七年级数学下册 第6周周测题(三角形的边)
- 格式:doc
- 大小:44.00 KB
- 文档页数:2
数学七下周周清测试卷二十三浙教版一、选择题(每题3分,共30分)1. 下列运算正确的是()A. a²+a³=a⁵B. a²·a³=a⁶C. (a²)³=a⁶D. a⁰=1(a≠0)。
答案:C。
解析:同底数幂相乘,底数不变指数相加,所以a²·a³=a⁵,A、B错误;任何非零数的0次方都为1,D选项要注意条件a≠0,(a²)³=a²×³=a⁶,C正确。
2. 已知一个角的补角是130°,那么这个角的度数是()A. 50°B. 60°C. 70°D. 80°。
答案:A。
解析:如果两个角的和是180°,那么这两个角互为补角,所以这个角的度数为180° - 130° = 50°。
3. 下列方程是一元一次方程的是()A. x² - 2x = 3B. 2x - y = 0C. x + 1/x = 1D. 3x - 1 = 2。
答案:D。
解析:一元一次方程是只含有一个未知数,并且未知数的次数是1的整式方程,A是一元二次方程,B 是二元一次方程,C是分式方程,只有D符合一元一次方程的定义。
4. 若x = 2是方程2x + a = 3的解,则a的值为()A. -1B. 1C. -2D. 2。
答案:A。
解析:把x = 2代入方程2x + a = 3,得到2×2 + a = 3,4 + a = 3,解得a = -1。
5. 下列图形中,不是轴对称图形的是()A. 等腰三角形B. 正方形C. 平行四边形D. 圆。
答案:C。
解析:等腰三角形沿底边上的高对折,两边能完全重合,是轴对称图形;正方形沿对角线或对边中点连线对折能完全重合,是轴对称图形;圆沿直径对折能完全重合,是轴对称图形;平行四边形无论沿哪条直线对折,两边都不能完全重合,不是轴对称图形。
七年级下第三周周测数学试卷(有答案)一、选择题(本大题共10小题,每小题3分,共30分)1.一个三角形的两边长为2和6,第三边为偶数,则这个三角形的周长为()A.10 B.12 C.14 D.162.若一个多边形的内角和与它的外角和相等,则这个多边形是()A.三角形B.四边形C.五边形D.六边形3.一个三角形的三个内角中,锐角的个数最少为()A.0 B.1 C.2 D.34.下面说法错误的是()A.三角形的三条角平分线交于一点B.三角形的三条中线交于一点C.三角形的三条高交于一点D.三角形的三条高所在的直线交于一点5.同一平面内有四条直线a、b、c、d,若a∥b,a⊥c,b⊥d,则c、d的位置关系为()A.互相垂直B.互相平行C.相交D.没有确定关系6.如图,点E在CD延长线上,下列条件中不能判定AB∥CD的是()A.∠1=∠2 B.∠3=∠4 C.∠5=∠B D.∠B+∠BDC=180°7.如图,直线l1∥l2,则下列式子成立的是()A.∠1+∠2+∠3=180°B.∠1﹣∠2+∠3=180°C.∠2+∠3﹣∠1=180°D.∠1+∠2﹣∠3=180°8.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.48 B.96 C.84 D.429.如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米B.150米C.160米D.240米10.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7 B.7或8 C.8或9 D.7或8或9二、填空题(本大题共9小题,每空2分,共22分)11.回答下列问题:(1)若一个多边形的内角和与外角和的总和为1800°,则这个多边形是边形.(2)一个多边形的每一个外角都等于72°,这个多边形是边形,它的每个内角是度?12.若n边形内角和为900°,则边数n=.13.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于.14.若多边形的每一个内角均为135°,则这个多边形的边数为.15.如图,是一个不规则的五角星,则∠A+∠B+∠C+∠D+∠E=.(用度数表示)16.如图,AD∥BC,BD平分∠ABC,∠A:∠ABC=2:1,则∠ADB=度.17.在△ABC中,已知∠ABC=50°,∠ACB=60°,BE是AC上的高,CF是AB上的高,H是BE 和CF的交点,则∠BHC=.18.如图,AB∥CD∥EF,且CG∥AF,则图中与∠BAF互补的角共有个.19.如图,在△ABC中,∠A=60°,BD、CD分别平分∠ABC、∠ACB,M、N、Q分别在DB、DC、BC的延长线上,BE、CE分别平分∠MBC、∠BCN,BF、CF分别平分∠EBC、∠ECQ,则∠F=.三、解答题(本大题共六小题,共58分)20.如图,已知DF⊥AB于点F,且∠A=45°,∠D=30°,求∠ACB的度数.21.如图,在△ABC中,∠ABC=56°,∠ACB=44°,AD是BC边上的高,AE是△ABC的角平分线,你能求出∠DAE的度数吗?请试一试!22.如图,D是△ABC的BA边延长线上的一点,AE是∠DAC的平分线,∠B=∠C,试说明:AE∥BC.23.如图,∠ABD和∠BDC的平分线交于点E,BE的延长线交CD于点F,且∠1+∠2=90°.求证:(1)AB∥CD;(2)猜想∠2 与∠3的关系并证明.24.完成下面推理过程:如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:∵∠1=∠2(已知),且∠1=∠CGD(),∴∠2=∠CGD(等量代换).∴CE∥BF().∴∠=∠C().又∵∠B=∠C(已知),∴∠=∠B(等量代换).∴AB∥CD().25.如图①,△ABC的角平分线BD、CE相交于点P.(1)如果∠A=70°,求∠BPC的度数;(2)如图②,过P点作直线MN∥BC,分别交AB和AC于点M和N,试求∠MPB+∠NPC的度数(用含∠A的代数式表示);(3)在(2)的条件下,将直线MN绕点P旋转.(i)当直线MN与AB、AC的交点仍分别在线段AB和AC上时,如图③,试探索∠MPB、∠NPC、∠A三者之间的数量关系,并说明你的理由;(ⅱ)当直线MN与AB的交点仍在线段AB上,而与AC的交点在AC的延长线上时,如图④,试问(i)中∠MPB、∠NPC、∠A三者之间的数量关系是否仍然成立?若成立,请说明你的理由;若不成立,请给出∠MPB、∠NPC、∠A三者之间的数量关系,并说明你的理由.七年级(下)第三周周测数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.一个三角形的两边长为2和6,第三边为偶数,则这个三角形的周长为()A.10 B.12 C.14 D.16【考点】三角形三边关系.【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:第三边的取值范围是大于4且小于8,又第三边是偶数,故第三边是6.则该三角形的周长是14.故选:C.2.若一个多边形的内角和与它的外角和相等,则这个多边形是()A.三角形B.四边形C.五边形D.六边形【考点】多边形内角与外角.【分析】根据多边形的内角和公式(n﹣2)•180°与多边形的外角和定理列式进行计算即可得解.【解答】解:设多边形的边数为n,根据题意得(n﹣2)•180°=360°,解得n=4.故这个多边形是四边形.故选B.3.一个三角形的三个内角中,锐角的个数最少为()A.0 B.1 C.2 D.3【考点】三角形内角和定理.【分析】依据三角形的内角和是180°,假设在一个三角形中只有1个锐角或一个锐角都没有,则可以得出这个三角形的内角和大于180°,所以假设不成立,据此即可判断.【解答】解:假设在一个三角形中只有1个锐角或一个锐角都没有,则另外的两个角或三个角都大于或等于90°,于是可得这个三角形的内角和大于180°,这样违背了三角形的内角和定理,假设不成立.所以任何一个三角形的三个内角中至少有2个锐角.故选(C).4.下面说法错误的是()A.三角形的三条角平分线交于一点B.三角形的三条中线交于一点C.三角形的三条高交于一点D.三角形的三条高所在的直线交于一点【考点】三角形的角平分线、中线和高.【分析】根据三角形的角的平分线、中线、高线的性质即可确定.【解答】解:A、三角形的三条角平分线交于一点,是三角形的内心,故命题正确;B、三角形的三条中线交于一点,是三角形的重心,故命题正确;三角形的三条高所在的直线交于一点,三条高不一定相交,故C错误,D正确.故选C.5.同一平面内有四条直线a、b、c、d,若a∥b,a⊥c,b⊥d,则c、d的位置关系为()A.互相垂直B.互相平行C.相交D.没有确定关系【考点】平行公理及推论.【分析】作出图形,根据平行公理的推论解答.【解答】解:如图,∵a∥b,a⊥c,∴c⊥b,又∵b⊥d,∴c∥d.故选B.6.如图,点E在CD延长线上,下列条件中不能判定AB∥CD的是()A.∠1=∠2 B.∠3=∠4 C.∠5=∠B D.∠B+∠BDC=180°【考点】平行线的判定.【分析】根据平行线的判定方法直接判定.【解答】解:选项B中,∵∠3=∠4,∴AB∥CD (内错角相等,两直线平行),所以正确;选项C中,∵∠5=∠B,∴AB∥CD (内错角相等,两直线平行),所以正确;选项D中,∵∠B+∠BDC=180°,∴AB∥CD(同旁内角互补,两直线平行),所以正确;而选项A中,∠1与∠2是直线AC、BD被AD所截形成的内错角,因为∠1=∠2,所以应是AC ∥BD,故A错误.故选A.7.如图,直线l1∥l2,则下列式子成立的是()A.∠1+∠2+∠3=180°B.∠1﹣∠2+∠3=180°C.∠2+∠3﹣∠1=180°D.∠1+∠2﹣∠3=180°【考点】平行线的性质.【分析】根据平行线的性质进行判断即可.【解答】解:因为l1∥l2,所以∠1=+∠3,可得:∠1+∠2﹣∠3=180°,故选D8.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.48 B.96 C.84 D.42【考点】平移的性质.=S梯形ABEO,【分析】根据平移的性质得出BE=6,DE=AB=10,则OE=6,则阴影部分面积=S四边形ODFC根据梯形的面积公式即可求解.【解答】解:由平移的性质知,BE=6,DE=AB=10,∴OE=DE﹣DO=10﹣4=6,=S梯形ABEO=(AB+OE)•BE=(10+6)×6=48.∴S四边形ODFC故选:A.9.如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米B.150米C.160米D.240米【考点】多边形内角与外角.【分析】多边形的外角和为360°每一个外角都为24°,依此可求边数,再求多边形的周长.【解答】解:∵多边形的外角和为360°,而每一个外角为24°,∴多边形的边数为360°÷24°=15,∴小华一共走了:15×10=150米.10.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7 B.7或8 C.8或9 D.7或8或9【考点】多边形内角与外角.【分析】首先求得内角和为1080°的多边形的边数,即可确定原多边形的边数.【解答】解:设内角和为1080°的多边形的边数是n,则(n﹣2)•180°=1080°,解得:n=8.则原多边形的边数为7或8或9.故选:D.二、填空题(本大题共9小题,每空2分,共22分)11.回答下列问题:(1)若一个多边形的内角和与外角和的总和为1800°,则这个多边形是十边形.(2)一个多边形的每一个外角都等于72°,这个多边形是五边形,它的每个内角是108度?【考点】多边形内角与外角.【分析】(1)根据多边形的外角与内角的关系,可得答案;(2)根据多边形的外角和,可得答案;根据内角与外角的关系,可得答案.【解答】解:(1)∵相邻的内角与外角是邻补角,∴相邻内角与外角的和180°,1800÷180=10,故答案为:十;(2)360°÷72°=5,故答案为:五;内角180°﹣72°=108°,故答案为:108.12.若n边形内角和为900°,则边数n=7.【考点】多边形内角与外角.【分析】由n边形的内角和为:180°(n﹣2),即可得方程180(n﹣2)=900,解此方程即可【解答】解:根据题意得:180(n﹣2)=900,解得:n=7.故答案为:7.13.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于72°.【考点】多边形内角与外角.【分析】首先设此多边形为n边形,根据题意得:180(n﹣2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【解答】解:设此多边形为n边形,根据题意得:180(n﹣2)=540,解得:n=5,∴这个正多边形的每一个外角等于:=72°.故答案为:72°.14.若多边形的每一个内角均为135°,则这个多边形的边数为8.【考点】多边形内角与外角.【分析】先求出每一外角的度数是45°,然后用多边形的外角和为360°÷45°进行计算即可得解.【解答】解:∵所有内角都是135°,∴每一个外角的度数是180°﹣135°=45°,∵多边形的外角和为360°,∴360°÷45°=8,即这个多边形是八边形.故答案为:8.15.如图,是一个不规则的五角星,则∠A+∠B+∠C+∠D+∠E=180°.(用度数表示)【考点】三角形内角和定理.【分析】根据三角形外角性质,可得∠1=∠C+∠2,∠2=∠A+∠D,那么有∠1=∠C+∠A+∠D,再根据三角形内角和定理有∠1+∠B+∠E=180°,从而易求∠A+∠B+∠C+∠D+∠E=180°.【解答】解:如右图所示,∵∠1=∠C+∠2,∠2=∠A+∠D,∴∠1=∠C+∠A+∠D,又∵∠1+∠B+∠E=180°,∴∠A+∠B+∠C+∠D+∠E=180°.故答案是:180°.16.如图,AD∥BC,BD平分∠ABC,∠A:∠ABC=2:1,则∠ADB=30度.【考点】平行线的性质;角平分线的定义.【分析】本题主要利用平行线的性质和角平分线的定义进行做题.【解答】解:∵AD∥BC,∴∠A+∠ABC=180°;∵∠A:∠ABC=2:1,∴∠ABC=60°;∵BD平分∠ABC,∴∠DBC=30°,∵AD∥BC,∴∠ADB=30°.17.在△ABC中,已知∠ABC=50°,∠ACB=60°,BE是AC上的高,CF是AB上的高,H是BE 和CF的交点,则∠BHC=110°.【考点】多边形内角与外角;三角形内角和定理.【分析】先利用三角形的内角和等于180°求出∠A的度数,再利用四边形的内角和等于360°求出∠EHF的度数,再根据对顶角相等求解即可.【解答】解:∵∠ABC=50°,∠ACB=60°,∴∠A=180°﹣∠ABC﹣∠ACB=180°﹣50°﹣60°=70°,∵BE是AC上的高,CF是AB上的高,∴∠EHF=360°﹣90°×2﹣70°=110°,∴∠BHC=∠EHF=110°.故答案为:110°.18.如图,AB∥CD∥EF,且CG∥AF,则图中与∠BAF互补的角共有5个.【考点】平行线的性质.【分析】根据平行线的性质及对顶角的定义进行解答即可.【解答】解:∵AB∥CD∥EF,∴∠BAF+∠AHD=180°,∠AHD=∠1,∴∠AHD、∠1与∠BAF互补;∵∠CHF=∠AHD,∴∠AHF与∠BAF互补;∵CG∥AF,∴∠MCG=∠CHF,∠1=∠2,∴∠2、∠MCG与∠BAF互补;∴图中与∠BAF互补的角共有5个.故答案为:5.19.如图,在△ABC中,∠A=60°,BD、CD分别平分∠ABC、∠ACB,M、N、Q分别在DB、DC、BC的延长线上,BE、CE分别平分∠MBC、∠BCN,BF、CF分别平分∠EBC、∠ECQ,则∠F=15°.【考点】三角形内角和定理;三角形的外角性质.【分析】先由BD、CD分别平分∠ABC、∠ACB得到∠DBC=∠ABC,∠DCB=∠ACB,在△ABC中根据三角形内角和定理得∠DBC+∠DCB=(∠ABC+∠ACB)==60°,则根据平角定理得到∠MBC+∠NCB=300°;再由BE、CE分别平分∠MBC、∠BCN得∠5+∠6=∠MBC,∠1=∠NCB,两式相加得到∠5+∠6+∠1=(∠NCB+∠NCB)=150°,在△BCE中,根据三角形内角和定理可计算出∠E=30°;再由BF、CF分别平分∠EBC、∠ECQ得到∠5=∠6,∠2=∠3+∠4,根据三角形外角性质得到∠3+∠4=∠5+∠F,∠2+∠3+∠4=∠5+∠6+∠E,利用等量代换得到∠2=∠5+∠F,2∠2=2∠5+∠E,再进行等量代换可得到∠F=∠E.