷q/m (不计粒子的重力,M 、N 板之间的电场看作匀强电场,g=10m/s 2)【答案】(1)114.810C -⨯ (2)46.2510/C kg -⨯ 【解析】 【分析】【详解】(1)闭合开关S 稳定后,电路的电流:12282482E I A A R R r ===++++; 电容器两端电压:222816R U U IR V V ===⨯=;电容器带电量: 12112 3.01016 4.810R Q CU C C --==⨯⨯=⨯(2)粒子在电场中做类平抛运动,则:0L v t =21122Uq d t dm=联立解得46.2510/q C kg m-=⨯3.如图所示,水平轨道与半径为r 的半圆弧形轨道平滑连接于S 点,两者均光滑且绝缘,并安装在固定的竖直绝缘平板上.在平板的上下各有一个块相互正对的水平金属板P 、Q ,两板间的距离为D .半圆轨道的最高点T 、最低点S 、及P 、Q 板右侧边缘点在同一竖直线上.装置左侧有一半径为L 的水平金属圆环,圆环平面区域内有竖直向下、磁感应强度大小为B 的匀强磁场,一个根长度略大于L 的金属棒一个端置于圆环上,另一个端与过圆心1O 的竖直转轴连接,转轴带动金属杆逆时针转动(从上往下看),在圆环边缘和转轴处引出导线分别与P 、Q 连接,图中电阻阻值为R ,不计其它电阻,右侧水平轨道上有一带电量为+q 、质量为12m 的小球1以速度052gr v =,向左运动,与前面静止的、质量也为12m 的不带电小球2发生碰撞,碰后粘合在一起共同向左运动,小球和粘合体均可看作质点,碰撞过程没有电荷损失,设P 、Q 板正对区域间才存在电场.重力加速度为g .(1)计算小球1与小球2碰后粘合体的速度大小v ;(2)若金属杆转动的角速度为ω,计算图中电阻R 消耗的电功率P ;(3)要使两球碰后的粘合体能从半圆轨道的最低点S 做圆周运动到最高点T ,计算金属杆转动的角速度的范围.【答案】(1) 52gr v = (2) 2424B L P Rω= (3) 2mgd qBL ≤ω≤27mgd qBL 【解析】【分析】【详解】(1)两球碰撞过程动量守恒,则0111()222mv m m v =+ 解得52gr v =(2)杆转动的电动势21122BLv BL L BL εωω==⨯= 电阻R 的功率22424B L P R R εω==(3)通过金属杆的转动方向可知:P 、Q 板间的电场方向向上,粘合体受到的电场力方向向上.在半圆轨道最低点的速度恒定,如果金属杆转动角速度过小,粘合体受到的电场力较小,不能达到最高点T ,临界状态是粘合体刚好达到T 点,此时金属杆的角速度ω1为最小,设此时对应的电场强度为E 1,粘合体达到T 点时的速度为v 1.在T 点,由牛顿第二定律得211v mg qE m r-= 从S 到T ,由动能定理得2211112222qE r mg r mv mv ⋅-⋅=- 解得12mg E q= 杆转动的电动势21112BL εω=两板间电场强度11E d ε=联立解得12mgd qBL ω= 如果金属杆转动角速度过大,粘合体受到的电场力较大,粘合体在S 点就可能脱离圆轨道,临界状态是粘合体刚好在S 点不脱落轨道,此时金属杆的角速度ω2为最大,设此时对应的电场强度为E 2.在S 点,由牛顿第二定律得22v qE mg m r-= 杆转动的电动势22212BL εω=两板间电场强度22E d ε=联立解得227mgd qBL ω= 综上所述,要使两球碰后的粘合体能从半圆轨道的最低点S 做圆周运动到最高点T ,金属杆转动的角速度的范围为:227mgd mgd qBL qBL ω≤≤.4.如图所示,固定的水平金属导轨间距L =2 m .处在磁感应强度B =4×l0-2 T 的竖直向上的匀强磁场中,导体棒MN 垂直导轨放置,并始终处于静止状态.已知电源的电动势E =6 V ,内电阻r =0.5 Ω,电阻R =4.5 Ω,其他电阻忽略不计.闭合开关S ,待电流稳定后,试求: (1)导体棒中的电流;(2)导体棒受到的安培力的大小和方向.【答案】(1)1.2 A;(2)0.096 N,方向沿导轨水平向左【解析】【分析】【详解】(1)由闭合电路欧姆定律可得:I=64.50.5EAR r=++=1.2A(2)安培力的大小为:F=BIL=0.04×1.2×2N=0.096N安培力方向为沿导轨水平向左5.