历年硕士研究生入学《高等数学》gs1-2矩阵
- 格式:pdf
- 大小:252.75 KB
- 文档页数:7
2002年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)⎰∞+exx dx2ln = _____________.(2)已知2e 610yxy x ++-=,则(0)y ''=_____________. (3)02='+''y y y 满足初始条件1(0)1,(0)2y y '==的特解是_____________. (4)已知实二次型323121232221321444)(),,(x x x x x x x x x a x x x f +++++=经正交变换可化为标准型216y f =,则a =_____________.(5)设随机变量),(~2σμN X ,且二次方程042=++X y y 无实根的概率为0.5,则μ=_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)考虑二元函数),(y x f 的四条性质:①),(y x f 在点),(00y x 处连续, ②),(y x f 在点),(00y x 处的一阶偏导数连续, ③),(y x f 在点),(00y x 处可微, ④),(y x f 在点),(00y x 处的一阶偏导数存在. 则有:(A)②⇒③⇒① (B)③⇒②⇒① (C)③⇒④⇒①(D)③⇒①⇒④(2)设0≠n u ,且1lim=∞→nn u n ,则级数)11()1(11+++-∑n n n u u 为 (A)发散(B)绝对收敛(C)条件收敛(D)收敛性不能判定.(3)设函数)(x f 在+R 上有界且可导,则 (A)当0)(lim =+∞→x f x 时,必有0)(lim ='+∞→x f x(B)当)(lim x f x '+∞→存在时,必有0)(lim ='+∞→x f x(C) 当0)(lim 0=+→x f x 时,必有0)(lim 0='+→x f x (D)当)(lim 0x f x '+→存在时,必有0)(lim 0='+→x f x .(4)设有三张不同平面,其方程为i i i i d z c y b x a =++(3,2,1=i )它们所组成的线性方程组的系数矩阵与增广矩阵的秩都为2,则这三张平面可能的位置关系为(5)设X 和Y 是相互独立的连续型随机变量,它们的密度函数分别为)(x f X 和)(y f Y ,分布函数分别为)(x F X 和)(y F Y ,则(A))(x f X +)(y f Y 必为密度函数 (B) )(x f X )(y f Y 必为密度函数 (C))(x F X +)(y F Y 必为某一随机变量的分布函数 (D) )(x F X )(y F Y 必为某一随机变量的分布函数.四、(本题满分7分)已知两曲线)(x f y =与2arctan 0ex t y dt -=⎰在点(0,0)处的切线相同.求此切线的方程,并求极限)2(lim nnf n ∞→.五、(本题满分7分) 计算二重积分22max{,}e x y Ddxdy ⎰⎰,其中}10,10|),{(≤≤≤≤=y x y x D .六、(本题满分8分)设函数)(x f 在R 上具有一阶连续导数,L 是上半平面(y >0)内的有向分段光滑曲线,起点为(b a ,),终点为(d c ,).记dy xy f y y x dx xy f y y I ]1)([)](1[1222-++=⎰, (1)证明曲线积分I 与路径L 无关.(2)当cd ab =时,求I 的值.七、(本题满分7分)(1)验证函数∑∞==03)!3()(n n n x x y (+∞<<∞-x )满足微分方程e xy y y '''++=.(2)求幂级数∑∞==03)!3()(n nn x x y 的和函数.八、(本题满分7分)设有一小山,取它的底面所在的平面为xoy 面,其底部所占的区域为}75|),{(22≤-+=xy y x y x D ,小山的高度函数为),(y x h xy y x +--=2275.(1)设),(00y x M 为区域D 上一点,问),(y x h 在该点沿平面上何方向的方向导数最大?若此方向的方向导数为),(00y x g ,写出),(00y x g 的表达式.(2)现欲利用此小山开展攀岩活动,为此需要在山脚下寻找一山坡最大的点作为攀登的起点.