【解答】解:∵BD、CD分别平分∠ABC、∠ACB,∠A=60°,∴∠DBC=∠ABC,∠DCB=∠ACB,∴∠DBC+∠DCB=(∠ABC+∠ACB)==×=60°,∴∠MBC+∠NCB=360°﹣60°=300°,∵BE、CE分别平分∠MBC、∠BCN,∴∠5+∠6=∠MBC,∠1=∠NCB,∴∠5+∠6+∠1=(∠NCB+∠NCB)=150°,∴∠E=180°﹣(∠5+∠6+∠1)=180°﹣150°=30°,∵BF、CF分别平分∠EBC、∠ECQ,∴∠5=∠6,∠2=∠3+∠4,∵∠3+∠4=∠5+∠F,∠2+∠3+∠4=∠5+∠6+∠E,即∠2=∠5+∠F,2∠2=2∠5+∠E,∴2∠F=∠E,∴∠F=∠E=×30°=15°.故答案为15°.三、解答题(本大题共六小题,共58分)20.如图,已知DF⊥AB于点F,且∠A=45°,∠D=30°,求∠ACB的度数.【考点】三角形内角和定理.【分析】由三角形的内角和定理,可得∠AEF=45°,再由对顶角相等得出∠CED=∠AEF=45°,由外角和定理即可求得∠ACB的度数.【解答】解:∵DF⊥AB于点F,∴∠EFA=90°,∵∠A=45°,∴∠AEF=45°,∴∠ACB=∠CED+∠D=45°+30°=75°.21.如图,在△ABC中,∠ABC=56°,∠ACB=44°,AD是BC边上的高,AE是△ABC的角平分线,你能求出∠DAE的度数吗?请试一试!【考点】解直角三角形.【分析】先求出∠BAC的度数,再求出∠BAD的度数和∠CAE的度数,再求出∠DAE的度数.【解答】解:∵∠BAC=180°﹣56°﹣44°=80°,又∵AE是△ABC的角平分线,∴∠CAE=40°,∵∠ABC=56°,AD是BC边上的高.∴∠BAD=90°﹣56°=34°,∴∠DAE=∠BAE﹣∠BAD=∠CAE﹣∠BAD=40°﹣34°=6°.22.如图,D是△ABC的BA边延长线上的一点,AE是∠DAC的平分线,∠B=∠C,试说明:AE∥BC.【考点】平行线的判定;三角形的外角性质.【分析】由AE是∠DAC的平分线,则可得∠DAE=∠CAE,由三角形外角性质,可得∠DAC=∠B+∠C,再根据∠B=∠C,得出∠DAE=∠B,据此可得AE∥BC.【解答】证明:∵AE是∠DAC的平分线,∴∠DAE=∠EAC,∵∠DAC是△ABC的外角,∴∠DAE=∠B,∴AE∥BC.23.如图,∠ABD和∠BDC的平分线交于点E,BE的延长线交CD于点F,且∠1+∠2=90°.求证:(1)AB∥CD;(2)猜想∠2 与∠3的关系并证明.【考点】平行线的判定;角平分线的定义;余角和补角.【分析】(1)已知BE、DE平分∠ABD、∠BDC,且∠1+∠2=90°,可得∠ABD+∠BDC=180°,根据同旁内角互补,可得两直线平行.(2)已知∠1+∠2=90°,即∠BED=90°,那么∠3+∠FDE=90°,将等角代换,即可得出∠3与∠2的数量关系.【解答】证明:(1)∵BE、DE平分∠ABD、∠BDC,∴∠1=∠ABD,∠2=∠BDC;∵∠1+∠2=90°,∴∠ABD+∠BDC=180°;∴AB∥CD;(同旁内角互补,两直线平行)(2)∠2+∠3=90°.理由:∵DE平分∠BDC,∴∠2=∠FDE;∵∠1+∠2=90°,∴∠BED=∠DEF=90°;∴∠3+∠FDE=90°;∴∠2+∠3=90°.24.完成下面推理过程:如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:∵∠1=∠2(已知),且∠1=∠CGD(对顶角相等),∴∠2=∠CGD(等量代换).∴CE∥BF(同位角相等,两直线平行).∴∠BFD=∠C(两直线平行,同位角相等).又∵∠B=∠C(已知),∴∠BFD=∠B(等量代换).∴AB∥CD(内错角相等,两直线平行).【考点】平行线的判定与性质.【分析】先由对顶的定义得到∠1=∠CGD,则∠2=∠CGD,根据平行线的判定得到CE∥BF,则∠C=∠BFD,易得∠B=∠BFD,然后根据平行线的判定即可得到AB∥CD.【解答】解:答案为:对顶角相等;同位角相等,两直线平行;BFD两直线平行,同位角相等;BFD;内错角相等,两直线平行.25.如图①,△ABC的角平分线BD、CE相交于点P.(1)如果∠A=70°,求∠BPC的度数;(2)如图②,过P点作直线MN∥BC,分别交AB和AC于点M和N,试求∠MPB+∠NPC的度数(用含∠A的代数式表示);(3)在(2)的条件下,将直线MN绕点P旋转.(i)当直线MN与AB、AC的交点仍分别在线段AB和AC上时,如图③,试探索∠MPB、∠NPC、∠A三者之间的数量关系,并说明你的理由;(ⅱ)当直线MN与AB的交点仍在线段AB上,而与AC的交点在AC的延长线上时,如图④,试问(i)中∠MPB、∠NPC、∠A三者之间的数量关系是否仍然成立?若成立,请说明你的理由;若不成立,请给出∠MPB、∠NPC、∠A三者之间的数量关系,并说明你的理由.【考点】三角形内角和定理;平行线的性质;三角形的外角性质.【分析】(1)根据三角形内角和定理得到∠BPC=180°﹣∠PBC﹣∠PCB,再根据角平分线定义得到∠BPC=180°﹣(∠ABC+∠ACB),再利用三角形内角和定理得∠BPC=180°﹣=90°+∠A,然后把∠A的度数代入计算;(2)根据平角定义得∠MPB+∠NPC=180°﹣∠BPC,然后根据(1)的求解;(3)(i)∠与(2)的说理一样;(ⅱ)有结论∠MPB﹣∠NPC=90°﹣∠A.【解答】解:(1)∠BPC=180°﹣∠PBC﹣∠PCB=180°﹣(∠ABC+∠ACB)=180°﹣=90°+∠A=90°+×70°=125°;(2)∵∠BPC=90°+∠A,∴∠MPB+∠NPC=180°﹣∠BPC=180°﹣(90°+∠A)=90°﹣∠A;(3)(i)∠MPB+∠NPC=90°﹣∠A.理由如下:∵∠BPC=90°+∠A,∴∠MPB+∠NPC=180°﹣∠BPC=180°﹣(90°+∠A)=90°﹣∠A;(ⅱ)不成立,有∠MPB﹣∠NPC=90°﹣∠A.理由如下:由图可知∠MPB+∠BPC﹣∠NPC=180°,由(i)知:∠BPC=90°+∠A,∴∠MPB﹣∠NPC=180°﹣∠BPC=180°﹣(90°+∠A)=90°﹣∠A.2017年4月7日。
第四章三角形周周测81.根据已知条件作符合条件的三角形,在作图过程中主要依据是(C )A.用尺规作一条线段等于已知线段;B.用尺规作一个角等于已知角C.用尺规作一条线段等于已知线段和作一个角等于已知角;D.不能确定2.已知三角形的两边及其夹角,求作这个三角形时,第一步骤应为(D )A.作一条线段等于已知线段B.作一个角等于已知角C.作两条线段等于已知三角形的边,并使其夹角等于已知角D.先作一条线段等于已知线段或先作一个角等于已知角3.用尺规作一个直角三角形,使其两条直角边分别等于已知线段时,实际上已知的条件是(A )A.三角形的两条边和它们的夹角;B.三角形的三条边C.三角形的两个角和它们的夹边;D.三角形的三个角4.已知三边作三角形时,用到所学知识是(C )A.作一个角等于已知角B.作一个角使它等于已知角的一半C.在射线上取一线段等于已知线段D.作一条直线的平行线或垂线5.如图要测量河两岸相对的两点A、B的距离,先在AB 的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,可以证明△EDC≌△ABC,得ED=AB,因此,测得ED的长就是AB的长.判定△EDC≌△ABC的理由是( B )A.SSS B.ASA C.AAS D.SAS6.如图所示小明设计了一种测零件内径AB的卡钳,问:在卡钳的设计中,要使DC=AB,AO、BO、CO、DO应满足下列的哪个条件?( D )A.AO=CO B.BO=DOC .AC =BDD .AO =CO 且BO =DO7.山脚下有A 、B 两点,要测出A 、B 两点间的距离。
在地上取一个可以直接到达A 、B 点的点C ,连接AC 并延长到D ,使CD =CA ;连接BC 并延长到E ,使CE =CB ,连接DE 。
可以证△ABC ≌△DEC ,得DE =AB ,因此,测得DE 的长就是AB 的长。
判定△ABC ≌△DEC 的理由是( D )A .SSSB .ASAC .AASD .SAS8.如图,A ,B 两点分别位于一个池塘的两端,小明想用绳子测量A ,B 间的距离,如图所示的这种方法,是利用了三角形全等中的( D )A .SSSB .ASAC .AASD .SAS9.如图所示,要测量河两岸相对的两点A 、B 的距离,因无法直接量出A 、B 两点的距离,请你设计一种方案,求出A 、B 的距离,并说明理由.答案:在AB 的垂线BF 上取两点C ,D ,使CD =BC ,再作出BF 的垂线DE ,使A ,C ,E 在一条直线上,这时测得的DE 的长就是AB 的长.作出的图形如图所示:AB E CFCDE∵AB⊥BF ED⊥BF∴∠ABC=∠EDC=90°又∵CD=BC∠ACB=∠ECD∴△ACB≌△E CD,∴AB=DE.解析:解答:答案处有解答过程分析:根据题中垂直可得到一组角相等,再根据对顶角相等,已知一组边相等,得到三角形全等的三个条件,于是根据ASA可得到三角形全等,全等三角形的对应边相等,得结论.10.为在池塘两侧的A,B两处架桥,要想测量A,B两点的距离,如图所示,找一处看得见A,B的点P,连接AP并延长到D,使P A=PD,连接BP并延长到C,使.测得CD=35m,就确定了AB也是35m,说明其中的理由;(1)由△APB≌△DPC,所以CD=AB.答案:∵P A=PD PC=PB又∠APB=∠CPD∴△APB≌△DPC,∴AB=CD=35 m.解析:解答:答案处有解答过程分析:根据题中条件可以直接得到两组边对应相等,再根据对顶角相等得到三角形全等的第三个条件,于是根据SAS可得到三角形全等,全等三角形的对应边相等,得结论.11.如图所示,小王想测量小口瓶下半部的内径,他把两根长度相等的钢条AA′,BB′的中点连在一起,A,B两点可活动,使M,N卡在瓶口的内壁上,A′,B•′卡在小口瓶下半部的瓶壁上,然后量出AB的长度,就可量出小口瓶下半部的内径,请说明理由.答案:∵AA′,BB′的中点为O∴OA=OA′,OB=OB′又∠AOB=∠A′OB′∴△A′OB′≌△AOB,∴AB=A′B′.解析:解答:答案处有解答过程分析:根据线段中点的性质,得到两组边对应相等,再根据对顶角相等得到三角形全等的第三个条件,于是得到三角形全等。
初中数学试卷第一章 三角形综合测评(二)时间: 满分:120分班级: 姓名: 得分:一、选择题(每小题4分,共32分)1. 下列四个图形是全等图形的是( )A . (1)和(3)B . (2)和(3)C . (2)和(4)D . (3)和(4)2. 图1中的三角形被木板遮住了一部分,这个三角形是( )A . 锐角三角形B . 直角三角形C . 钝角三角形D . 以上都有可能3. 下面的事例:①过去农村的人们通常会在栅栏门上斜着钉上一些木条;②新植的树木,常用一些粗木与之成角度支撑起来防止倒斜;③活动挂衣架;④学校门口的伸缩大门.其中是用到三角形稳定性的有( )A .1个B .2个C .3个D .4个4. 根据下列条件,能画出唯一△ABC 的是( )A .AB =4,BC =5,AC =10 B .AB =5,BC =4,∠A=40° C .∠A=60°,∠B=50°,AB =5D .∠C=90°,AB =85. 已知三角形三边长分别为2,x ,13,若x 为正整数,则这样的三角形个数为( )A . 2B . 3C . 5D . 136. 如图2,要使△ABC≌△ABD,下面给出的四组条件中,错误的一组是( )A . BC=BD ,∠BAC=∠BADB . ∠C=∠D,∠BAC=∠BADC . ∠BAC=∠BAD,∠ABC=∠ABD D . BC=BD ,AC=AD7.若直角三角形的一个锐角是另一个锐角的4倍,则这个直角三角形中最小锐角的度数是( ) A . 9° B. 18° C. 27° D. 36° 8. 如图3,AD 是△ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE=DF ,连接BF ,CE .下列说法: ①△ABD 和△ACD 面积相等;②∠BAD=∠CAD;③△BDF≌△CDE;④BF∥CE;⑤CE=AE.其中正确的有( )图1图2图3A . 1个B . 2个C . 3个D . 4个二、填空题(每小题4分,共32分)9. 如图4所示,图中有 个三角形, 个直角三角形.10.如图5,∠ACD=155°,∠B=35°,则∠A= 度. 11. 如图6所示,CD 是△ABC 的中线,AC=9cm ,BC=3cm ,那么△ACD 和△BCD 的周长差是 cm .12.已知△DEF≌△ABC,AB=AC ,且△ABC 的周长为22cm ,BC=4cm ,则△DEF 中最长的一条边为 .13.如图7,点B 、E 、C 、F 在一条直线上,AB∥DE,BE=CF ,请添加一个条件 ,使△ABC≌△DEF.14.如图8是标准跷跷板的示意图.横板AB 的中点过支撑点O ,且绕点O 只能上下转动.如果∠OCA=90°,∠CAO=25°,则小孩玩耍时,跷跷板可以转动的最大角度为 .15. 已知三角形的两边长分别为3和10,周长恰好是6的倍数,那么第三边长为________.16.图9所示的图案是由全等的图形拼成的,其中AD=1cm ,BC=2cm ,后面有一部分图案被墨水污染了,已知AF=117cm ,请思考一下被墨水完全盖住的全等图形共有 个。
北师大版七年级下册第4章《三角形》单元测试题(满分120分)班级:________姓名:________座位:________成绩:________一.选择题(共10小题,满分30分)1.一个三角形的两边长分别是2和4,则第三边的长可能是()A.1B.2C.4D.72.在△ABC中,作BC边上的高,以下作图正确的是()A.B.C.D.3.如图,已知BD=CD,则AD一定是△ABC的()A.角平分线B.高线C.中线D.无法确定4.如图,在△ABC中,点D在BC的延长线上,若∠A=60°,∠B=40°,则∠ACD的度数是()A.140°B.120°C.110°D.100°5.如图,在△ABC中,CD平分∠ACB,DE∥BC.已知∠A=74°,∠B=46°,则∠BDC 的度数为()A.104°B.106°C.134°D.136°6.如图,AB=AC,若要使△ABE≌△ACD.则添加的一个条件不能是()A.∠B=∠C B.∠ADC=∠AEB C.BD=CE D.BE=CD7.如图,A、B两点分别位于一个池塘的两端,小明想用绳子测量A、B间的距离,如图所示的这种方法,是利用了三角形全等中的()A.SSS B.ASA C.AAS D.SAS8.小明学习了全等三角形后总结了以下结论:①全等三角形的形状相同、大小相等;②全等三角形的对应边相等、对应角相等;③面积相等的两个三角形是全等图形;④全等三角形的周长相等.其中正确的结论个数是()A.1B.2C.3D.49.如图,AD是△ABC的高,BE是△ABC的角平分线,BE,AD相交于点F,已知∠BAD =42°,则∠BFD=()A.45°B.54°C.56°D.66°10.如图,△ABC的三边长均为整数,且周长为22,AM是边BC上的中线,△ABM的周长比△ACM的周长大2,则BC长的可能值有()个.A.4B.5C.6D.7二.填空题(共6小题,满分24分)11.下列4个图形中,属于全等的2个图形是.(填序号)12.如图,某人将一块三角形玻璃打碎成两块,带块(填序号)能到玻璃店配一块完全一样的玻璃,用到的数学道理是.13.如图,Rt△ABC中,∠C=90°,∠B=25°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD 的度数是.14.如图,在△ABC中,AC=BC,过点A,B分别作过点C的直线的垂线AE,BF.若AE =CF=3,BF=4.5,则EF=.15.边长为整数、周长为20的三角形的个数为.16.如图,Rt△ABC中,∠BAC=90°,AB=6,AC=3,G是△ABC重心,则S△AGC=.三.解答题(共8小题,满分66分)17.如图,在一个三角形的一条边上取四个点,把这些点与这条边所对的顶点连接起来.问图中共有多少个三角形.请你通过与数线段或数角的问题进行类比来思考.18.如图,AB=DE,AC=DF,BE=CF,求证:△ABC≌△DEF.19.王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合.(1)求证:△ADC≌△CEB;(2)求两堵木墙之间的距离.20.如图,已知B,D在线段AC上,且AD=CB,BF=DE,∠AED=∠CFB=90°求证:(1)△AED≌△CFB;(2)BE∥DF.21.如图,已知锐角△ABC,AB>BC.(1)尺规作图:求作△ABC的角平分线BD;(保留作图痕迹,不写作法)(2)点E在AB边上,当BE满足什么条件时?