如图所示,已知R3=3Ω,理想电压表读数为3v,理想电流表读数为2A,某时刻由于电路中R3发生断路,电流表的读数2.5A,R1上的电压为5v,求:(1)R1大小、R3发生断路前R2上的电压、及R2阻值各是多少?(R3发生断路时R2上没有电流)(2)电源电动势E和内电阻r各是多少?【答案】(1)1V 1Ω(2)10 V ;2Ω【解析】试题分析:(1)R3断开时电表读数分别变为5v和2.5A 可知R1=2欧R3断开前R1上电压U1=R1I=4VU1= U2 + U3所以 U2=1VU2:U3 = R2:R3 =1:3R2=1Ω(2)R3断开前总电流I1=3AE = U1 + I1rR3断开后总电流I2=2.5AE = U 2 + I 2r联解方程E= 10 V r=2Ω考点:闭合电路的欧姆定律【名师点睛】6.如图所示,竖直放置的两根足够长的光滑金属导轨相距为L ,导轨的两端 分别与电源(串有一滑动变阻器 R )、定值电阻、电容器(原来不带电)和开关K 相连.整个空间充满了垂直于导轨平面向外的匀强磁场,其磁感应强度的大小为B .一质量为m ,电阻不计的金属棒 ab 横跨在导轨上.已知电源电动势为E ,内阻为r ,电容器的电容为C ,定值电阻的阻值为R0,不计导轨的电阻.(1)当K 接1时,金属棒 ab 在磁场中恰好保持静止,则滑动变阻器接入电路的阻值 R 为多大?(2)当 K 接 2 后,金属棒 ab 从静止开始下落,下落距离 s 时达到稳定速度,则此稳定速度的大小为多大?下落 s 的过程中所需的时间为多少?(3) ab 达到稳定速度后,将开关 K 突然接到3,试通过推导,说明 ab 作何种性质的运动?求 ab 再下落距离 s 时,电容器储存的电能是多少?(设电容器不漏电,此时电容器没有被击穿)【答案】(1)EBL r mg -(2)44220220B L s m gR mgR B L +(3)匀加速直线运动 2222mgsCB L m cB L + 【解析】【详解】(1)金属棒ab 在磁场中恰好保持静止,由BIL=mgE I R r=+ 得 EBL R r mg=- (2)由 220B L v mg R = 得 022mgR v B L =由动量定理,得mgt BILt mv -= 其中0BLs qIt R ==得44220220B L s m gR t mgR B L += (3)K 接3后的充电电流q C U CBL v v I CBL CBLa t t t t ∆∆∆∆=====∆∆∆∆ mg-BIL=ma得22mg a m CB L =+=常数 所以ab 棒的运动性质是“匀加速直线运动”,电流是恒定的.v 22-v 2=2as根据能量转化与守恒得 22211()22E mgs mv mv ∆=-- 解得:2222mgsCB L E m cB L ∆=+ 【点睛】本题是电磁感应与电路、力学知识的综合,关键要会推导加速度的表达式,通过分析棒的受力情况,确定其运动情况.7.如图所示电路中,R 1=6 Ω,R 2=12 Ω,R 3=3 Ω,C =30 μF ,当开关S 断开,电路稳定时,电源总功率为4 W ,当开关S 闭合,电路稳定时,电源总功率为8 W ,求:(1)电源的电动势E 和内电阻r ;(2)在S 断开和闭合时,电容器所带的电荷量各是多少?【答案】(1)8V ,1Ω (2)1.8×10﹣4C ,0 C【解析】【详解】(1)S 断开时有:E=I 1(R 2+R 3)+I 1r…①P 1=EI 1…②S 闭合时有:E=I 2(R 3+1212R R R R +)+I 2r…③ P 2=EI 2…④由①②③④可得:E=8V ;I 1=0.5A ;r=1Ω;I 2=1A(3)S 断开时有:U=I 1R 2得:Q 1=CU=30×10-6×0.5×12C=1.8×10-4CS 闭合,电容器两端的电势差为零,则有:Q 2=08.如图所示,两条平行的金属导轨相距L =lm ,金属导轨的倾斜部分与水平方向的夹角为37°,整个装置处在竖直向下的匀强磁场中.金属棒MN 和PQ 的质量均为m =0.2kg ,电阻分别为R MN =1Ω和R PQ =2Ω.MN 置于水平导轨上,与水平导轨间的动摩擦因数μ=0.5,PQ 置于光滑的倾斜导轨上,两根金属棒均与导轨垂直且接触良好.