也就是说要在D 的边界线上找出使(1)中),(y x g 达到最大值的点.试确定攀登起点的位置.九、(本题满分6分)已知四阶方阵1234(,,,)=A αααα, 1234,,,αααα均为四维列向量,其中234,,ααα线性无关,1232=-ααα.若1234=+++βαααα,求线性方程组x =A β的通解.十、(本题满分8分) 设,A B 为同阶方阵,(1)若,A B 相似,证明,A B 的特征多项式相等. (2)举一个二阶方阵的例子说明(1)的逆命题不成立. (3)当,A B 为实对称矩阵时,证明(1)的逆命题成立.十一、(本题满分7分)设维随机变量X 的概率密度为()f x= 1cos 0220 xx x≤≤其它对X 独立地重复观察4次,用Y 表示观察值大于3π的次数,求2Y 的数学期望.十二、(本题满分7分) 设总体的概率分布为其中θ(02θ<<)是未知参数,利用总体X 的如下样本值 3,1,3,0,3,1,2,3.求θ的矩估计和最大似然估计值.2002年考研数学一试题答案与解析一、填空题(1)【分析】 原式2ln 11.ln ln eed x x x+∞+∞==-=⎰(2)【分析】 方程两边对x 两次求导得'6'620,y e y xy y x +++=① 2'''6''12'20.y y e y e y xy y ++++=②以0x =代入原方程得0y =,以0x y ==代入①得'0,y =,再以'0x y y ===代入②得''(0) 2.y =-(3)【分析】 这是二阶的可降阶微分方程.令'()y P y =(以y 为自变量),则'''.dy dP dPy P dx dx dy=== 代入方程得 20dP yPP dy +=,即0dP y P dy+=(或0P =,但其不满足初始条件01'2x y ==). 分离变量得 0,dP dyP y+= 积分得 ln ln ',P y C +=即1C P y=(0P =对应10C =); 由0x =时11,',2y P y ===得11.2C =于是1',2,2y P ydy dx y===积分得22y x C =+.又由01x y ==得21,C =所求特解为y =(4)【分析】 因为二次型T x Ax 经正交变换化为标准型时,标准形中平方项的系数就是二次型矩阵A 的特征值,所以6,0,0是A 的特征值.又因ii i a λ=∑∑,故600, 2.a a a a ++=++⇒=(5)【分析】 设事件A 表示“二次方程042=++X y y 无实根”,则{1640}{A X X =-<=> 4}.依题意,有1(){4}.2P A P X =>=而 4{4}1{4}1(),P X P X μΦσ->=-≤=-即414141(),(),0. 4.22μμμΦΦμσσσ----===⇒=二、选择题(1)【分析】 这是讨论函数(,)f x y 的连续性,可偏导性,可微性及偏导数的连续性之间的关系.我们知道,(,)f x y 的两个偏导数连续是可微的充分条件,若(,)f x y 可微则必连续,故选(A ).(2)【分析】 由1lim 101n n un n →+∞=>⇒充分大时即,N n N ∃>时10nu >,且1lim0,n n u →+∞=不妨认为,0,n n u ∀>因而所考虑级数是交错级数,但不能保证1n u 的单调性.按定义考察部分和111111111111(1)()(1)(1)nn nk k k n k k k k k k k S u u u u +++===++=-+=-+-∑∑∑ 1111111(1)11(1)1(1)(),k n nn l k l k l n n u u u u u ++==+--=-+-=+→→+∞∑∑⇒原级数收敛.再考察取绝对值后的级数1111()n n n u u ∞=++∑.注意111112,11n n n n u u n n n u u n n++++=+⋅→+11n n ∞=∑发散⇒1111()n n n u u ∞=++∑发散.因此选(C ).(3)【分析】 证明(B )对:反证法.假设lim ()0x f x a →+∞'=≠,则由拉格朗日中值定理,(2)()'()()f x f x f x x ξ-=→∞→+∞(当x →+∞时,ξ→+∞,因为2x x ξ<<);但这与(2)()(2)()2f x f x f x f x M -≤+≤矛盾(()).f x M ≤(4)【分析】 因为()()23r A r A ==<,说明方程组有无穷多解,所以三个平面有公共交点且不唯一,因此应选(B ).