∠BED=∠C.并说明理由.22.如图,△ABC中,∠ACB=90°,D为AB上一点,过D点作AB垂线,交AC于E,交BC的延长线于F.(1)∠1与∠B有什么关系?说明理由.(2)若BC=BD,请你探索AB与FB的数量关系,并且说明理由.23.如图1,点A、B分别在射线OM、ON上运动(不与点O重合),AC、BC分别是∠BAO 和∠ABO的角平分线,BC延长线交OM于点G.(1)若∠MON=60°,则∠ACG=°;若∠MON=90°,则∠ACG=°;(2)若∠MON=n°.请求出∠ACG的度数;(用含n的代数式表示)(3)如图2,若∠MON=n°,过C作直线与AB交F.若CF∥OA时,求∠BGO﹣∠ACF的度数.(用含n的代数式表示)24.如图1所示,在Rt△ABC中,∠C=90°,点D是线段CA延长线上一点,且AD=AB,点F是线段AB上一点,连接DF,以DF为斜边作等腰Rt△DFE,连接EA,EA满足条件EA⊥AB.(1)若∠AEF=20°,∠ADE=50°,BC=2,求AB的长度;(2)求证:AE=AF+BC;(3)如图2,点F是线段BA延长线上一点,探究AE、AF、BC之间的数量关系,并证明你的结论.参考答案一.选择题(共10小题)1.【解答】解:设第三边的长为x,由题意得:4﹣2<x<4+2,2<x<6,故选:C.2.【解答】解:BC边上的高应从点A向BC引垂线,只有选项D符合条件,故选:D.3.【解答】解:由于BD=CD,则点D是边BC的中点,所以AD一定是△ABC的一条中线.故选:C.4.【解答】解:∠ACD是△ABC的一个外角,∴∠ACD=∠A+∠B=100°,故选:D.5.【解答】解:∵∠A=74°,∠B=46°,∴∠ACB=60°,CD平分∠ACB,∴∠BCD=∠ACD=∠ACB=×60°=30°,∴∠BDC=180°﹣∠B﹣∠BCD=104°,故选:A.6.【解答】解:A、添加∠B=∠C可利用ASA定理判定△ABE≌△ACD,故此选项不合题意;B、添加∠ADC=∠AEB可利用AAS定理判定△ABE≌△ACD,故此选项不合题意;C、添加BD=CE可得AD=AE,可利用利用SAS定理判定△ABE≌△ACD,故此选项不合题意;D、添加BE=CD不能判定△ABE≌△ACD,故此选项符合题意;故选:D.7.【解答】解:观察图形发现:AC=DC,BC=BC,∠ACB=∠DCB,所以利用了三角形全等中的SAS,故选:D.8.【解答】解:①全等三角形的形状相同、大小相等,正确;②全等三角形的对应边相等、对应角相等,正确;③面积相等的两个三角形是全等图形,错误;④全等三角形的周长相等,正确.故选:C.9.【解答】解:∵AD是△ABC的高,∴∠ADB=90°,∵∠BAD=42°,∴∠ABD=180°﹣∠ADB﹣∠BAD=48°,∵BE是△ABC的角平分线,∴∠ABF=∠ABD=24°,∴∠BFD=∠BAD+∠ABF=42°+24°=66°,故选:D.10.【解答】解:∵△ABC的周长为22,△ABM的周长比△ACM的周长大2,∴2<BC<22﹣BC,解得2<BC<11,又∵△ABC的三边长均为整数,△ABM的周长比△ACM的周长大2,∴AC=为整数,∴BC边长为偶数,∴BC=4,6,8,10,故选:A.二.填空题(共6小题)11.【解答】解:根据全等三角形的判定(SAS)可知属于全等的2个图形是①③,故答案为:①③.12.【解答】解:第①块只保留了原三角形的一个角和部分边,根据这两块中的任一块不能配一块与原来完全一样的;第②块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带②去.故答案为:②,ASA.13.【解答】解:∵Rt△ABC中,∠C=90°,∠B=25°,∴∠CAB=90°﹣∠B=90°﹣25°=65°,由作图过程可知:MN是AB的垂直平分线,∴DA=DB,∴∠DAB=∠B=25°,∴∠CAD=∠CAB﹣∠DAB=65°﹣25°=40°.答:∠CAD的度数是40°.故答案为:40°.14.【解答】解:∵过点A,B分别作过点C的直线的垂线AE,BF,∴∠AEC=∠CFB=90°,在Rt△AEC和Rt△CFB中,,∴Rt△AEC≌Rt△CFB(HL),∴EC=BF=4.5,∴EF=EC+CF=4.5+3=7.5,故答案为:7.5.15.【解答】解:边长为整数、周长为20的三角形分别是:(9,9,2)(8,8,4)(7,7,6)(6,6,8)(9,6,5)(9,7,4)(9,8,3)(8,7,5),共8个.故答案为:8.16.【解答】解:延长AG交BC于E.∵∠BAC=90°,AB=6,AC=3,∴S△ABC=•AB•AC=9,∵G是△ABC的重心,∴AG=2GE,BE=EC,∴S△AEC=×9=4.5,∴S△AGC=×S△AEC=3,故答案为3三.解答题(共8小题)17.【解答】解:如图所示,图中三角形的个数有△ABC,△ACD,△ADE,△AEF,△AFG,△ABD,△ABE,△ABF,△ABG,△ACE,△ACF,△ACG,△ADF,△ADG,△AEG.18.【解答】解:∵BE=CF,∴BE+EC=CF+EC,即BC=EF,在△ABC和△DEF中,∵,∴△ABC≌△DEF(SSS).19.【解答】(1)证明:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC在△ADC和△CEB中,∴△ADC≌△CEB(AAS);(2)解:由题意得:AD=2×3=6cm,BE=7×2=14cm,∵△ADC≌△CEB,∴EC=AD=6cm,DC=BE=14cm,∴DE=DC+CE=20(cm),答:两堵木墙之间的距离为20cm.20.【解答】证明(1)∵∠AED=∠CFB=90°,在Rt△AED和Rt△CFB中,∴Rt△AED≌Rt△CFB(HL).(2)∵△AED≌△CFB,∴∠BDE=∠DBF,在△DBE和△BDF中,∴△DBE≌△BDF(SAS),∴∠DBE=∠BDF,∴BE∥DF.21.【解答】解:(1)如图,线段BD即为所求.(2)结论:BE=BC.理由:∵BD平分∠ABC,∵BE=BC,BD=BD,∴△BDE≌△BDC(SAS),∴∠BED=∠C.22.【解答】解:(1))∠1与∠B相等,理由:∵,△ABC中,∠ACB=90°,∴∠1+∠F=90°,∵FD⊥AB,∴∠B+∠F=90°,∴∠1=∠B;(2)若BC=BD,AB与FB相等,理由:∵△ABC中,∠ACB=90°,DF⊥AB,∴∠ACB=∠FDB=90°,在△ACB和△FDB中,,∴△ACB≌△FDB(AAS),∴AB=FB.23.【解答】解:(1)∵∠MON=60°,∴∠OBA+∠OAB=120°,∵∠OBA、∠OAB的平分线交于点C,∴∠ABC+∠BAC=×120°=60°,∴∠ACB=180°﹣60°=120°,∴∠ACG=60°;∵∠MON=90°,∴∠OBA+∠OAB=90°,∵∠OBA、∠OAB的平分线交于点C,∴∠ABC+∠BAC=×90°=45°,∴∠ACB=180°﹣45°=135°;故答案为:60,45;(2)在△AOB中,∠OBA+∠OAB=180°﹣∠AOB=180°﹣n°,∵∠OBA、∠OAB的平分线交于点C,∴∠ABC+∠BAC=(∠OBA+∠OAB)=(180°﹣n°),即∠ABC+∠BAC=90°﹣n°,∴∠ACB=180°﹣(∠ABC+∠BAC)=180°﹣(90°﹣n°)=90°+n°,∴∠ACG=180°﹣(90°+n°)=90°﹣n°;(3)∵AC、BC分别是∠BAO和∠ABO的角平分线,∴∠ABC=ABO,∠BAC=∠OAC=,∵CF∥AO,∴∠ACF=∠CAG,∵∠BGO=∠BAG+∠ABG,∴∠BGO﹣∠ACF=∠BAG+∠ABG﹣∠ACF=2∠BAC+∠ABG﹣∠BAC=∠ABG+∠BAC=90°﹣n°.24.【解答】解:(1)在等腰直角三角形DEF中,∠DEF=90°,∵∠1=20°,∴∠2=∠DEF﹣∠1=70°,∵∠EDA+∠2+∠3=180°,∴∠3=60°,∵EA⊥AB,∴∠EAB=90°,∵∠3+∠EAB+∠A=180°,∴∠4=30°,∵∠C=90°,∴AB=2BC=4;(2)如图1,过D作DM⊥AE于M,在△DEM中,∠2+∠5=90°,∵∠2+∠1=90°,∵DE=FE,在△DEM与△EF A中,,∴△DEM≌△EF A,∴AF=EM,∵∠4+∠B=90°,∵∠3+∠EAB+∠4=180°,∴∠3+∠4=90°,∴∠3=∠B,在△DAM与△ABC中,,∴△DAM≌△ABC,∴BC=AM,∴AE=EM+AM=AF+BC;(3)如图2,过D作DM⊥AE交AE的延长线于M,∵∠C=90°,∴∠1+∠B=90°,∵∠2+∠MAB+∠1=180°,∠MAB=90°,∴∠2+∠1=90°,∠2=∠B,在△ADM与△BAC中,,∴△ADM≌△BAC,∵EF=DE,∠DEF=90°,∵∠3+∠DEF+∠4=180°,∴∠3+∠4=90°,∵∠3+∠5=90°,∴∠4=∠5,在△MED与△AFE中,,∴△MED≌△AFE,∴ME=AF,∴AE+AF=AE+ME=AM=BC,即AE+AF=BC.。
人教版数学七年级下册第五章《相交线与平行线》周练习第五章相交线与平行线周周测1一选择题1. 如图:下列四个判断中,正确的个数是().①的内错角只有②的同位角是③的同旁内角是..④图中的同位角共有个A. 个B. 个C. 个D. 个2.如图,已知于点,点..在同一直线上,且,则为().A.B.C.D.3.如图,直线相交于点 ,射线平分 , ,若,则的度数为().A.B.C.D.4.如图,直线.被直线所截,则的同旁内角是()A.B.C.D.5.如图,与是内错角的是()A.B.C.D.6.如图,与是()A. 对顶角B. 同位角C. 内错角D. 同旁内角7.已知两条平行线被第三条直线所截,则以下说法不正确的是()A. 一对同位角的平分线互相平行B. 一对内错角的平分线互相平行C. 一对同旁内角的平分线互相平行D. 一对同旁内角的平分线互相垂直8.如图,直线相交于点,于,若,则不正确的结论是()A.B.C.D.9.如果点在直线上,也在直线上,但不在直线上,且直线..两两相交符合以上条件的图形是()A.B.C.D.10.如图两条非平行的直线被第三条直线所截,交点为,那么这条直线将所在平面分成()A. 个部分B. 个部分C. 个部分D. 个部分11.如图,若两条平行线,与直线,相交,则图中共有同旁内角的对数为()A.B.C.D.12.若点到直线的距离为,点到直线的距离为,则线段的长度为()A.B.C. 或D. 至少13.如图,在平面内,两条直线,相交于点,对于平面内任意一点,若,分别是点到直线,的距离,则称为点的“距离坐标”.根据上述规定,“距离坐标”是的点共有()个.A. 个B. 个C. 个D. 个14.如图,两条直线,交于点,射线是的平分线,若,则等于()A.B.C.D.15.如图,点是直线外的一点,点在直线上,且,垂足是,,则下列不正确的语句是()A. 线段的长是点到直线的距离B. 线段的长是点到直线的距离C. 三条线段中,最短D. 线段的长是点到直线的距离二填空题16.如图,与相交于点,,,则度.17.如图,在菱形中,点是对角线上的点,于点,若,则到的距离为.18.如图,标有角号的个角中共有对内错角,对同位角,对同旁内角.19.四条直线两两相交,至多会有个交点.20.如图,,,,则度.三解答题21.如图,图中共有多少对同位角,多少对内错角,多少对同旁内角.22.如图,用数字标出的八个角中,同位角.内错角.同旁内角分别有哪些?请把它们一一写出来.23.如图,直线..两两相交,射线平分,已知,,求的度数.第五章相交线与平行线周周测1 参考答案与解析一、选择题1.C2.B3.C4.C5.D6.B7.C8.C9.D 10.C 11.D 12.D13.D 解析:依题意,作与l1平行且距离为2的直线两条,作与l2平行且距离为1的直线两条,两组平行线的交点即为所求,共4个点符合题意.14.C 15.B二、填空题16.36 17.3 18.4 2 4 19.6 20.55三、解答题21.解:有6对同位角,4对内错角,4对同旁内角.22.解:同位角:∠2与∠8,∠3与∠7,∠4与∠6;内错角:∠1与∠4,∠2与∠6,∠3与∠5,∠4与∠8,;同旁内角:∠2与∠4,∠2与∠5,∠3与∠6,∠4与∠5.23.解:∵BE平分∠ABD,∠2=75°,∴∠ABE=∠2=75°,∴∠1=180°-∠ABE=∠2=180°-75°-75°=30°.∵∠1=3∠3,∴∠3=25°.∵∠3与∠4是对顶角,∴∠4=∠3=25°.第五章相交线与平行线周周测2一选择题1.如图,已知直线a,b被直线所截,那么的同位角是()A.B.C.D.2. 如图,已知三条直线,,相交于一点,则等于().A. °B. °C. °D. °3.将一副三角板按图中方式叠放,则角的度数是().A.B.C.D.4.如图,下列叙述正确的是().A. 和是内错角B. 和是同位角C. 和是同位角D. 和是同旁内角5.如图,直线,被直线所截,则的同旁内角是()A.B.C.D.6.如图:下列四个判断中,正确的个数是().①的内错角只有②的同位角是③的同旁内角是,,④图中的同位角共有个A. 个B. 个C. 个D. 个7.甲.乙.丙.丁四个学生在判断时钟的分针与时针互相垂直的时,他们每个人都说两个时间,说对的是()A. 丁说时整和时整B. 丙说时整和时分C. 乙说点分和点分D. 甲说时整和点分8.如图,直线相交于点,于,若,则不正确的结论是()A.B.C.D.9.如图,若两条平行线,与直线,相交,则图中共有内错角的对数为()A.B.C.D.10.如图,能表示点到直线的距离的线段共有()A. 条B. 条C. 条D. 条11.在一个平面上任意画条直线,最多可以把平面分成的部分是()A.B.C.D.12.如图,点是直线外的一点,点在直线上,且,垂足是,,则下列不正确的语句是()A. 线段的长是点到直线的距离B. 线段的长是点到直线的距离C. 三条线段中,最短D. 线段的长是点到直线的距离二填空题13.如图,与相交于点,,,则度.14.如图,,于,图中共有_______个直角,图中线段______的长表示点到的距离,线段_________的长表示点到的距离.15.如图,的内错角有个.16.如图,,,,则度.三解答题17.如图,图中共有多少对同位角,多少对内错角,多少对同旁内角.18.如图,用数字标出的八个角中,同位角.内错角.同旁内角分别有哪些?请把它们一一写出来.19.如图,直线,,相交于点,平分,,.求的度数.第五章相交线与平行线周周测2 参考答案与解析一、选择题1.A2.C3.D4.A5.C6.C7.A8.C9.D 10.D 11.C 12.B二、填空题13.36 14.3 CD AC 15.3 16.55三、解答题17.解:有6对同位角,4对内错角,4对同旁内角.18.解:同位角:∠2与∠8,∠3与∠7,∠4与∠6;内错角:∠1与∠4,∠2与∠6,∠3与∠5,∠4与∠8,;同旁内角:∠2与∠4,∠2与∠5,∠3与∠6,∠4与∠5.19.解:∵,,∴∠DOE=180°-∠1-∠2=180°-30°-45°=105°.∵∠DOE与∠COF是对顶角,∴∠COF=105°.∵平分,∴∠3=∠FOG=105°÷2=52.5°.第五章相交线与平行线周周测3一选择题1. 如图,已知∠1=∠2,则下列结论一定成立的是()A.AB//CD B.AD//BC C.∠B=∠D D.∠3=∠42. 下列图形中,能由∠1=∠2得到AB//CD的是()A.B. C.D.3. 如图,能判定的条件是()A.B.C.D.4. 对于图中标记的各角,下列条件能推理得到a∥b的是()A.∠1=∠2 B.∠2=∠4 C.∠3=∠4 D.∠1+∠4=180°5. 如图,下列条件中:(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.能判定AB∥CD的条件个数有()A.1个B.2个C.3个D.4个6. 如图,下列条件中,不能判断直线∥的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°7. 如图,已知∠1=70°,要使AB∥CD,则须具备另一个条件()A.∠2=70° B.∠2=100° C.∠2=110° D.∠3=110°8. 如图,用两个相同的三角板按照如图方式作平行线,能解释其中道理的定理是()A.同位角相等两直线平行B.同旁内角互补,两直线平行C.内错角相等两直线平行D.平行于同一条直线的两直线平行9. 如图,能判定EC∥AB的条件是()A.∠B=∠ACE B.∠A+∠ACD=180°C.∠ACE=∠DCE D.∠A=∠ACE10. 如图,下列能判定AB∥CD的条件有().