从t =0时刻起,MN 棒在水平外力F 1的作用下由静止开始以a =1m /s 2的加速度向右做匀加速直线运动,PQ 则在平行于斜面方向的力F 2作用下保持静止状态.t =3s 时,PQ 棒消耗的电功率为8W ,不计导轨的电阻,水平导轨足够长,MN 始终在水平导轨上运动.求:(1)磁感应强度B 的大小;(2)t =0~3s 时间内通过MN 棒的电荷量;(3)求t =6s 时F 2的大小和方向;(4)若改变F 1的作用规律,使MN 棒的运动速度v 与位移s 满足关系:v =0.4s ,PQ 棒仍然静止在倾斜轨道上.求MN 棒从静止开始到s =5m 的过程中,系统产生的焦耳热.【答案】(1)B = 2T ;(2)q = 3C ;(3)F 2=-5.2N (负号说明力的方向沿斜面向下)(4)203Q J 【解析】【分析】t =3s 时,PQ 棒消耗的电功率为8W ,由功率公式P =I 2R 可求出电路中电流,由闭合电路欧姆定律求出感应电动势.已知MN 棒做匀加速直线运动,由速度时间公式求出t =3s 时的速度,即可由公式E =BLv 求出磁感应强度B ;根据速度公式v =at 、感应电动势公式E =BLv 、闭合电路欧姆定律和安培力公式F =BIL 结合,可求出PQ 棒所受的安培力大小,再由平衡条件求解F 2的大小和方向;改变F 1的作用规律时,MN 棒做变加速直线运动,因为速度v 与位移x 成正比,所以电流I 、安培力也与位移x 成正比,可根据安培力的平均值求出安培力做功,系统产生的热量等于克服安培力,即可得解.【详解】(1)当t =3s 时,设MN 的速度为v 1,则v 1=at =3m/s感应电动势为:E 1=BL v 1根据欧姆定律有:E 1=I (R MN + R PQ )根据P =I 2 R PQ代入数据解得:B =2T(2)当t =6 s 时,设MN 的速度为v 2,则速度为:v 2=at =6 m/s感应电动势为:E 2=BLv 2=12 V根据闭合电路欧姆定律:224MNPQE I A R R ==+ 安培力为:F 安=BI 2L =8 N规定沿斜面向上为正方向,对PQ 进行受力分析可得:F 2+F 安cos 37°=mg sin 37°代入数据得:F 2=-5.2 N(负号说明力的方向沿斜面向下)(3)MN 棒做变加速直线运动,当x =5 m 时,v =0.4x =0.4×5 m/s =2 m/s因为速度v 与位移x 成正比,所以电流I 、安培力也与位移x 成正比, 安培力做功:12023MN PQ BLv W BL x J R R =-⋅⋅=-+安 【点睛】本题是双杆类型,分别研究它们的情况是解答的基础,运用力学和电路.关键要抓住安培力与位移是线性关系,安培力的平均值等于初末时刻的平均值,从而可求出安培力做功.9.为了检查双线电缆CE 、FD 中的一根导线由于绝缘皮损坏而通地的某处,可以使用如图所示电路。
高中物理稳恒电流试题(有答案和解析)一、稳恒电流专项训练1.如图10所示,P 、Q 为水平面内平行放置的光滑金属长直导轨,相距为L 1 ,处在竖直向下、磁感应强度大小为B 1的匀强磁场中.一导体杆ef 垂直于P 、Q 放在导轨上,在外力作用下向左做匀速直线运动.质量为m 、每边电阻均为r 、边长为L 2的正方形金属框abcd 置于倾斜角θ=30°的光滑绝缘斜面上(ad ∥MN ,bc ∥FG ,ab ∥MG, dc ∥FN),两顶点a 、d 通过细软导线与导轨P 、Q 相连,磁感应强度大小为B 2的匀强磁场垂直斜面向下,金属框恰好处于静止状态.不计其余电阻和细导线对a 、d 点的作用力. (1)通过ad 边的电流I ad 是多大? (2)导体杆ef 的运动速度v 是多大?【答案】(1)238mg B L (2)1238mgrB B dL【解析】试题分析:(1)设通过正方形金属框的总电流为I ,ab 边的电流为I ab ,dc 边的电流为I dc , 有I ab =34I ① I dc =14I ② 金属框受重力和安培力,处于静止状态,有mg =B 2I ab L 2+B 2I dc L 2 ③由①~③,解得I ab =2234mgB L ④ (2)由(1)可得I =22mgB L ⑤设导体杆切割磁感线产生的电动势为E ,有E =B 1L 1v ⑥设ad 、dc 、cb 三边电阻串联后与ab 边电阻并联的总电阻为R ,则R =34r ⑦ 根据闭合电路欧姆定律,有I =E R⑧ 由⑤~⑧,解得v =121234mgrB B L L ⑨ 考点:受力分析,安培力,感应电动势,欧姆定律等.2.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质。