(A )表示方程组有唯一解,其充要条件是()() 3.r A r A ==(C )中三个平面没有公共交点,即方程组无解,又因三个平面中任两个都不行,故()2r A =和()3r A =,且A 中任两个平行向量都线性无关.类似地,(D )中有两个平面平行,故()2r A =,()3r A =,且A 中有两个平行向量共线.(5)【分析】 首先可以否定选项(A )与(C ),因121212[()()]()()21,()()112 1.f x f x dx f x dx f x dx F F +∞+∞+∞-∞-∞-∞+=+=≠+∞++∞=+=≠⎰⎰⎰对于选项(B ),若121,21,1,01,()()0,0,x x f x f x -<<-<<⎧⎧==⎨⎨⎩⎩其他,其他,则对任何(,),x ∈-∞+∞12()()0f x f x ≡,12()()01,f x f x dx +∞-∞=≠⎰因此也应否定(C ),综上分析,用排除法应选(D ).进一步分析可知,若令12max(,)X X X =,而~(),1,2,i i X f x i =则X 的分布函数()F x 恰是12()().F x F x1212(){max(,)}{,}F x P X X x P X x X x =≤=≤≤1212{}{}()().P X x P X x F x F x =≤≤=三、【解】 用洛必达法则.由题设条件知lim[()(2)(0)](1)(0).h af h bf h f a b f →+-=+-由于(0)0f '≠,故必有10.a b +-= 又由洛必达法则00()(2)(0)'()2'(2)limlim1h h af h bf h f af h bf h h →→+-+= (2)'(0)0,a b f =+=及(0)0f '≠,则有20a b +=.综上,得2, 1.a b ==-四、【解】 由已知条件得(0)0,f =22arctan arctan 02'(0)()'1,1xx t xx x e f e dt x --=====+⎰故所求切线方程为y x =.由导数定义及数列极限与函数极限的关系可得02()(0)2()(0)lim ()2lim 2lim 2'(0) 2.2n n x f f f x f n nf f n xn→∞→∞→--==== 五、【分析与求解】 D 是正方形区域如图.因在D 上被积函数分块表示2222,,max{,}(,),,,x x y x y x y D y x y ⎧≥⎪=∈⎨≤⎪⎩于是要用分块积分法,用y x =将D 分成两块:1212,{},{}.D D D D D y x D D y x ==≤=≥U I I⇒I 222212max{,}max{,}xy xy D D e dxdy e dxdy =+⎰⎰⎰⎰2221212x y x D D D e dxdy e dxdy e dxdy =+=⎰⎰⎰⎰⎰⎰(D 关于y x =对称)2102xx dx e dy =⎰⎰(选择积分顺序)221102 1.x xxe dx e e ===-⎰六、【分析与求解】 (1)易知Pdx Qdy +∃原函数,2211()()()()()x Pdx Qdy dx yf xy dx xf xy dy dy ydx xdy f xy ydx xdy y y y+=++-=-++ 0()()()[()].xy x xd f xy d xy d f t dt y y =+=+⎰⇒在0y >上Pdx Qdy +∃原函数,即0(,)()xy xu x y f t dt y=+⎰.⇒积分I 在0y >与路径无关.(2)因找到了原函数,立即可得(,)(,)(,).c d a b c a I u x y d b==- 七、【证明】与书上解答略有不同,参见数三2002第七题(1)因为幂级数3693()13!6!9!(3)!nx x x x y x n =++++++L L的收敛域是()x -∞<+∞,因而可在()x -∞<+∞上逐项求导数,得25831'()2!5!8!(31)!n x x x x y x n -=+++++-L L ,4732''()4!7!