(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1个B.2个C.3个D.4个11. 过一点画已知直线的平行线,则( )A.有且只有一条B.有两条C.不存在D.不存在或只有一条12. 如图,能判断直线AB∥CD的条件是()A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180 o D.∠3+∠4=180 o二填空题13. 如图,两直线a.b被第三条直线c所截,若∠1=50°,∠2=130°,则直线a.b的位置关系是____________ .14. 在同一平面内,_____________________叫作平行线.15. 如图,直线a、b被直线c所截,若满足,则a、b平行(写出一个即可).16. 已知为平面内三条不同直线,若,,则与的位置关系是.三解答题17. 看图填空:如图,∠1的同位角是,∠1的内错角是,如果∠1=∠BCD,那么,根据是;如果∠ACD=∠EGF,那么,根据是.18. 如图,已知∠1=∠2,AC平分∠DAB,试说明DC∥AB.19.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.20.如图,已知:∠B=∠D+∠E,试说明:AB∥CD.第五章相交线与平行线周周测3 参考答案与解析一、选择题1.B2.D3.D4.D5.C6.B7.C8.C9.D 10. C 11.D 12.D二、填空题13.平行14.不相交的两条直线15.∠1=∠2(答案不唯一)16.平行三、解答题17.∠EFG ∠BCD,∠AED DE∥BC 内错角相等,两直线平行CD∥GF 同位角相等,两直线平行18. 解:∵AC平分∠DAB,,∴∠1=∠CAB.∵∠1=∠2,∴∠CAB=∠2,∴DC∥AB.19. 证明:∵∠A=∠F,∴AC∥DF,∴∠C=∠CEF.∵∠C=∠D,∴∠D=∠CEF,∴BD∥CE.20..解:过点E向右作EM//CD,则∠D=∠DEM.∵∠B=∠D+∠E,第五章相交线与平行线周周测4一选择题1.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等12第1题图第2题图第3题图2.如图,梯子的各条横档互相平行,若∠1=70°,则∠2的度数是()A.80°B.110°C.120°D.140°3.如图所示,点E 在AC 的延长线上,下列条件中能判断AB ∥CD 的是( ) A .∠3=∠4B .∠1=∠2C .∠D =∠DCE D .∠D +∠ACD =180°4.一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的角度是( )A .第一次右拐50°,第二次左拐130°B .第一次左拐50°,第二次右拐130°C .第一次左拐50°,第二次左拐130°D .第一次右拐50°,第二次左拐50° 5.如图,下列说法中,正确的是( ) A .因为∠A +∠D =180°,所以AD ∥BC B .因为∠C +∠D =180°,所以AB ∥CD C .因为∠A +∠D =180°,所以AB ∥CDD .因为∠A +∠C =180°,所以AB ∥CD 第5题图 二 填空题6.在同一平面内,如果直线b 和c 都与直线a 垂直,那么直线b 和c的位置关系是 . 7.如图,已知∠1=∠2,由此可得 ∥ .第7题图 第8题图8.如图,已知直线、被直线所截,∠1=60°, 则当∠2= °时,∥. 9.如图,小明利用两块相同的三角板,分别在三角板的边缘画直线和,这是根据________________,两直线平行.第9题图 第10题图10.如图,直线a 、b 与直线c 相交,给出下列条件:①∠1=∠2; ②∠4=∠6; ③∠4+∠7=180°; ④∠5+∠3=180°.其中能判断a ∥b 的条件是 (只填序号). 三 解答题11.如图,已知∠1=70°,∠2=110°,请用三种方法判定AB ∥DE.a b c a b AB CD12.已知:如图,CE平分∠ACD,∠1=∠2.求证:AB∥CD.第五章相交线与平行线周周测4 参考答案与解析一、选择题1.A2.B3.B4.D5.C二、填空题6.平行7.AD BC8.1209.内错角相等10.①③④三、解答题11. 解:(1)∵∠1=70°,∴∠AFC=180°-70°=110°.∵∠2=110°,∴∠AFC=∠2,∴AB//DE.(2)∵∠1=70°,∴∠BFD=180°-70°=110°.∵∠2=110°,∴∠BFD=∠2,∴AB//DE.(3)∵∠1=70°,∴∠AFD=70°.∵∠2=110°,∴∠AFD+∠2=180°,∴AB//DE.12.证明:∵CE平分∠ACD,,∴∠2=∠DCE.∵∠1=∠2,∴∠DCE=∠1,∴AB ∥CD.第五章 相交线与平行线周周测5一 选择题1.如果相等的两个角的一边在一条直线上,另一边互相平行,那么这两个角( ) A.相等 B.互补 C.相等或互补 D.不能确定2.如图,∠1和∠2互补,那么图中平行的直线是( ) A.b a // B.d c // C.e d // D.e c //第2题图 第4题图3.下列条件中,能得到互相垂直的是( )A.对顶角的平分线B.邻补角的平分线C.平行线的内错角的平分线D.平行线的同位角的平分线 4.如图,n m //,那么∠1.∠2.∠3的关系是( )A.∠1+∠2+∠3=360°B.∠1+∠2-∠3=180°C.∠1-∠2+∠3=180°D.∠1+∠2+∠3=180°5.一辆汽车在直路上行驶,两次拐弯后,仍按原来的方向行驶,那么这两次拐弯时( ) A.第一次向右拐30°,第二次向右拐30°B.第一次向右拐30°,第二次向右拐150°C.第一次向左拐30°,第二次向右拐150°D.第一次向左拐30°,第二次向右拐30° 6.下列命题中,是假命题的是( )A.同旁内角互补B.对顶角相等C.直角的补角仍然是直角D.两点之间,线段最短7.如图,在三角形ABC中,BC=5,∠A=70°,∠B=75°,把三角形ABC沿直线BC的方向平移到三角形DEF的位置.若CF=3,则下列结论中错误的是 ( ) A.DF=5 B.∠F=35°C.BE=3 D.AB∥DE8.如图,将周长为10个单位的三角形ABC沿边BC向右平移2个单位得到三角形DEF,则四边形ABFD周长为()A.12B.14C.16D.18第8题图第9题图第10题图9.如图是一块长方形ABCD的场地,AB=102m,AD=51m,从A.B两处入口中的路宽都为1m,两小路汇合处路宽为2m,其余部分种植草坪,则草坪的面积为()A.5050m2B.4900m2C.5000m2D.4998m210.如图,O是正六边形ABCDEF的中心,下列图形:三角形OCD;三角形ODE;三角形OEF;三角形OAF;三角形OAB.其中可由三角形OBC平移得到的有()A.1个B.2个C.3个D.4个二填空题11.如图,将三角形ABC沿BC方向平移2cm得到三角形DEF,若三角形ABC周长为16cm,则四边形ABFD周长为.第13题图第14题图第15题图12.如图,长方形ABCD的边AB=10,BC=6,则图中四个小长方形的周长和为.13.如图,在长方形ABCD中,AB=10cm,BC=6cm,若此长方形以2cm/s的速度沿着A→B方向移动,则经过 s,平移后的长方形与原来长方形重叠部分的面积为24 . 14.如图,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B-∠D=24°,则∠GEF= .15.“两数之和始终是正数”是________命题(填“真”或“假”).16.把命题“平行于同一条直线的两条直线互相平行”改写成“如果……,那么……”的形式为_______________________________________________.17.如图,是我们生活中经常接触的小刀,刀片的外形是一个直角梯形,刀片上.下是平行的,转动刀片时会形成∠1和∠2,则∠1+∠2=度.第17题图第18题图18.如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,则下列结论:①∠BOE=70°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正确结论有(只填序号).三解答题19.如图,点A在直线MN上,且MN//BC.求证:∠BAC+∠B+∠C=180°.M A NB C20.如图,M,N,T和P,Q,R分别在同一直线上,且∠1=∠3,∠P=∠T.求证:∠M=∠R.21.如图,直线m⊥l,n⊥l,∠1=∠2.求证:∠3=∠4.22.已知,如图,DE⊥AC,∠AGF=∠ABC,∠1+∠2=180°,试判断BF与AC的位置关系,并说明理由.第五章相交线与平行线周周测5 参考答案与解析一、选择题1.C2.D3.D4.B5.D6.A7.A8.B9.C 10.B二、填空题11.20 12.32 13.3 14.30°15.假16.如果两条直线平行于同一条直线,那么这两条直线互相平行17. 90 18.①②③三、解答题19.证明:∵MN∥BC,∴∠B=∠MAB,∠C=∠NAC.∵∠BAC+∠MAB+∠NAC=180°,∴∠BAC+∠B+∠C=180°.20.证明:∵∠1=∠3,∠1=∠2,∴∠2=∠3,∴PN∥QT,∴∠T=∠MNP.∵∠P=∠T,∴∠P=∠MNP,∴PR∥MT,∴∠M=∠R..21.证明:∵m⊥l,n⊥l,∴m∥n,∴∠1=∠4,∠,2=∠3.∵∠1=∠2,∴∠3=∠4.22.解:BF⊥AC.理由如下:∵∠AGF=∠ABC,∴FG∥BC,∴∠1=∠3.∵∠1+∠2=180°,∠3+∠2=180°,∴BF∥DE,∴∠BFC=∠DEC.∵DE⊥AC,∴∠DEC=90°,∴∠BFC=90°,∴BF⊥AC.第五章相交线与平行线周周测6一选择题1. 下列命题正确的是( )A.两直线与第三条直线相交,同位角相等B.两直线与第三条直线相交,内错角相等C.两直线平行,内错角相等D.两直线平行,同旁内角相等2.如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=23°,则∠2的度数是()A.23°B.22°C.37°D.67°3.如图,AB∥CD,点E在CB的延长线上.若∠ABE=70°,则∠ECD的度数为()A.20°B.70°C.100°D.110°4.如图,∠B=∠C,AD∥BC,∠BAC=100°,则∠CAD的度数是()A.30°B.35°C.40°D.50°5.如图,已知AB∥CD,EA是∠CEB的平分线,若∠BED=40°,则∠A的度数是()A.40°B.50°C.70°D.80°6.如图,把一块等腰直角三角板的直角顶点放在直尺的一边上,如果∠1=40°,那么∠2=()A.40°B.45°C.50°D.60°7.如图,已知AC∥BD,∠CAE=30°,∠DBE=45°,则∠AEB等于()A.30°B.45°C.60°D.75°8. 如图,已知a∥b,∠1=130°,∠2=90°,则∠3=()A.70°B.100°C.140°D.170°9.如图,AB∥CD,则根据图中标注的角,下列关系中成立的是()A.∠1=∠3 B.∠2+∠3=180°C.∠2+∠4<180°D.∠3+∠5=180°10.如图,已知AB∥CD,CE平分∠ACD,当∠A=120°时,∠ECD的度数是()A.45°B.40°C.35°D.30°11. 如图,点D是三角形ABC的边AB的延长线上一点,BE∥AC.若∠C=50°,∠DBE=60°,则∠CBD的度数等于()A.120°B.110°C.100°D.70°12.如图,AB∥ED,则∠A+∠C+∠D=( )A.180°B.270°C.360°D.540°二填空题13. 如图,已知AB//DE,∠ABC=75°,∠CDE=150°,则∠BCD的度数为.14.如图,已知AD∥BE,∠DAC=29°,∠EBC=45°,则∠ACB= °.15.如图,已知AB∥CD,∠1=130°,则∠2= .16.如图,AB∥CD,∠1=64°,FG平分∠EFD,则∠EGF= °.三解答题17. 如图,BD平分∠ABC,F在AB上,G在AC上,FC与BD相交于点H. ∠GFH+ ∠BHC=180°.求证:.18.如图,已知∠B=∠C,AD∥BC,求证:AD平分∠CAE.19.如图,已知AB//CD,分别写出下列四个图形中,∠P与∠A,∠C的关系,请你从所得的四个关系中任选一个加以证明.20.如图,点E在直线DF上,点B在直线AC上,若∠1=∠2,∠3=∠4,则∠A=∠F,请说明理由.解:∵∠1=∠2(已知),∠2=∠DGF(),∴∠1=∠DGF,∴BD∥CE(),∴∠3+∠C=180º().又∵∠3=∠4(已知),∴∠4+∠C=180º,∴∥DF(同旁内角互补,两直线平行),∴∠A=∠F().第五章相交线与平行线周周测6 参考答案与解析一、选择题1.C2.C3.D4.C5.C6.C7.D8.C9.D 10.D 11.B 12.C二、填空题13.45°14.74 15.50°16.32三、解答题17.证明:∵BD平分∠ABC,∴∠2=∠ABD.∵∠GFH+∠BHC=180°,∠FHD=∠BHC,∴∠GFH+∠FHD=180°,∴FG∥BD,∴∠1=∠ABD.∵∠2=∠ABD,∴∠1=∠2.18.证明:∵AD∥BC,∴∠2=∠B,∠1=∠C.∵∠B=∠C,∴∠1=∠2,∴AD平分∠CAE.19.解:(1)∠P=360°-∠A-∠C.(2)∠P=∠A+∠C.(3)∠P=∠C-∠A.(4)∠P=∠A-∠C.若选(3),证明如下:过点P向左作PQ∥AB,则∠A=∠APQ.∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∴∠CPA=∠CPQ-∠APQ=∠C-∠A.20.对顶角相等同位角相等,两直线平行两直线平行,同旁内角互补AC 两直线平行,内错角相等第五章相交线与平行线周周测7一选择题1.将图①所示的图案通过平移后可以得到的图案是()A B C D 图①2.在5×5方格纸中将图①中的图形N平移后的位置如图②所示,那么下面平移中正确的是()A. 先向下移动1格,再向左移动1格B. 先向下移动1格,再向左移动2格C. 先向下移动2格,再向左移动1格D. 先向下移动2格,再向左移动2格第2题图第3题图3.如图,已知三角形ABC的面积为8,将三角形ABC沿BC的方向平移到三角形A’B’C’的位置,使B’和C重合,连结AC’交A’C于D,则三角形CAC’的面积为()A.4B.6C.8D.164.四根火柴棒形成如图所示的“口”字,平移火柴棒后,原图形能变成的汉字是()5.如图,面积为12cm²的三角形ABC沿BC方向平移至三角形DEF的位置,平移的距离是边BC的2倍,则图中四边形ACFD的面积为()A.24cm²B.36cm²C.48cm²D.60cm²第5题图第6题图6.如图,小明从家到学校有①②③三条路可走,每条路的长分别为a,b,c,则()A. B. C. D.7.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积是()A.20 B.22 C.24 D.26第7题图第8题图8.如图,将网格中的三条线段沿网格线平移后组成一个首尾相接的三角形,至少需要移动()A.8格B.9格C.11格D.12格二填空题9.如图,将三角形ABC沿BC方向平移2cm得到三角形DEF,若三角形ABC周长为16cm,则四边形ABFD周长为.第9题图第10题图第11题图10.如图,将三角形ABC沿射线AC平移得到三角形DEF.若AF=17,DC=7,则AD= .11.如图,边长为8cm的正方形ABCD先向上平移4cm,再向右平移2cm,得到正方形A′B′C′D′,此时阴影部分的面积为_________.12.某小区的一块长26米,宽15米的草坪内要修一条如图所示宽度相同的通道.当通道的宽度为2米时,剩下的草坪面积是通道面积的倍.第12题图第13题图第14题图13.鑫都大酒店在装修时,准备在主楼梯(如图)上铺上红地毯,已知这种地毯每平方米售价35元.楼梯宽2米,则购买这种地毯至少需元.14.如图,把直角梯形ABCD沿AD方向平移到梯形EFGH,HG=24cm,WG=8cm,WC=6cm,求阴影部分的面积为cm2.三解答题15.如图,已知,AB∥CD,直线EF分别交AB,CD于点E,F,EG平分∠AEF,∠1=40°,求∠2的度数.16.如图①是长方形纸带,将纸带沿EF折叠成图②,再沿BF折叠成图③.(1)若图①中∠DEF=20°,则图③中∠CFE的度数是多少?(2)若图①中∠DEF=α,把图③中∠CFE的度数用α表示是多少?17.如图,DB∥FG∥EC,∠ABD=60°,∠ACE=36°,AP平分∠BAC.求∠PAG的度数.