如图所示:一段横截面积为S 、长为l 的金属电阻丝,单位体积内有n 个自由电子,每一个电子电量为e 。
一、填空题1. 电路是由电源、负载、控制装置和导线组成,它们的主要功能如下所示:电源:为电路提供电能;负载:又称为用电器,其作用是将电能转变为其他形式的能;控制装置:主要作用是控制电路的通断;导线:起连接电路和输送电能的作用。
2. 电路原理图、原理框图、印制电路图是电路的图形表示方法。
3. 理想元件包括理想电阻、理想电容、理想电感、理想电压源、理想电流源等。
4. 电流的大小和方向恒定不变时,称为稳恒电流。
5. 电流的大小和方向都随时间的变化而变化时,称为交变电流。
6. 电压的大小和方向恒定不变时,称为稳恒电压。
7. 电压的大小和方向都随时间的变化而变化时,称为交变电压。
8. 电路中的电流、电压和功率的关系为:功率 = 电流× 电压。
9. 电路中的功率损耗可以用功率公式P = I^2 × R 来计算,其中 P 为功率,I 为电流,R 为电阻。
10. 电路中的电压可以用基尔霍夫电压定律来计算,即电路中任意闭合回路中的电压代数和等于零。
二、选择题1. 下列哪种元件是储能元件?(A)电阻器(B)电容器(C)电感器(D)电压源答案:B2. 下列哪种元件是独立源?(A)电阻器(B)电容器(C)电感器(D)电压源答案:D3. 下列哪种元件是受控源?(A)电阻器(B)电容器(C)电感器(D)电压源答案:A4. 下列哪种电路分析方法适用于稳恒电流电路?(A)基尔霍夫定律(B)叠加定理(C)等效电源定理(D)网络函数答案:A5. 下列哪种电路分析方法适用于交变电流电路?(A)基尔霍夫定律(B)叠加定理(C)等效电源定理(D)网络函数答案:B三、判断题1. 电路中的电流方向可以用右手定则来确定。
(√)2. 电路中的电压方向可以用左手定则来确定。
(×)3. 电路中的功率损耗可以用功率公式P = I^2 × R 来计算。
(√)4. 电路中的电压可以用基尔霍夫电压定律来计算。
(√)5. 电路中的电流可以用基尔霍夫电流定律来计算。
高二物理竞赛(6)静电场、稳恒电流和物质的导电性班级:_____________ 姓名:_________________ 座号:_____________一、如图1所示,电阻R1=R2=1kΩ,电动势E=6V,两个相同的二极管D串联在电路中,二极管D的I D-U D特性曲线如图2所示。
试求:(1)通过二极管D的电流;(2)电阻R1消耗的功率。
二、某些非电磁量的测量是可以通过一些相应的装置转化为电磁量来测量的。
一平板电容器的两个极扳竖直放置在光滑的水平平台上,极板的面积为S,极板间的距离为d。
极板1固定不动,与周围绝缘;极板2接地,且可在水平平台上滑动并始终与极板1保持平行。
极板2的两个侧边与劲度系数为k、自然长度为L 的两个完全相同的弹簧相连,两弹簧的另一端固定。
图1是这一装置的俯视图。
先将电容器充电至电压U后即与电源断开,再在极板2的右侧的整个表面上施以均匀的向左的待测压强P;使两极板之间的距离发生微小的变化,如图2所示。
测得此时电容器的电压改变量为ΔU。
设作用在电容器极板2上的静电作用力不致引起弹簧的可测量到的形变,试求待测压强P。
图1 图2图1 图2三、两块竖直放置的平行金属大平板A 、B ,相距d ,两极间的电压为U 。
一带正电的质点从两板间的M 点开始以竖直向上的初速度v 0运动,当它到达电场中某点N 点时,速度变为水平方向,大小仍为v 0,如图所示。
求M 、N 两点问的电势差。
(忽略带电质点对金属板上电荷均匀分布的影响)四、测定电子荷质比(电荷q 与质量m 之比q /m )的实验装置如图所示。
真空玻璃管内,阴极K 发出的电子,经阳极A 与阴极K 之间的高电压加速后,形成一束很细的电子流,电子流以平行于平板电容器极板的速度进入两极板C 、D 间的区域。