(32)!n x x x y x x n -=+++++-L L ,所以2'''12!!nx x x y y y x e n ++=+++++=L L ()x -∞<+∞.(2)与'''x y y y e ++=相应的齐次微分方程为'''0y y y ++=,其特征方程为210λλ++=,特征根为1,212λ=-.因此齐次微分方程的通解为212(cossin )22x Y e C x C x -=+. 设非齐次微分方程的特解为x y Ae *=,将y *代入方程'''x y y y e ++=可得13A =,即有13x y e *=.于是,方程通解为2121(sin )3xx y Y y e C x C x e -*=+=++. 当0x =时,有112121(0)1,23,0.311'(0)0.23y C C C y C ⎧==+⎪⎪⇒==⎨⎪==-+⎪⎩于是幂级数30(3)!n n x n ∞=∑的和函数为221()cos323x x y x e x e -=+()x -∞<+∞八、【分析与求解】 (1)由梯度向量的重要性质:函数),(y x h 在点M 处沿该点的梯度方向0000(,)(,)0000(,){,}{2,2}x y x y h hh x y x y y x x y∂∂==-+-+∂∂grad方向导数取最大值即00(,)(,)x y h x y grad 的模,00(,)g x y ⇒=(2)按题意,即求(,)g x y 求在条件22750x y xy +--=下的最大值点⇔22222(,)(2)(2)558g x y y x x y x y xy =-+-=+-在条件22750x y xy +--=下的最大值点. 这是求解条件最值问题,用拉格朗日乘子法.令拉格朗日函数2222(,,)558(75),L x y x y xy x y xy λλ=+-++--则有22108(2)0,108(2)0,750.Lx y x y x Ly x y x y L x y xy λλλ⎧∂=-+-=⎪∂⎪∂⎪=-+-=⎨∂⎪⎪∂=+--=⎪∂⎩ 解此方程组:将①式与②式相加得()(2)0.x y x y λ++=⇒=-或 2.λ=-若y x =-,则由③式得2375x =即5, 5.x y =±=m 若2,λ=-由①或②均得y x =,代入③式得275x =即x y =±=±于是得可能的条件极值点1234(5,5),(5,5),(M M M M ----现比较222(,)(,)558f x y g x y x y xy ==+-在这些点的函数值:1234()()450,()()150.f M f M f M f M ====因为实际问题存在最大值,而最大值又只可能在1234,,,M M M M 中取到.因此2(,)g x y 在12,M M 取到在D 的边界上的最大值,即12,M M 可作为攀登的起点.九、【解】 由432,,ααα线性无关及3212ααα-=知,向量组的秩1234(,,,)3r αααα=,即矩阵A 的秩为3.因此0Ax =的基础解系中只包含一个向量.那么由123412312(,,,)2010ααααααα⎡⎤⎢⎥-⎢⎥=-+=⎢⎥⎢⎥⎣⎦知,0Ax =的基础解系是(1,2,1,0).T -再由123412341111(,,,)1111A βαααααααα⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=+++==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦知,(1,1,1,1)T 是β=Ax 的一个特解.故β=Ax 的通解是1121,1101k ⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦其中k 为任意常数.十、【解】 (1)若,A B 相似,那么存在可逆矩阵P ,使1,P AP B -=故111E B E P AP P EP P AP λλλ----=-=-11().P E A P P E A P E A λλλ--=-=-=-(2)令0100,,0000A B ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦那么2.E A E B λλλ-==- 但,A B 不相似.否则,存在可逆矩阵P ,使10P AP B -==.从而100A P P -==,矛盾,亦可从()1,()0r A r B ==而知A 与B 不相似.