第五章相交线与平行线周周测7 参考答案与解析一、选择题1.A2.C3.C4.B5.C6.C7.C8.A二、填空题9.20 10.5 11.24cm²12.4 13.630 14.168三、解答题15.解:∵AB∥CD,∠1=40°,∴∠AEG=∠1=40°.∵EG平分∠AEF,,∴∠AEF=2∠AEG=80°,∴∠2=180°-∠AEF=180°-80°=100°.16.解:图①中,∵AD∥BC,∴∠DEF=∠BFE,∴∠CFE=180°-∠DEF.图②中,由折叠得∠CEF=180°-∠DEF,∴∠CFB=∠CEF-∠BFE=180°-2∠DEF.图③中,由折叠得∠CFB=180°-2∠DEF,∴∠CFE=∠CFB-∠BFE=180°-3∠DEF.(1)若图①中∠DEF=20°,则图③中∠CFE=180°-3×20°=120°.(2)若图①中∠DEF=α,则图③中∠CFE=180°-3α.17.解:∵DB∥FG∥EC,∠ABD=60°,∠ACE=36°,∴∠BAG=∠ABD=60°,∠CAG=∠ACE=36°,∴∠BAC=∠BAG+∠CAG=60°+36°=96°.∵AP平分∠BAC,∴∠PAC=12∠BAC=12×96°=48°,∴∠PAG=∠PAC-∠CAG=48°-36°=12°.第五章相交线与平行线周周测8一选择题1.下列选项中能由左图平移得到的是()A. B. C. D.2.在四边形ABCD中,下列各图中∠1与∠2相等的是()3.如图,在铁路旁有一李庄,现要建一火车站,为了使李庄人乘车最方便,请你在铁路线上选一点来建火车站,应建在()A.A点B.B点C.C点D.D点4.将命题“对顶角相等”写成“如果……,那么……”的形式,正确的是()A.如果两个角相等,那么它们是对顶角B.如果两个角是对顶角,那么它们相等C.如果对顶角,那么相等D.如果两个角不是对顶角,那么这两个角不相等5.如图,与∠1是同旁内角的是()A.∠2B.∠3C.∠4D.∠56.如图,AB//CD,∠AGE=128°,HM平分∠EHD,则∠MHD的度数是()A.46°B.23°C.26°D.24°7.如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3B.∠4=∠5C.∠2=∠3D.∠2+∠4=180°8.如图,直线l1∥l2,若∠1=140°,∠2=70°,则∠3的度数是()CA.60°B.65°C.70°D.80°9.如图,已知AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC=()A.30°B.60°C.90°D.120°10.如图,已知AB∥DE,∠ABC=70º,∠CDE=140º,则∠BCD的值为( )A.70ºB.50ºC.40ºD.30º二填空题11.如图,将三角形ABC沿BC’方向平移4cm,得到三角形A’B’C’,那么CC’= cm.12.将一个直角三角板和一把长方形直尺按如图放置,若∠α=54°,则∠β的度数是______.13.如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=40°,则∠AEF=.14.如图,直线a∥b,三角板的直角顶点A落在直线a上,两条直角边分别交直线b于B,C两点.若∠1=42°,则∠2的度数是.15.如图,AB∥CD,∠B=160°,∠D=120°,则∠E=_________16.如图①:MA1∥NA2,图②:MA1∥NA3,图③:MA1∥NA4,图④:MA1∥NA5,…,则第n个图中的∠A1+∠A2+∠A3+…+∠A n+1= °(用含n的代数式表示).三解答题17.完成下面的证明:已知,如图,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD.求证:∠EGF=90°.证明:∵HG∥AB(已知),∴∠1=∠3(______ ).又∵HG∥CD(已知),∴∠2=∠4.∵AB∥CD(已知),∴∠BEF+______=180°(______ ).又∵EG平分∠BEF(已知),∴∠1=∠______.又∵FG平分∠EFD(已知),∴∠2=∠______,∴∠1+∠2=(______ ),∴∠1+∠2=90°,∴∠3+∠4=90°(______ ),即∠EGF=90°.18.如图是一个汉字“互”字,其中,∥,∠1=∠2,∠=∠.求证:∠=∠.19.如图,CD⊥AB于D,点F是BC上任意一点,FE⊥AB于E,且∠1=∠2,∠3=80°. (1)证明:∠B=∠ADG;(2)求∠BCA的度数.20.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.21.如图,已知DC∥FP,∠1=∠2,∠FED=28º,∠AGF=80º,FH平分∠EFG.(1)证明:DC∥AB;(2)求∠PFH的度数.22.如图,已知AB∥CD,C在D的右侧,BM平分∠ABC,DN平分∠ADC,BM,DN所在直线交于点E,∠ADC =70°.(1)求∠EDC的度数;(2)若∠ABC =n°,求∠BED的度数(用含n的代数式表示);(3)将线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,画出图形并判断∠BED的度数是否改变,若改变,求出它的度数(用含n的式子表示);若不改变,请说明理由.第五章相交线与平行线周周测8参考答案与解析一、选择题1.C2.B3.A4.B5.A6.C7.C8.C9.B 10.D二、填空题11.4 12.36° 13.110° 14.48° 15.40° 16.180n三、解答题17.两直线平行,内错角相等∠EFD 两直线平行,同旁内角互补 BEF EFD ∠BEF+∠EFD 等量代换18.证明:如图,延长交于点.∵∥,∴∠1=∠3.又∵∠1=∠2,∴∠2=∠3,∴∥HN,∴∠=∠.又∵∠=∠,∴∠=∠.19.(1)证明:∵CD⊥AB,FE⊥AB,∴CD∥EF,∴∠2=∠BCD.∵∠1=∠2,∴∠1=∠BCD,∴BC∥DG,∴∠B=∠ADG.(2)解:∵DG∥BC,∴∠3=∠BCA.∵∠3=80°,∴∠BCA=80°.20.解:∵EF∥AD,AD∥BC,∴EF∥BC,∴∠ACB+∠DAC=180°.∵∠DAC=120°,∴∠ACB=60°.又∵∠ACF=20°,∴∠FCB=∠ACB﹣∠ACF=40°.∵CE平分∠BCF,∴∠BCE=20°.∵EF∥BC,∴∠FEC=∠BCE=20°.21.(1) 证明:∵∠1=∠2,∴AB∥FP.∵DC∥FP,∴DC∥AB.(2)解:∵DC∥FP,∴∠EFP=∠FED=28º.∵AB∥FP,∴∠GFP=∠AGF=80º.∴∠EFG=∠EFP+∠GFP=28°+80°=108°.∵FH平分∠EFG,∴∠EFH=∠EFG=×108°=54°,∴∠PFH=∠EFH-∠EFP=54°-28°=26 º.22.解:(1)∵DE平分∠ADC,∠ADC=70°,∴∠EDC=∠ADC=×70°=35°.(2)如图,过点E向左作EF∥AB.∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF.∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABE=∠ABC=n°,∠CDE=∠ADC=35°,∴∠BED=∠BEF+∠DEF=n°+35°.(3)如图①,过点E向左作EF∥AB.∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABE=∠ABC=n°,∠CDE=∠ADC=35°.∵AB∥CD,∴AB∥CD∥EF,∴∠BEF=180°-∠ABE=180°-n°,∠CDE=∠DEF=35°,∴∠BED=∠BEF+∠DEF=180°-n°+35°=215°-n°.图①图②如图②,过点E向左作EF∥AB.∵BM平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABM=∠ABC=n°,∠CDE=∠ADC=35°.∵AB∥CD,∴AB∥CD∥EF,∴∠BEF=∠ABM=n°,∠CDE=∠DEF=35°,∴∠BED=∠BEF-∠DEF=n°-35°.综上所述,∠BED的度数发生了改为,改变为215°-n°或n°-35°.第五章相交线与平行线周周测9一选择题1.点P为直线l外一点,点A,B,C为直线l上三点,P A=4cm,PB=5cm,PC=3cm,则点P到直线l的距离为()A.4cm B.5cmC.小于3cm D.不大于3cm2.如图,点E,F分别是AB,CD上的点,点G是BC的延长线上一点,且∠B=∠DCG=∠D,则下列判断中,错误的是()A.∠AEF=∠EFC B.∠A=∠BCFC.∠AEF=∠EBC D.∠BEF+∠EFC=180°第2题图第3题图3.如图,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,且∠ODE与∠ADC相等,则∠DEB的度数是()A.75°36′ B.75°12′ C.74°36′ D.74°12′4.下列图形中,可以由其中一个图形通过平移得到的是()5.如图①~④,其中∠1与∠2是同位角的有()A.①②③④B.①②③C.①③D.①第5题图第6题图6.如图,能判断直线AB∥CD的条件是()A.∠1=∠2 B.∠3=∠4C.∠1+∠3=180° D.∠3+∠4=180°7.有下列命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两直线平行;③相等的角是对顶角;④内错角相等.其中假命题有()A.①②B.①③C.②④D.③④8.若∠1与∠2是对顶角且互补,则它们两边所在的直线()A.互相垂直B.互相平行C.既不垂直也不平行D.不能确定9.如图,BD∥AC,BE平分∠ABD,交AC于点E.若∠A=50°,则∠1的度数为() A.65° B.60° C.55° D.50°第9题图第10题图10.已知直线m∥n,将一块直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上.若∠1=20°,则∠2的度数为()A.20° B.30°C.45° D.50°二填空题11.如图,当剪刀口∠AOB增大21°时,∠COD增大________°.第11题图第12题图12.如图,平行线AB,CD被直线AE所截,∠1=50°,则∠A=________°.13.如图,在线段AC,BC,CD中,线段________最短,理由是____________________.第13题图第14题图14.如图,直线AB,CD相交于点O,OE⊥AB,∠COE=68°,则∠BOD的度数为________.15.如图,直线l1∥l2,∠1=20°,则∠2+∠3=________°.第15题图第17题图16.平移变换不仅与几何图形有着密切的联系,而且在一些特殊结构的汉字中,也有平移变换的现象,如:“日”“朋”“森”等,请你再写两个具有平移变换现象的汉字_____ ___.17.如图是超市里购物车的侧面示意图,扶手AB与车底CD平行,∠2比∠3大10°,∠1是∠2的1911倍,则∠2的度数是________.18.以下三种沿AB折叠纸带的方法:(1)如图①,展开后测得∠1=∠2;(2)如图②,展开后测得∠1=∠2且∠3=∠4;(3)如图③,测得∠1=∠2.其中能判定纸带两条边线a,b互相平行的是________(填序号).三解答题19.如图,直线AB,CD相交于O,OE是∠AOD的平分线,∠AOC=28°,求∠AOE的度数.20.如图,在方格纸中,每个小方格的边长均为1个长度单位,三角形ABC的三个顶点和点P都在小方格的顶点上.要求:①将三角形ABC平移,使点P落在平移后的三角形内部;②平移后的三角形的顶点在方格的顶点上.请你在图甲和图乙中分别画出符合要求的一个示意图,并写出平移的方法.21.如图,已知AE⊥BC,FG⊥BC,∠1=∠2.求证:AB∥CD.22.如图,直线AB,CD相交于点O,OE把∠BOD分成两部分.(1)直接写出图中∠AOC的对顶角为________,∠BOE的邻补角为________;(2)若∠AOC=70°,且∠BOE∶∠EOD=2∶3,求∠AOE的度数.23.如图,现有以下3个论断:①AB∥CD;②∠B=∠C;③∠E=∠F.请以其中2个论断为条件,另一个论断为结论构造命题.(1)你构造的是哪几个命题?(2)你构造的命题是真命题还是假命题?请选择其中一个真命题加以证明.24.如图,已知AB∥CD,CE,BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3……第n次操作,分别作∠ABE n-1和∠DCE n-1的平分线,交点为E n.(1)如图①,求证:∠BEC=∠B+∠C;(2)如图②,求证:∠BE2C=14∠BEC;(3)猜想:若∠E n=b°,求∠BEC的度数.第五章相交线与平行线周周测9 参考答案与解析一、选择题1.D2.C3.B4.B5.C6.D7.D8.A9.A 10.D二、填空题11.21 12.50 13.CD 垂线段最短14.22°15.20016.林晶(答案不唯一)17.55°18.①②三、解答题19.解:∵∠AOC=28°,∴∠AOD=180°-∠AOC=180°-28°=152°.∵OE是∠AOD的平分线,∴∠AOE=12∠AOD=12×152°=76°.20.解:如图,共有3种情况:图甲图乙图丙图甲:将三角形ABC向右平移4个单位长度;图乙:将三角形ABC先向右平移4个单位长度,再向上平移1个单位长度;图丙:将三角形ABC先向右平移3个单位长度,再向上平移1个单位长度.21.证明:∵AE⊥BC,FG⊥BC,∴AE∥FG,∴∠1=∠A.∵∠1=∠2,∴∠2=∠A,∴AB∥CD.22.解:(1)∠BOD ∠AOE(2)∵∠AOC=70°,∴∠BOD=70°.∵∠BOE∶∠EOD=2∶3,∴∠BOE=25∠BOD=25×70°=28°,∴∠AOE=180°-∠BOE=180°-28°=152°.23.解:(1)命题一:如果AB∥CD,∠B=∠C,那么∠E=∠F.命题二:如果AB∥CD,∠E=∠F,那么∠B=∠C.命题三:如果∠B=∠C,∠E=∠F,那么AB∥CD.(2)三个命题都是真命题.若选择命题(1),证明如下:∵AB∥CD,∴∠B=∠CDF.∵∠B=∠C,∴∠CDF=∠C,∴AC∥BD,∴∠E=∠F.24.(1)证明:过点E向左作EF∥AB.∵AB∥CD,∴AB∥CD∥EF,∴∠BEC=∠B,∠CEF=∠C,∴∠BEC=∠BEF+∠CEF=∠B+∠C.(2)证明:同(1)理,可证∠BE1C=∠ABE1+∠DCE1,∠BE2C=∠ABE2+∠DCE2.∵∠ABE和∠DCE的平分线交于点E1,∠ABE1和∠DCE1交于点E2,∴∠ABE1=12∠ABE,∠DCE1=12∠DCE,∠ABE2=12∠ABE1,∠DCE2=12∠DCE1,∴∠BE1C=12∠ABE+12∠DCE=12∠BEC,∴∠BE2C=12×12∠ABE+12×12∠DCE=14∠BEC.(3)由(1)(2)知∠BE1C=12∠BEC,∠BE2C=14∠BEC,∴∠∠BE n C=12n⎛⎫⎪⎝⎭∠BEC,∴若∠E n=b°,∠BEC=2n。