若两极板C 、D 间无电压,则离开极板区域的电子将打在荧光屏上的O 点;若在两极板间加上电压U ,则离开极板区域的电子将打在荧光屏上的P 点;若再在极板间加一方向垂直于纸面向外、磁感应强度为B 的匀强磁场,则打到荧光屏上的电子产生的光点又回到O 点。
第三章 稳 恒 电 流§3.1 电流的稳恒条件和导电规律思考题:1、 电流是电荷的流动,在电流密度j ≠0的地方,电荷的体密度ρ是否可能等于0? 答:可能。
在导体中,电流密度j ≠0的地方虽然有电荷流动,但只要能保证该处单位体积内的正、负电荷数值相等(即无净余电荷),就保证了电荷的体密度ρ=0。
在稳恒电流情况下,可以做到这一点,条件是导体要均匀,即电导率为一恒量。
2、 关系式U=IR 是否适用于非线性电阻?答:对于非线性电阻,当加在它两端的电位差U改变时,它的电阻R要随着U的改变而变化,不是一个常量,其U-I曲线不是直线,欧姆定律不适用。
但是仍可以定义导体的电阻为R=U/I。
由此,对非线性电阻来说,仍可得到U=IR的关系,这里R不是常量,所以它不是欧姆定律表达式的形式的变换。
对于非线性电阻,U、I、R三个量是瞬时对应关系。
3、 焦耳定律可写成P=I 2R 和P=U 2/R 两种形式,从前者看热功率P 正比于R ,从后式看热功率反比于R ,究竟哪种说法对?答:两种说法都对,只是各自的条件不同。
前式是在I一定的条件下成立,如串联电路中各电阻上的热功率与阻值R成正比;后式是在电压U一定的条件下成立,如并联电路中各电阻上的热功率与R成反比。
因此两式并不矛盾。
4、 两个电炉,其标称功率分别为W 1、W 2,已知W 1>W 2,哪个电炉的电阻大? 答:设电炉的额定电压相同,在U一定时,W与R成反比。
已知W 1>W 2,所以R1<R 2,5、 电流从铜球顶上一点流进去,从相对的一点流出来,铜球各部分产生的焦耳热的情况是否相同?答:沿电流方向,铜球的截面积不同,因此铜球内电流分布是不均匀的。
各点的热功率密度p=j 2/σ不相等。
6、 在电学实验室中为了避免通过某仪器的电流过大,常在电路中串接一个限流的保护电阻。
附图中保护电阻的接法是否正确?是否应把仪器和保护电阻的位置对调? 答:可以用图示的方法联接。
实验2.10 用稳恒电流场模拟静电场[实验目的]1、掌握模拟法描绘静电场的原理和方法。
2、加强对电场强度和电势概念的理解。
[实验仪器]双层式结构静电场描绘仪、静电场描绘电源、模拟电极。
[实验原理]一、模拟的原因在科学研究和生产实际中,需要研究电子器件和设备中电极周围或介质中的电场分布。
由于这些电极形状或者介质分布又是比较复杂的,用理论的方法进行计算很困难,只能靠数值解法求出或用实验方法测出其电场分布。
由于与测量仪器相接的探测头本身总是导体或电介质,若将其放入静电场中,探测头上会产生感应电荷或束缚电荷,这些电荷又产生电场,与被测静电场迭加起来,使被测电场产生显著的畸变。
如果直接测量,也会因探极引入改变原电场的分布,即使探测出来也不是原电场分布。
另外因为静电场中没有运动电荷,也就没有电流,不能使磁电式电表发生偏转,故不能直接用电压表法去测量静电场的电势分布。
因此,实际测量中采用间接的测量方法(即模拟法)来测出静电场的分布。
二、模拟原理静止电荷在其周围空间激发的电场称为静电场,对静电场分布的描述可以用电场强度矢量E和电势U 来描述,也可以形象地用电场线和等势线(等势面)来描述。
由于电场线与等势线(等势面)存在永远正交的关系,只要能够设法描绘出电场中的等势线(等势面)分布,就可以方便的描绘出电场的电场线分布图。
再则标量在计算和测量方面比矢量要简单得多,所以一般都采用从对电势描绘到对电场强度矢量的描绘。
所谓模拟法就是用一种易于实现、便于测量的物理状态或过程去代替另一种不易实现、不便测量的状态或过程。
为了克服直接测量静电场的困难,将带电体放到电介质里,维持带电体之间的电势差(电压)不变,介质里便会有恒定不变的电流,这样就可以直接用电压表测量介质中各点的电势值(相对于另一电极的电压),再根据电势变化的最大方向计算出电场强度。
理论和实践证明,导电介质中恒定电流建立的电场(稳恒电流场)与静电场的规律完全相似,故用电流场去模拟静电场。