(3)由,A B 均为实对称矩阵知,,A B 均相似于对角阵,若,A B 的特征多项式相等,记特征多项式的根为1,,,n λλL 则有A 相似于1,n λλ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦O B 也相似于1.n λλ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦O 即存在可逆矩阵,P Q ,使111.n P AP Q BQ λλ--⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦O 于是111()().PQ A PQ B ---=由1PQ -为可逆矩阵知,A 与B 相似.十一、【解】 由于311{}cos ,3222x P X dx πππ>==⎰依题意,Y 服从二项分布1(4,)2B ,则有2222111()()4(4) 5.222EY DY EY npq np =+=+=⨯⨯+⨯=十二.解 22012(1)23(12)34,EX θθθθθθ=⨯+⨯-+⨯+⨯-=-1(3).4EX θ=-θ的矩估计量为1ˆ(3),4X θ=-根据给定的样本观察值计算1(31303123)8x =+++++++ 2.=因此θ的矩估计值11ˆ(3).44x θ=-= 对于给定的样本值似然函数为624()4(1)(12),ln ()ln 46ln 2ln(1)4ln(12),L L θθθθθθθθ=--=++-+-2ln ()62824286.112(1)(12)d L d θθθθθθθθθθ-+=--=----令ln ()0d L d θθ=,得方程2121430θθ-+=,解得712θ-=(71,122θ+=>不合题意).于是θ的最大似然估计值为ˆθ=(范文素材和资料部分来自网络,供参考。
考研数学一大纲详细解析高等代数部分重点知识回顾在考研数学一考试中,高等代数是一个非常重要的部分。
正确理解并掌握高等代数的相关知识,对于顺利通过考试至关重要。
本文将对考研数学一大纲中高等代数部分的重点知识进行详细解析和回顾,帮助考生做好复习准备。
一、线性代数基础知识回顾1.1 行列式行列式是矩阵运算中非常常见的概念。
在考研数学一中,行列式的计算是必须要掌握的基本技能。
行列式的定义、性质以及计算方法都需要熟练掌握。
1.2 矩阵与方程组矩阵与方程组是线性代数中的重要内容之一。
通过矩阵的运算,我们可以简洁地表示和解决方程组的问题。
对于矩阵的基本运算、矩阵的秩、矩阵的逆等方面的知识点,都需要进行深入的理解和掌握。
1.3 向量空间和线性变换向量空间和线性变换是线性代数的核心内容。
对于向量空间的定义、性质以及向量空间的子空间等方面的知识点,需要进行详细的回顾和理解。
此外,线性变换的概念、性质以及线性变换的矩阵表示等内容也是需要重点关注的。
二、数域与二次型2.1 数域的性质与特征数域是高等代数中的重要概念,对于数域的性质和特征需要进行系统的回顾和理解。
数域的定义、运算规则、特征方程等方面的知识都需要掌握。
2.2 二次型的概念与性质二次型是线性代数中的一个重要概念,掌握二次型的概念、矩阵表示以及二次型的规范形等知识是必须的。
同时,需要注意掌握二次型的正定、负定和半定等性质,以及使用正交变换进行规范化的方法。
三、特征值与特征向量3.1 特征值与特征向量的定义特征值与特征向量是线性代数中非常重要的概念。
对于特征值与特征向量的定义、性质以及计算方法等内容,需要进行详细的回顾和掌握。
特别要注意掌握矩阵的相似对角化和特征值分解的相关方法。
3.2 特征多项式与特征方程特征多项式与特征方程是特征值与特征向量的重要工具。
需要熟练掌握特征多项式与特征方程的定义、性质以及计算方法,以便在解决相关问题时能够灵活应用。
四、线性空间与线性变换4.1 线性空间的基本定义线性空间是线性代数中的重要概念,对于线性空间的基本定义、性质以及子空间等内容,需要进行详细的回顾和理解。
湖北省考研数学一复习资料高等代数重要概念解析高等代数是数学学科中的重要分支之一,也是湖北省考研数学一科目中的重要内容。
在备考过程中,理解和掌握高等代数的重要概念是至关重要的。
本文将针对湖北省考研数学一复习资料中的高等代数部分,对其重要概念进行解析。