《探索三角形全等的条件》同步测试一、选择题1. 如图,已知AB=AD,那么添加下列一个条件后,能用SAS判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°2.如图,AB=AC,添加下列条件,能用SAS判断△ABE≌△ACD的是()A.∠B=∠C B.∠AEB=∠ADC C.AE=AD D.BE=DC3. 如图,已知E,F是AC上的两点,AE=CF,DF=BE,∠AFD=∠CEB,则下列不成立的是()A.∠A=∠C B.AD=CB C.BC=DF D.DF∥BE4.如图,在△ABD中,AC⊥BD,点C是BD的中点,则下列结论错误的是()A.AB=ADB.AB=BDC. ∠B=∠DD.AC平分∠BAD5.如图,FE=BC,DE=AB,∠B=∠E=40°,∠F=70°,则∠A=()A .40°B .50°C .60°D .70°6.在下列条件中,不能说明△ABC ≌△A ’B ’C ,,的是( )A.∠A =∠A ’,∠C =∠C ’,AC =A ’C ’ B .∠A =∠A ’,AB =A ’B ’,BC =B ’C ’ C.∠B =∠B ’,∠C =∠C ’,AB =A ’B ’ D .AB =A ’B ’, BC =B ’ C ’AC =A ’C ’ 7.在下列说法中,正确的有( )个.①三角对应相等的两个三角形全等;②三边对应相等的两个三角形全等;③两角,一边对应相等的两个三角形全等;④两边,一角对应相等的两个三角形全等.A.1B.2C.3D.4 8.下列说法正确的是( )A.两个周长相等的长方形全等B.两个周长相等的三角形全等 C .两个面积相等的长方形全等 D .两个周长相等的圆全等 9. 使两个直角三角形全等的条件是( ) A . 一锐角对应相等 B . 两锐角对应相等 C . 一条边对应相等 D . 两条边对应相等10.如图,D E ,分别为ABC △的AC ,BC 边的中点,将此三角形沿DE 折叠,使点C 落在AB 边上的点P 处.若48CDE ∠=°,则APD ∠等于( )A .42°B .48°C .52°D .58°11. 如图,△ABC ≌△CDA ,且AD =CB ,下列结论错误的是( ) A.∠B =∠D B.∠CAB =∠ACD C.BC =CD D.AC =CAD12.已知:如图,AC =CD ,∠B =∠E =90°, AC ⊥CD ,则不正确的结论是 ( )A.∠A与∠D互为余角B.∠A=∠2C.△ABC≌△CEDD.∠1=∠213. 如图,AC=AD,BC=BD,则有()A.AB垂直平分CD B.CD垂直平分ABC.AB与CD互相垂直平分D.CD平分∠ACBA BCD14.如图,已知AB∥CD,AB=CD,AE=FD,则图中的全等三角形有()A.1对B.2对C.3对D.4对15.已知:如图,点A,E,F,D在同一条直线上,AE=DF,AB=CD,BF⊥AD,CE⊥AD,垂足分别为F,E,则△ABF≌△DCE的依据是()A. SSSB. SASC. ASAD. HL二、填空题16.如图,MN与PQ相交于点O,MO=OP,QO=ON,∠M=65°,∠Q=30°,则∠P= ,∠N= .17.如图,已知AB=AC=12 cm,AE=AF=7 cm,CE=10 cm,△ABF的周长是.18.如图,已知BC=EC,∠BCE=∠ACD,要使能用SAS说明△ABC≌△DEC,则应添加的一个条件为______.(答案不唯一,只需填一个)A BC DEF第15题图FEA19.如图, 已知:AB=AC , D是BC边的中点, 则∠1+∠C=_____度.20.如图所示的方格中,连接AB,AC,则∠1+∠2=____ ____度.三、解答题21.(2014•常州)已知:如图,点C为AB中点,CD=BE,CD∥BE.求证:△ACD≌△CBE.22.(2014•吉林)如图,△ABC和△DAE中,∠BAC=∠DAE,AB=AE,AC=AD,连接BD,CE,求证:△ABD≌△AEC.23.已知:如图,AD是△ABC的高,E是AD上一点,BE的延长线交AC于点F,BE=AC,DE=DC,BE和AC垂直吗?说明理由.24.如图,已知AB=AC,E,D分别是AB,AC的中点,且AF•⊥BD交BD的延长线于F,AG⊥CE交CE的延长线于G,试判断AF和AG的关系是否相等,并说明理由.FEA25. 如图所示,AD 是∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,且BD =CD ,那么BE 与CF 相等吗?为什么?第24题图D CFEB AGDFACEB第25题图答案与解析一、选择题1. 答案:B解析:∵AB=AD(已知),AC=AC(公共边)∴只需要BAC=∠DAC∴△ABE≌△ACD故选B.分析:本题考察了全等三角形的判定方法中的SAS,较为简单.2. 答案:C解析:∵AB=AC(已知),∠A=∠A(公共角)∴只需要AE=AD∴△ABE≌△ACD故选C.分析:本题考察了全等三角形的判定方法中的SAS,较为简单.3. 答案:C解析:∵AE=CF(已知),∴AE+EF=EF+CF∴AF=EC∵∠AFD=∠CEB∴△AFD≌△CEB(SAS)∴∠A=∠CAD=CBBC=DA∵∠AFD=∠CEB∴DF∥BE故选C.分析:本题综合考察了三角形的多个知识点,考察学生灵活运用所学知识处理问题的能力,是一道综合性很强的题目.4.答案:B解析:∵AC⊥BD,点C是BD的中点∴AB=AD(线段中垂线的性质)∴∠B=∠D(等边对等角)∴∠BAC=∠DAC(等腰三角形三线合一)∴AC平分∠BAD选B .分析:本题综合考察了三角形的多个知识点,考察学生灵活运用所学知识处理问题的能力,是一道综合性很强的题目.5. 答案:D解析:∵∠E=40°,∠F=70°∴∠D =70°∵FE=BCDE=AB∠B=∠E=40°∴△ABC≌△DEF(SAS)∴∠A=∠D =70°选D .分析:本题综合考察了三角形全等的判定,全等三角形的性质和三角形的内角和,考察学生灵活运用所学知识处理问题的能力,是一道综合性很强的题目.6. 答案:B解析:对于B,如果∠A=∠A’=90°,全等,但题目中没告诉是否为90°,故不一定全等.故选B .分析:本题综合考察了三角形全等的判定,考察学生灵活运用所学知识处理问题的能力,是一道综合性很强的题目.7. 答案:B解析:对于①,只能得到相似;对于②,运用SSS可以得到全等;对于③可以运用ASA 或AAS判定全等;对于④,当SAS时全等,但当SSA时不一定全等.故选B .分析:本题综合考察了三角形全等的判定,考察学生灵活运用所学知识处理问题的能力,是一道综合性很强的题目.8. 答案:D解析:对于两个图形,只有知道两个圆的半径相等,则这两个圆就全等,其余选项,皆不能得到全等,故选D .分析:本题综合考察了全等图形的判定,结合了上一节内容,考察学生灵活处理问题的能力.9. 答案:D解析:对于两个直角三角形,已经知道有一组角对应相等了,因此,运用HL定理可以判定两个直角三角形全等,选D .分析:本题综合考察了全等三角形的判定中的HL定理,内容简单.10.答案:B解析: 由翻折得△PDE ≌△CDE ∴∠PDE =∠CDE =48°∵D E ,分别为ABC △的AC ,BC 边的中点, ∴D E ∥AB∴∠APD =∠PDE =48° ∴选B.分析:本题综合考察了全等三角形的性质,三角形的中位线定理和平行线的性质,考察知识点较多,是一道不错的题目.11.答案:C解析: ∵△ABC ≌△CDA ,且AD =CB ∴∠B =∠D ∠CAB =∠ACD AC =CA ∴选C.分析:本题综合考察了全等三角形的性质,考察知识点较多,是一道不错的题目. 12.答案:D 解析: ∵AC ⊥CD∴∠ACD =90° ∵∠1+∠2+∠ACD =180° ∴∠1+∠2=90° ∴选D.分析:本题综合考察了三角形全等的判定和全等三角形的性质,根据不同的视角,可以考察不同的知识点,是一道不错的题目.13. 答案:A 解析: ∵AC =AD BC =BD (已知) AB =AB∴△ABC ≌Rt △ABD (SSS ) ∴∠CAB =∠DAB ∠CBA =∠DBA ∴选A.分析:本题综合考察了三角形全等的判定和全等三角形的性质,是一道综合性很好的题目.14.答案:C解析:由原题所给条件,可以得到有以下三对三角形全等(1)△ABE≌△DCF(2)△ABF≌△DCE(3)△FBE≌△ECF故有3对,选C.分析:本题综合考察了三角形全等的多种判定方法,是一道综合性很好的题目.15. 答案:D解析:∵AE=DF(已知),∴AE+EF=EF+DF∴AF=ED∵AB=CD,BF⊥AD,CE⊥AD∴Rt△ABF≌Rt△DCE(HL)分析:本题考查了全等三角形的判定方法中的HL判定定理.二、填空题16.答案:65°| 30°解析:∵MO=OP,QO=ON(已知),∠MO Q=∠PO N(对项角相等)∴△MOQ≌△PON(SAS)∴∠P=∠M=65°,∠N=∠Q=30°分析:本题考查了全等三角形的判定和全等三角形的性质,是一道综合性较好的题目. 17.答案:29cm解析:∵AB=AC,AE=AF=7(已知),∠A=∠A(公共角)∴△ABC≌△ACE(SAS)∴BF=CE=10 cm,∴△ABF的周长=AB+BF+FA=12+7+10=29(cm)分析:本题考查了全等三角形的判定和三角形周长的计算,是一道较好的题目. 18.答案:AC=CD解析:∵∠BCE=∠ACD(已知),∴∠BCE +∠ACE =∠ACE +∠ACD ∴∠BCA =∠ECD ∵BC =EC ,AC =CD ∴△ABC ≌△DEC (SAS )分析:本题考查了全等三角形的判定和角的计算,是一道较好的题目. 19. 答案:90.解析:∵AB =AC , D 是BC 边的中点(已知), ∴∠B =∠C , AD ⊥BC ∴∠1+∠B =90° ∴∠1+∠C =90度分析:本题考查了等腰三角形的性质和角的计算,是一道较好的题目. 20. 答案:90.解析:∵由题知小方格边长相等(已知),∴AC 与AB 所在的两个直角三角形全等 ∵AC 是其所在直角三角形的斜边 ∴两个锐角互余 ∴易得∠1+∠2=90度分析:本题考查了全等三角形的判定方法SAS ,以及数形结合,是一道较好的题目.三、解答题21. 答案:答案见解析解析:∵C 是AB 的中点(已知), ∴AC =CB (线段中点的定义). ∵CD ∥BE (已知),∴∠ACD =∠B (两直线平行,同位角相等). 在△ACD 和△CBE 中,⎪⎩⎪⎨⎧=∠=∠=.,BE CD CBE ACD CB AC ∴△ACD ≌△CBE (SAS ).分析:本题考查了线段中点的性质以及全等三角形的判定方法,综合性比较强. 22. 答案:答案见解析 解析:∵∠BAC =∠DAE , ∴∠BAC -BAE =∠DAE -∠BAE , 即∠BAD =∠CAE ,在△ABD 和△AEC 中,⎪⎩⎪⎨⎧=∠=∠=.,AE AB EAC BAD AC AD∴△ABD ≌△AEC (SAS ).分析:本题考查了角的和差计算以及全等三角形的判定方法,是一道综合性比较强的题目.需要在审题时细心研究,不急不躁.23. 答案:BE ⊥AC .解析:在Rt △BDE 和 Rt △ACD 中, ⎩⎨⎧==DC DE AC BE ∴Rt △BDE ≌ Rt △ACD (HL ).∴∠BDE =∠CAD .∵AD 是△ABC 的高,∴∠CAD +∠C =90°.∴∠BDE +∠C =90°.∴∠BFD =90°.∴BE ⊥AC .分析:本题考查了余角的性质,垂直的判定以及全等三角形的判定方法,是一道综合性比较强的题目.需要在审题时细心研究,不急不躁.24. 答案:AF =AG.解析:∵AB =AC ,E ,D 分别是AB ,AC 的中点,∴ AD =AE . ∴在△ABD 和△ACE 中,⎪⎩⎪⎨⎧=∠=∠=.,,AE AD CAE BAD AC AB∴△ABD ≌△ACE (SAS ).∴∠ABD ≌∠ACE .在△ABF 和△ACG 中,⎪⎩⎪⎨⎧=∠=∠∠=∠.,,AC AB ACG ABF G F∴△ABF ≌△ACG (AAS ).∴AF =AG .分析:本题考查了线段中点的性质应用以及多种全等三角形的判定方法,是一道综合性比较强的题目.需要在审题时细心研究,不急不躁.25.答案:BE =CF解析:∵AD 是∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F , ∴ DE =DF .∴在Rt △BDE 和Rt △CDF 中,⎩⎨⎧==.,DF DE CD BD ∴Rt △BDE ≌Rt △CDF (HL ).∴BE =CF .分析:本题考查了角平线的性质和全等三角形的判定方法。
一、选择题1.如图,ABD △与AEC 都是等边三角形,AB AC ≠.下列结论中,①BE CD =;②60BOD ∠=︒;③BDO CEO ∠=∠.其中正确的有( ).A .0个B .1个C .2个D .3个 2.下列长度的三条线段,能组成三角形的是( )A .5,6,11B .3,4,8C .5,6,10D .6,6,13 3.已知三角形的一边长为8,则它的另两边长分别可以是( )A .4,4B .17,29C .3,12D .2,9 4.已知三角形的两边长分别为3和8,且周长恰好是5的倍数,那么第三边的长为( ) A .4B .9C .14D .4或95.已知图中的两个三角形全等,则∠α等于( )A .50°B .60°C .70°D .80°6.如图,ABC A BC '≌,110A '∠=︒,30ABC ∠=︒,则ACB =∠( )A .40︒B .20︒C .30D .45︒7.如图,已知AOB ∠,观察图中尺规作图的痕迹,可以判定111COD C O D ≌,其判定的依据是( )A .SSSB .SASC .ASAD .AAS8.在自习课上,小红为了检测同学们的学习效果,提出如下四种说法:①三角形有且只有一条中线;②三角形的高一定在三角形内部;③三角形的两边之差大于第三边;④三角形按边分类可分为等腰三角形和不等边三角形.其中错误的说法是( ) A .①②B .①③C .①②③D .①②③④9.如图所示,某同学将一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )A .带①去B .带②去C .带③去D .带①②去10.下列各组条件中,不能判定A ABC B C '''≌△△的是( )A .AC A C BCBC C C '''''==∠=∠ B .A A BC B C AC A C '''''∠=∠== C .AC A C AB A B A A '''''==∠=∠D .AC A C A A C C ''''=∠=∠∠=∠11.在下列长度的四根木棒中,能与4cm 、9cm 长的两根木棒钉成一个三角形的是( )A .4cmB .5cmC .9cmD .13cm12.用直尺和圆规作一个角等于已知角,如图,能得出A O B AOB ∠∠='''的依据是( )A .S .S .SB .S .A .SC .A .S .AD .A .A .S二、填空题13.如图所示,在等腰Rt ABC 中,90ACB ∠=︒,点D 为射线CB 上的动点,AE AD =,且,AE AD BE ⊥与AC 所在的直线交于点P ,若3AC PC =,则BDCD=_______.14.如图,已知在ABC ∆和ADC ∆中,,ACB ACD ∠=∠请你添加一个条件:_________,使ABC ADC ∆≅∆(只添一个即可).15.如图,AB 与CD 相交于点O ,OC =OD .若要得到△AOC ≌△BOD ,则应添加的条件是__________.(写出一种情况即可)16.如图,在Rt △ABC 中,∠C =90°,D 、E 分别为边BC 、AB 上的点,且AE =AC ,DE ⊥AB .若∠ADC =61°,则∠B 的度数为_____.17.如图,已知四边形ABCD 中,10AB =厘米,8BC =厘米,12CD =厘米,B C ∠=∠,点E 为AB 的中点.如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CD 上由C 点向D 点运动.当点Q 的运动速度为______厘米/秒时,能够使BEP △与CPQ 全等.18.在平面直角坐标系中,点A (2,0)B (0,4),作△BOC ,使△BOC 和△ABO 全等,则点C 坐标为________19.如图,OA ⊥OB ,∠BOC =30°,OD 平分∠AOC ,则∠BOD =_____度.20.三角形的两条边长分别是2cm ,8cm ,第三边为奇数,则其周长为________.三、解答题21.已知ABC 的周长为37cm ,AD 是BC 边上的中线,23AC BC =.(1)如图,当15AB cm =时,求BD 的长. (2)若14AC cm =,能否求出DC 的长?为什么?22.如图,CE AB ⊥于点,E BF AC ⊥于点,F CE 交BF 于点,D 且BD CD =.()1如果已知65BAC ∠=︒,求BDC ∠的度数;()2在图中补全射线,AD 并证明射线AD 是BAC ∠的平分线.23.如图,在平面内有三个点、、A B C(1)根据下列语句画图: ①连接AB ; ②作直线BC ;③作射线AC ,在AC 的延长线上取一点D 使得CD CB =,连接BD ;(2)比较,,AB BD AB BC CD AD +++的大小关系.24.在正方形网格中,网格线的交点叫做格点,三个顶点均在格点上的三角形叫做格点三角形.(1)在图1中计算格点三角形ABC 的面积是__________;(每个小正方形的边长为1) (2)ABC 是格点三角形.①在图2中画出一个与ABC 全等且有一条公共边BC 的格点三角形; ②在图3中画出一个与ABC 全等且有一个公共点A 的格点三角形. 25.在Rt ABC △中,90C ∠=︒,8cm AC =,6cm BC =,点D 在AC 上,且6cm AD =,过点A 作射线AE AC ⊥(AE 与BC 在AC 同侧),若点P 从点A 出发,沿射线AE 匀速运动,运动速度为1cm/s ,设点P 运动时间为t 秒.连结PD 、BD .(1)如图①,当PD BD ⊥时,求证:PDA DBC △≌△; (2)如图②,当PD AB ⊥于点F 时,求此时t 的值.26.△ABC 中,三个内角的平分线交于点O ,过点O 作OD ⊥OB ,交边BC 于点D . (1)如图1,猜想∠AOC 与∠ODC 的关系,并说明你的理由; (2)如图2,作∠ABC 外角∠ABE 的平分线交CO 的延长线于点F . ①求证:BF ∥OD ;②若∠F =35°,求∠BAC 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】利用SAS证明△DAC≌△BAE,利用三角形内角和定理计算∠BOD的大小即可.【详解】△与AEC都是等边三角形,∵ABD∴AD=AB,AC=AE,∠DAB=∠EAC=60°,∴∠DAB+∠CAB =∠EAC+∠CAB,∴∠DAC =∠BAE,∴△DAC≌△BAE,∴BE=CD,∴结论①正确;∵△DAC≌△BAE,∴∠ADC =∠ABE,∴∠BOD=180°-(∠BDO+∠DBO),∵∠BDO+∠DBO=60°-∠ADC +60°+∠ABE=120°,∴∠BOD=180°-120°=60°,∴结论②正确;∠=∠,无法证明BDO CEO∴结论③错误;故选C.【点睛】本题考查了等边三角形的性质,全等三角形的证明和性质,三角形内角和定理,熟练运用等边三角形的性质证明三角形的全等是解题的关键.2.C解析:C【分析】根据三角形的两边和大于第三边解答.【详解】A、5+6=11,故不能构成三角形;B、3+4<8,故不能构成三角形;C、5+6>10,故能构成三角形;D、6+6<13,故不能构成三角形;故选:C.【点睛】此题考查三角形的三边关系,熟记三角形的任意两边之和大于第三边,两边之差小于第三边是解题的关键.3.D解析:D【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于三边”进行判断即可.【详解】A、∵4+4=8,∴构不成三角形;B、29−17=12>8,∴构不成三角形;C、∵12−3=9>8,∴构不成三角形;D、9−2=7<8,9+2=11>8,∴能够构成三角形,故选:D.【点睛】此题考查了三角形的三边关系,熟练掌握三角形三边关系“任意两边之和大于第三边,任意两边之差小于三边”是解题的关键.4.B解析:B【分析】根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,可得第三边的范围,再找出是5倍数的数即可.【详解】∵三角形的两边长分别为3和8∴5<第三边长<11∴11<周长<22∵周长恰好是5的倍数∴周长是15或20∴第三边长是4或9∵3,4,8不能组成三角形∴第三边是9故选B.【点睛】本题考查知识点是三角形三边关系,记住三边关系式解题关键.5.C解析:C 【分析】利用全等三角形的性质及三角形内角和可求得答案. 【详解】 解:如图,∵两三角形全等, ∴∠2=60°,∠1=52°, ∴∠α=180°-50°-60°=70°, 故选:C . 【点睛】本题主要考查全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.6.A解析:A 【分析】根据全等三角形对应角相等即可求解; 【详解】∵ABC A BC '∆≅∆ , ∴ ∠A=∠A '=110°, ∵∠ABC=30°,∴∠ACB=180°-110°-30°=40°, 故选:A . 【点睛】本题考查了全等三角形的性质,正确掌握全等三角形对应角相等是解题的关键;7.A解析:A 【分析】由作法易得OD =O 1D 1,OC =O 1C 1,CD =C 1D 1,根据SSS 得到三角形全等. 【详解】解:在△COD 和△C 1O 1D 1中,111111CO C O DO D O CD C D=⎧⎪=⎨⎪=⎩, ∴111COD C O D ≌(SSS ).故选:A . 【点睛】本题考查了全等三角形的判定方法SSS 的运用,熟练掌握三角形全等的判定是正确解答本题的关键.8.C解析:C 【分析】三角形有三条中线对①进行判断;钝角三角形三条高,有两条在三角形外部,对②进行判断;根据三角形三边的关系对③进行判断;根据三角形的分类对④进行判断. 【详解】①三角形有三条中线,故①错误;②钝角三角形三条高,有两条在三角形外部,故②错误; ③三角形的任意两边之差小于第三边,故③错误;④三角形按边分类可分为等腰三角形、不等边三角形,故④正确; 综上,选项①②③错误, 故选:C . 【点睛】本题考查了三角形的有关概念,属于基础题型.要注意等腰三角形与等边三角形两个概念的区别.9.C解析:C 【分析】已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解. 【详解】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA 来配一块一样的玻璃.应带③去. 故选:C . 【点睛】此题主要考查学生对全等三角形的判定方法的灵活运用,要求对常用的几种方法熟练掌握.10.B解析:B【分析】根据全等三角形的判定逐一分析即可.【详解】解:A、根据SAS即可判定全等,该项不符合题意;B、根据SSA不能判定全等,该项符合题意;C、根据SAS即可判定全等,该项不符合题意;D、根据ASA即可判定全等,该项不符合题意;故选:B.【点睛】本题考查全等三角形的判定,掌握三角形全等的判定方法是解题的关键.11.C解析:C【分析】判定三条线段能否构成三角形,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【详解】解:设三角形的第三边为x,则9-4<x<4+9即5<x<13,∴当x=7时,能与4cm、9cm长的两根木棒钉成一个三角形,故选:C.【点睛】本题考查了三角形的三边关系的运用,解题时注意:三角形两边之和大于第三边,三角形的两边差小于第三边.12.A解析:A【分析】利用SSS可证得△OCD≌△O′C′D′,那么∠A′O′B′=∠AOB.【详解】解:易得OC=O C',OD=O′D',CD=C′D',∴△OCD≌△O′C′D′,∴∠A′O′B′=∠AOB,所以利用的条件为SSS,故选:A.【点睛】本题考查了全等三角形“边边边”的判定以及全等三角形的对应角相等这个知识点,熟练掌握三角形全等的性质是解题的关键.二、填空题13.或2【分析】分两种情况:(1)当点D 位于CB 延长线上时如图:过点E 作AP 延长线的垂线于点M 可证可得由等腰三角形的性质可得AC=BC 根据线段的和差关系可证的结论;(2)当点D 位于CB 之间时如图过点E 作 解析:25或2 【分析】 分两种情况:(1)当点D 位于CB 延长线上时,如图:过点E 作AP 延长线的垂线于点M ,可证ADC △AEM ≌△,EMP △BCP ≌△,可得,AM CD PC PM ==,由等腰三角形的性质可得AC=BC ,根据线段的和差关系可证的结论;(2)当点D 位于CB 之间时,如图过点E 作AP 的垂线于点N ,可证ADC △AEN ≌△,ENP △BCP ≌△,可得,AN CD PC PN ==,由等腰三角形的性质可得AC=BC ,根据线段的和差关系可证的结论;【详解】(1)当点D 位于CB 延长线上时,如图:过点E 作AP 延长线的垂线于点M ,ABC 为等腰直角三角形AC BC ∴=90BCP ACD AME ∴∠=∠=∠=︒90ADC DAC ∴∠+∠=︒AE AD ⊥90DAE ∴∠=︒90DAC EAM ∴∠+∠=︒ADC EAM ∴∠=∠AD AE =∴在ADC 和AEM △中ADC EAM ACD AME AD AE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△EAM∴CD MA =,AC EM =EM BC ∴=BPC EPM ∠=∠∴在BCP 和EMP 中BCP EMP BPC EPM BC EM ∠=∠⎧⎪∠=∠⎨⎪=⎩∴EMP △BCP ≌△PC PM ∴=CD AM =,3AC PC =,AC BC =∴设PC PM x ==3AC BC x ∴==5CD AM x ∴==CD BD BC =+2BD x ∴= 2255BD x CD x ∴== (2)当点D 位于CB 之间时,如图:过点E 作AP 的垂线于点N ,ABC 为等腰直角三角形AC BC ∴=90ACD ANE ∴∠=∠=︒90ADC DAC ∴∠+∠=︒AE AD ⊥90DAE ∴∠=︒90DAC EAN ∴∠+∠=︒ADC EAN ∴∠=∠AD AE =∴在ADC 和AEN △中ADC EAN ACD ANE AD AE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△EAN∴CD NA =,AC EN =EN BC ∴=BPC EPN ∠=∠∴在BCP 和ENP 中BCP ENP BPC EPN BC EN ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ENP △BCP ≌△PC PN ∴=CD AN =,3AC PC =,AC BC =∴设PC PN x ==3AC BC x ∴==CD AN x ∴==CD BC BD =-2BD x ∴=22BD x CD x∴== 故答案为:25或2. 【点睛】本题主要考查了全等三角形的判定和性质,解题关键是利用三角形全等和线段的和差得出所求线段之间的关系,同时运用分类讨论的思想.14.或或【分析】要判定△ABC ≌△ADC 已知AC 是公共边具备了一组边和一组角对应相等故添加CB=CD ∠BAC=∠DAC ∠B=∠D 后可分别根据SASASAAAS 能判定△ABC ≌△ADC 【详解】解:添加CB解析: BC DC =或CAB CAD ∠=∠或B D ∠=∠【分析】要判定△ABC ≌△ADC ,已知ACB ACD ∠=∠,AC 是公共边,具备了一组边和一组角对应相等,故添加CB=CD 、∠BAC=∠DAC 、∠B=∠D 后可分别根据SAS 、ASA 、AAS 能判定△ABC ≌△ADC .【详解】解:添加CB=CD ,结合ACB ACD ∠=∠,AC=AC ,根据SAS ,能判定△ABC ≌△ADC ; 添加∠BAC=∠DAC ,结合ACB ACD ∠=∠,AC=AC ,根据ASA ,能判定△ABC ≌△ADC ; 添加∠B=∠D ,结合ACB ACD ∠=∠,AC=AC ,根据AAS ,能判定△ABC ≌△ADC ; 故添加的条件是 BC DC =或CAB CAD ∠=∠或B D ∠=∠.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.OA=OB (答案不唯一)【分析】全等三角形的判定方法有SASASAAASSSS 只要添加一个符合的条件即可【详解】解:OA=OB 理由是:在△AOC 和△BOD 中∴△AOC ≌△BOD (SAS )故答案为:O解析:OA=OB .(答案不唯一)【分析】全等三角形的判定方法有SAS ,ASA ,AAS ,SSS ,只要添加一个符合的条件即可.【详解】解:OA=OB ,理由是:在△AOC 和△BOD 中,OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△BOD (SAS ).故答案为:OA=OB .(答案不唯一)【点睛】本题考查了全等三角形的判定的应用,通过做此题培养了学生的发散思维能力和对全等三角形的判定方法的灵活运用能力,题目答案不唯一,是一道比较好的题目.16.32°【分析】由HL 可证明△ADE ≌△ADC 得出∠ADE =∠ADC =61°再根据直角三角形两个锐角互余即可得出结论【详解】解:∵DE ⊥AB ∴∠AED =90°=∠DEB 在Rt △ADE 和Rt △ADC 中∴解析:32°【分析】由HL 可证明△ADE ≌△ADC ,得出∠ADE =∠ADC =61°,再根据直角三角形两个锐角互余即可得出结论.【详解】解:∵DE ⊥AB ,∴∠AED =90°=∠DEB ,在Rt △ADE 和Rt △ADC 中,AD AD AE AC =⎧⎨=⎩, ∴Rt △ADE ≌Rt △ADC (HL ),∴∠ADE =∠ADC =61°,∴∠BDE =180°﹣61°×2=58°,∴∠B =90°﹣58°=32°.故答案为:32°.本题考查了全等三角形的判定及性质问题,解题的关键是能够熟练掌握全等三角形的判定及性质.17.3或【分析】分两种情况讨论依据全等三角形的对应边相等即可得到点Q 的运动速度【详解】解:设点P运动的时间为t秒则BP=3tCP=8-3t∵点为的中点厘米∴AE=BE=5厘米∵∠B=∠C∴①当BE=CP解析:3或15 4【分析】分两种情况讨论,依据全等三角形的对应边相等,即可得到点Q的运动速度.【详解】解:设点P运动的时间为t秒,则BP=3t,CP=8-3t,∵点E为AB的中点,10AB 厘米,∴AE=BE=5厘米,∵∠B=∠C,∴①当BE=CP=5,BP=CQ时,△BPE与△CQP全等,此时,5=8-3t,解得t=1,∴BP=CQ=3,此时,点Q的运动速度为3÷1=3厘米/秒;②当BE=CQ=5,BP=CP时,△BPE与△CQP全等,此时,3t=8-3t,解得t=43,∴点Q的运动速度为5÷43=154厘米/秒;故答案为:3厘米/秒或154厘米/秒.【点睛】本题考查了全等三角形的性质和判定的应用,解决问题的关键是掌握全等三角形的对应边相等.18.(-20)或(24)或(-24)【分析】根据全等三角形的判定和已知点的坐标画出图形即可得出答案【详解】如图所示:有三个点符合∵点A(20)B(04)∴OB=4OA=2∵△BOC与△AOB全等∴OB=解析:(-2,0)或(2,4)或(-2,4)【分析】根据全等三角形的判定和已知点的坐标画出图形,即可得出答案.如图所示:有三个点符合,∵点A(2,0),B(0,4),∴OB=4,OA=2,∵△BOC与△AOB全等,∴OB=OB=4,OA=OC=2,∴C1(-2,0),C2(-2,4),C3(2,4).故答案为(2,4)或(-2,0)或(-2,4).【点睛】本题考查了坐标与图形性质,全等三角形的判定与性质,难点在于根据点C的位置分情况讨论.19.30【分析】本题首先利用垂直性质以及角分线性质求证2∠BOD与∠BOC 的关系继而将已知代入求解∠BOD【详解】∵OA⊥OB∴∠AOB=90°即∠AOD+BOD=90°;∵OD平分∠AOC∴∠AOD=解析:30【分析】本题首先利用垂直性质以及角分线性质求证2∠BOD与∠BOC的关系,继而将已知代入求解∠BOD.【详解】∵OA⊥OB,∴∠AOB=90°,即∠AOD+BOD=90°;∵OD平分∠AOC,∴∠AOD=∠DOC,即∠BOD+∠BOC+BOD=90°,即2∠BOD+∠BOC=90°∵∠BOC=30°,∴∠BOD=30°.故答案为:30.【点睛】本题考查垂直以及角分线的性质,解题关键在于角的互换,其次注意计算仔细即可. 20.17cm 或19cm 【分析】三角形的三边不等关系为:任意两边之差<第三边<任意两边之和【详解】解:8-2<第三边<8+2⇒6<第三边<10这个范围的奇数是7和9所以三角形的周长是2+8+7=17(cm解析:17cm 或19cm【分析】三角形的三边不等关系为:任意两边之差<第三边<任意两边之和.【详解】解:8-2<第三边<8+2⇒6<第三边<10,这个范围的奇数是7和9,所以三角形的周长是2+8+7=17(cm )或2+8+9=19(cm )故答案为:17cm 或19cm .【点睛】本题考查了三角形的三边关系,首先根据题意求出第三边,然后再求出周长,难度较小.三、解答题21.(1)6cm ;(2)不能求出DC 的长,理由见解析【分析】(1)根据23AC AB =,15AB cm =及ABC 的周长为37cm ,可求得BC ,再根据三角形中线的性质解答即可;(2)利用(1)中的方法,求得BC 的长度,然后根据构成三角形的条件,可判断出△ABC 不存在,进而可知没法求DC 的长.【详解】解:(1)∵23AC AB =,15AB cm =, ∴215103AC cm =⨯=, 又∵ABC 的周长为37cm ,∴37AB AC BC ++=, ∴()3737151012BC AB AC cm =--=--=,又∵AD 是BC 边上的中线, ∴()1112622BD BC cm ==⨯=; (2)不能,理由如下: ∵23AC AB =,14AC cm =, ∴()314212AB cm =⨯=, 又∵ABC 的周长为37cm ,∴37AB AC BC ++=,∴()373721142BC AB AC cm =--=--=,∴BC+AC=16<AB=21,∴不能构成三角形,故不能求出DC 的长.【点睛】此题考查三角形的中线、三角形的周长、构成三角形的条件,关键是根据三角形中线的性质解答.22.()1115;()2见解析【分析】(1)先求出25B ∠=︒,再根据垂直计算即可;(2)先证明()∆≅∆BDE CDF AAS ,得到DE DF =,再根据垂直和角平分线的性质计算即可;【详解】解:()1⊥BF AC ,65BAC ∠=︒,25B ∴∠=︒,又CE AB ⊥,115BDC B BED ∴∠=∠+∠=;()2如图,射线AD 即为所求;证明:CE AB ⊥,BF AC ⊥,90BED CFD ∴∠=∠=︒,BDE CDF ∠=∠,DB DC =, ()∴∆≅∆BDE CDF AAS ,DE DF ∴=,DE AB ∵⊥,DF AC ⊥,AD ∴是BAC ∠的平分线.【点睛】本题主要考查了角平分线的性质和全等三角形的判定与性质,准确分析计算是解题的关键.23.(1)见解析;(2)AB BC CD AB BD AD ++>+>【分析】(1)①按要求作图;②按要求作图;③按要求作出射线AC,然后以点C为圆心,BC为半径画弧,交射线AC于点D,连接BD;(2)结合图形,根据三角形两边之和大于第三边进行分析比较.【详解】解:(1)①如图,线段AB即为所求;②如图,直线BC即为所求;③如图,射线AC,点D,线段BD即为所求(2)如图,在△BCD中,BC+CD>BD∴AB BC CD AB BD++>+在△ABD中,AB+BD>AD∴AB BC CD AB BD AD++>+>【点睛】本题考查基本作图及三角形三边关系,正确理解几何语言并掌握三角形三边关系是解题关键.24.(1)6;(2)①见解析;②见解析【分析】(1)用割补法求解即可;(2)根据“SSS”画图即可;(3)根据“SSS”画图即可;【详解】解:(1)5×3-12×3×3-12×2×2-12×5×1=6,故答案为:6;(2)①如图,'A BC即为所求,②如图,''AB C 即为所求,【点睛】本题考查了“格点三角形的定义”以及全等三角形的判定方法,熟练掌握“SSS”是解答本题的关键.25.(1)见解析;(2)8秒【分析】(1)根据垂直及角之间的关系证明出PDA CBD ∠=∠,又有90PAD C ∠=∠=︒,=6AD BC =,根据三角形全等的判定定理则可证明PDA DBC △≌△.(2)根据垂直及角之间的关系证明APF DAF ∠=∠,又因为90PAD C ∠=∠=︒,AD BC =,则可证明PAD ACB △≌△,所以8cm AP AC ==,即t=8秒.【详解】(1)证明:PD BD ⊥,90PDB ∴∠=︒,即90BDC PDA ∠+∠=︒又90C ∠=︒,90BDC CBD ∠+∠=︒ PDA CBD ∴∠=∠又AE AC ⊥,90PAD ∴∠=︒90PAD C ∴∠=∠=︒又6cm BC =,6cm AD =AD BC ∴= 在PAD △和DCB 中PAD C AD CBPDA DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩()PDA DBC ASA ∴△≌△(2)PD AB ⊥,90AFD AFP ∴∠=∠=︒,即90PAF APF ∠+∠=︒又AE AC ⊥,90PAF DAF ∴∠+∠=︒ APF DAF ∴∠=∠又90PAD C ∠=∠=︒,AD BC =在APD △和CAB △中 APD CAB PAD C AD BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()PAD ACB AAS ∴△≌△8cm AP AC ∴==即8t =秒.【点睛】本题主要考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理,灵活运用角之间的关系是解题关键.26.(1)∠AOC =∠ODC ,理由见解析;(2)①见解析;②70°【分析】(1)根据角平分线的定义得到∠OAC +∠OCA =12(180°−∠ABC ),∠OBC =12∠ABC ,由三角形的内角和得到∠AOC =90°+∠OBC ,∠ODC =90°+∠OBD ,于是得到结论; (2)①由角平分线的性质得到∠EBF =90°−∠DBO ,由三角形的内角和得到∠ODB =90°−∠OBD ,于是得到结论;②由角平分线的性质得到∠FBE =12(∠BAC +∠ACB ),∠FCB =12ACB ,根据三角形的外角的性质即可得到结论. 【详解】(1)∠AOC =∠ODC ,理由:∵三个内角的平分线交于点O ,∴∠OAC+∠OCA =12(∠BAC+∠BCA )=12(180°﹣∠ABC ), ∵∠OBC =12∠ABC , ∴∠AOC =180°﹣(∠OAC+∠OCA )=90°+12∠ABC =90°+∠OBC , ∵OD ⊥OB ,∴∠BOD =90°,∴∠ODC =90°+∠OBD ,∴∠AOC =∠ODC ;(2)①∵BF 平分∠ABE ,∴∠EBF =12∠ABE =12(180°﹣∠ABC )=90°﹣∠DBO , ∵∠ODB =90°﹣∠OBD ,∴∠FBE =∠ODB ,∴BF∥OD;②∵BF平分∠ABE,∴∠FBE=12∠ABE=12(∠BAC+∠ACB),∵三个内角的平分线交于点O,∴∠FCB=12∠ACB,∵∠F=∠FBE﹣∠BCF=12(∠BAC+∠ACB)﹣12∠ACB=12∠BAC,∵∠F=35°,∴∠BAC=2∠F=70°.【点睛】本题考查了平行线的性质和判定,角平分线的定义,三角形的内角和,三角形的外角的性质,熟练掌握三角形的外角的性质是解题的关键.。
第四章《三角形》质量检测卷(解析版)(全卷满分100分限时90分钟)一.选择题:(每小题3分,共36分)1. 满足下列条件的△ABC中,不是直角三角形的是()A. ∠B+∠A=∠CB. ∠A:∠B:∠C=2:3:5C. ∠A=2∠B=3∠CD. 一个外角等于和它相邻的一个内角【答案】B【解析】本题考查了直角三角形的判定根据三角形的内角和是及邻补角是,对各选项进行分析即可。
A、∵∠B+∠A=∠C,∴∠C=90°,∴△ABC是直角三角形;B、∵∠A:∠B:∠C=2:3:5,∴∠C=90°,∴△ABC是直角三角形;C、∵∠A=2∠B=3∠C,∴∠A≠90°,∴△ABC不是直角三角形;D、∵一个外角等于和它相邻的内角,∴每一个角等于90°,∴△ABC是直角三角形;故选C.2..下列说法正确的是()A.三角形的角平分线是射线B.三角形的中线是线段C.三角形的高是直线D.直角三角形仅有一条高线【答案】B【解析】三角形的角平分线,中线,高都是线段,故A,C错误,B正确;任何三角形都有三条高线,故D错误.故选B.3.若一个三角形的两边长分别为3和7,则第三边长可能是( )A. 6B. 3C. 2D. 11 【答案】A【解析】试题解析:设第三条边长为x,根据三角形三边关系得:7-3<x<7+3,即4<x<10.结合各选项数值可知,第三边长可能是6.故选A.4.在下列长度的四根木棒中,能与长为4cm、9cm的两根木棒钉成一个三角形的是( )A. 4cmB. 5cmC. 9cmD. 13cm【解析】试题解析:根据三角形的三边关系,得:第三边应大于两边之差,且小于两边之和,即9-4=5,9+4=13.∴第三边取值范围应该为:5<第三边长度<13,故只有C选项符合条件.故选C.5.一个钝角三角形的三条角平分线所在的直线一定交于一点,这交点一定在( )A. 三角形内部B. 三角形的一边上C. 三角形外部D. 三角形的某个顶点上【答案】A【解析】三角形三条角平分线所在的直线一定交于一点,这一点是三角形的内心即内切圆的圆心,此点在三角形(锐角三角形、直角三角形、钝角三角形)内部.故选:A.6.三角形的一个外角是锐角,则此三角形的形状是()A. 锐角三角形B. 钝角三角形C. 直角三角形D. 无法确定【答案】B【解析】本题主要考查了三角形的形状根据外角是锐角,可得相邻的内角是钝角,即可判断。
B EDA CF87654321DCBAabM PN123第五章相交线与平行线 一、选择题1、如图1,直线a ,b 相交于点O ,若∠1等于40°,则∠2等于( )A .50°B .60°C .140°D .160°图1 图2 图32、如图2,已知AB ∥CD ,∠A =70°,则∠1的度数是( )A .70°B .100°C .110°D .130°3、已知:如图3,AB CD ⊥,垂足为O ,EF 为过点O 的一条直线,则1∠ 与2∠的关系一定成立的是( )A .相等B .互余C .互补D .互为对顶角4、如图4,AB DE ∥,65E ∠=,则B C ∠+∠=( )A .135B .115C .36D .65图4 图5 图65、如图5,小明从A 处出发沿北偏东60°方向行走至B 处,又沿北偏西20方向行走至C 处,此时需把方向调整到与出发时一致,则方向的调整应是( )A .右转80° B.左转80° C.右转100° D .左转100° 6、如图6,如果AB∥CD,那么下面说法错误的是( )A .∠3=∠7;B .∠2=∠6C 、∠3+∠4+∠5+∠6=1800D 、∠4=∠87、如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30 ,那么这两个角是( )A . 42138、;B . 都是10 ;C . 42138、或4210、;D . 以上都不对 8、下列语句:①三条直线只有两个交点,则其中两条直线互相平行;②如果两条平行线被第三条截,同旁内角相等,那么这两条平行线都与第三条直线垂直;③过一点有且只有一条直线与已知直线平行,其中( )A .①、②是正确的命题;B .②、③是正确命题;C .①、③是正确命题 ;D .以上结论皆错9、下列语句错误的是( )A .连接两点的线段的长度叫做两点间的距离;B .两条直线平行,同旁内角互补C .若两个角有公共顶点且有一条公共边,和等于平角,则这两个角为邻补角D .平移变换中,各组对应点连成两线段平行且相等 10、如图7,a b ∥,M N ,分别在a b ,上,P 为两平行线间一点, 那么123∠+∠+∠=( )A .180B .270C .360D .540二、填空题11、如图8,直线a b ∥,直线c 与a b ,相交.若170∠=,则2_____∠=.D BAC1a b1 2OABCDEF21Occ d1EABCa b12 3C ABD E AB 120°α25°CD图8 图9 图10 12、如图9,已知170,270,360,∠=︒∠=︒∠=︒则4∠=______︒.13、如图10,已知AB ∥CD ,BE 平分∠ABC ,∠CDE =150°,则∠C =______ 14、如图11,已知a b ∥,170∠=,240∠=,则3∠= .图11 图12 图13 15、如图12所示,请写出能判定CE ∥AB 的一个条件 . 16、如图13,已知AB CD //,∠α=____________ 三、解答题 17、推理填空如图: ① 若∠1=∠2,则 ∥ ( ) 若∠DAB+∠ABC=1800,则 ∥ ( )②当 ∥ 时,∠ C+∠ABC=1800( ) 当 ∥ 时,∠3=∠C( )18、如图,∠1=30°,AB⊥CD,垂足为O ,EF 经过点O.求∠2、∠3的度数.19、已知:如图AB∥CD,EF 交AB 于G ,交CD 于F ,FH 平分∠EFD,交AB 于H ,∠AGE=500,求:∠BHF 的度数.20、观察如图所示中的各图,寻找对顶角(不含平角):(1)如图a ,图中共有___对对顶角;(2)如图b ,图中共有___对对顶角;(3)如图c ,图中共有___对对顶角.(4)研究(1)~(3)小题中直线条数与对顶角的对数之间的关系,若有n 条直线相交于一点, 则可形成多少对对顶角?(5)若有2008条直线相交于一点,则可形成 多少对对顶角?HGF EDC BA321DCBAABCD Oa b c A A B B CCD DO OEFG H图a图b图cC21、已知,如图,CD⊥AB,GF⊥AB,∠B=∠ADE,试说明∠1=∠2.22、如图,已知AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,∠FOD =28°,求∠COE 、∠AOE 、∠AOG 的度数.23、如图,AOC ∠与BOC ∠是邻补角,OD 、OE 分别是AOC ∠与BOC ∠的平分线,试判断OD 与OE 的位置关系,并说明理由.24、如图,AB ∥DE ,试问∠B 、∠E 、∠BCE 有什么关系.解:∠B +∠E =∠BCE 过点C 作CF ∥AB ,则B ∠=∠____( ) 又∵AB ∥DE ,AB ∥CF ,∴____________( )∴∠E =∠____( ) ∴∠B +∠E =∠1+∠2 即∠B +∠E =∠BCE .25、如图,已知∠1=∠2 求证:a ∥b .⑵直线//a b ,求证:12∠=∠.26、阅读理解并在括号内填注理由:如图,已知AB ∥CD ,∠1=∠2,试说明EP ∥FQ . 证明:∵AB ∥CD ,∴∠MEB =∠MFD ( ) 又∵∠1=∠2,∴∠MEB -∠1=∠MFD -∠2, 即 ∠MEP =∠______∴EP ∥_____.( )F21GEDCB A27、已知:如图∠1=∠2,∠C=∠D,问∠A与∠F相等吗?试说明理由.第六章平面直角坐标系一、选择题1、如图,点P的横坐标是()A、1B、2C、(2,1)D、(1,2)2、如果用有序数对(3,2)表示课室里第3列第2排的座位,则第5列第4排的座位记作()A、(4,5)B、(5,4)C、(5、4)D、(4、5)3、在平面直角坐标系中,对于坐标P(2,5),下列说法错误的是()A、P(2,5)表示这个点在平面内的位置B、点P的纵坐标是:5C、点P到x轴的距离是5D、它与点(5,2)表示同一个坐标4、在平面直角坐标系中,点A(-1, 1)在 ( )A、第一象限B、第二象限C、第三象限D、第四象限5、在平面直角坐标系中,点B(3, 0)在 ( )A、第一象限B、第四象限C、x轴上D、y轴上6、在平面直角坐标系中,点C(-2, 4 )向右平移3个单位后得到D点,则D点的坐标是( )A、(1,4)B、(-5,4)C、(-2,7)D、(-2,1)7、下列坐标所表示的点中,距离坐标系的原点最近的是()A、(-1,1)B、(2,1)C、(0,2)D、(0,-2)8、与点P(3,4)关于x轴对称的是()A、(-3,4)B、(3,-4)C、(-3,-4)D、(4,3)9、在平面直角坐标系中,若以点A(0,-3)为圆心,5为半径画一个圆,则这个圆与y轴的负半轴相交的点坐标是()A、(8,0)B、( 0,-8)C、(0,8)D、(-8,0)10、有一个长方形,已知它的三个顶点的坐标分别是(– 1,– 1)、(– 1,2)、(3,– 1),则第四个顶点的坐标为()A、(2,2)B、(3,2)C、(3,3)D、(2,3)二、填空题11、点A(-3,2)在第_____象限。
第六周周测题 姓名:_____________
一.填空题(每小题3分,共18分)
1. 三角形的三边关系:_________________________________________________。
2. 说出等腰∆ABC(其中AB=AC)的结构:_________________________________________.
3. 已知三角形两边长为4,8,则第三边长a的取值范围为:___________________。
4. 等腰三角形两边长为5,12,则第三边长为_________________。
5. 2.049≈______________。(保留两个有效数字)
6.命题“相等的角是对顶角”的题设是__________________________;结论是
________________________。
二.计算题(每小题10分,共20分)
6.2-12-3+4-2()()() 7.解方程:253164xx
三.作图题(10分)
8.作出∆ABC关于顶点B的高、中线和角平分线并描述它们。
C
B
A
四.解答题。
9.指出图中有几个三角形,并全部表示出来。(12分)
E
D
C
A
B
10.
下图是小明在跳远测试中留下的脚印,请在图中作出能测量小明跳远成绩的线段,并
简要说明作法。(4分)
11.已知一个等腰三角形的周长为24cm,其中一边长为8cm,求另两边长。(12分)
12.(15分)如图,已知AD,AE分别为∆ABC的高和中线,AB=3,AC=4,BC=5,∠CAB=90°,
(1)求AD的长。
(2)求S∆ABC.
(3)你能说明图形中有哪个三角形的面积与∆ABE的面积相等,并说明理由。
C
E
D
B
A
13. 如图,,EGBC垂足为G,12,AD平分BAC,判断AD与BC的位置关系并
说明理由。(9分)
2
1
F
G
E
C
D
A
B