一、线性空间线性空间是高等代数中的基本概念之一,它是指一个非空集合V,其中定义了加法和标量乘法两种运算,并遵循一定的公理。
在湖北省考研数学一复习资料中,我们需要了解线性空间的基本性质和相关定理。
1. 线性空间的定义和性质线性空间V的定义包括以下几个方面:加法的封闭性、加法的结合律、加法的交换律、加法的单位元、加法的逆元、标量乘法的结合律、标量乘法的分配律和标量乘法的单位元等。
对于湖北省考研数学一复习资料中的高等代数部分,我们需要详细理解这些定义和性质,并能够运用到具体的问题解析中。
2. 子空间和商空间子空间是线性空间中具有线性结构的部分空间,它包括了线性空间的加法和标量乘法运算。
通常情况下,子空间的定义和性质与线性空间相似,但需要额外考虑所构成的子集是否满足推论和定理。
而商空间是由线性空间V的子空间W构成的,它是线性空间的一种重要扩展。
二、线性变换线性变换是高等代数中的重要概念之一,它是指一个线性空间到另一个线性空间的映射,同时保持加法和标量乘法运算。
在湖北省考研数学一复习资料中,我们需要掌握线性变换的基本性质和相关定理。
1. 线性变换的定义和性质线性变换的定义包括:保持加法运算、保持标量乘法运算。
同时,线性变换还具有保持零向量、保持线性组合、保持线性相关性、保持线性无关性等性质。
在复习的过程中,我们需要对线性变换的定义和性质进行深入理解,并能够灵活运用到具体的问题解析中。
2. 线性变换的表示和矩阵线性变换可以通过矩阵表示,这也是湖北省考研数学一复习资料中的重要内容。
我们需要学习线性变换的矩阵表示方法,并能够通过矩阵运算求得线性变换的特征值和特征向量等重要概念。
高等数学考研指定教材:同济大学数学系主编《高等数学》(上下册)(第六版)第一章函数与极限(7天)(考小题)学习内容复习知识点与对应习题大纲要求第一节:映射与函数(一般章节)函数的概念,常见的函数(有界函数、奇函数与偶函数、单调函数、周期函数)、复合函数、反函数、初等函数具体概念和形式.(集合、映射不用看;双曲正弦,双曲余弦,双曲正切不用看)习题1-1:4,5,6,7,8,9,13,15,16(重点)1.理解函数的概念,掌握函数的表示法,并会建立应用问题中的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型. 10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.第二节: 数列的极限 (一般章节) 数列定义,数列极限的性质(唯一性、有界性、保号性 )(本节用极限定义证明极限的题目考纲不作要求,可不看,如P26例1,例2,例3,定理1,2,3的证明都不作要求,但要理解;定理4不用看)习题1-2:1 第三节: 函数的极限 (一般章节) 函数极限的基本性质(不等式性质、极限的保号性、极限的唯一性、函数极限的函数局部有界性,函数极限与数列极限的关系等) P33(例4,例5)(例7不用做,定理2,3的证明不用看,定理4不用看)习题1-3:1,2,3,4 第四节: 无穷大与无穷小(重要) 无穷小与无穷大的定义,它们之间的关系,以及与极限的关系(无穷小重要,无穷大了解) (例2不用看,定理2不用证明)习题1-4:1,6 第五节: 极限的运算法则(掌握) 极限的运算法则(6个定理以及一些推论)(注意运算法则的前提条件是否各自极限存在)(定理1,2的证明理解,推论1,2,3,定理6的证明不用看)P46(例3,例4),P47(例6) 习题1-5:1,2,3,4,5(重点) 第六节: 极限存在准则(理解) 两个重要极限(要牢记在心,要注意极限成立的条件,不要混淆,应熟悉等价表达式,要会证明两个重要极限),函数极限的存在问题(夹逼定理、单调有界数列必有极限),利用函数极限求数列极限,利用夹逼法则求极限,求递归数列的极限 两个重要极限(重要) (准则1的证明理解,第一个重要极限的证明一定要会,另一个重要极限的证明不用看,柯西存在准则不用看)P51(例1)习题1-6:1,2,4 第七节: 无穷小的比较(重要) 无穷小阶的概念(同阶无穷小、等价无穷小、高阶无穷小、k 阶无穷小),重要的等价无穷小(尤其重要,一定要烂熟于心)以及它们的重要性质和确定方法(定理1,2的证明理解) P57(例1)P58(例5)习题1-7:全做 第八节: 函数的连续性与间断点(重要,基本函数的连续性,间断点的定义与分类(第一类间断点与第二类间断点),判断函数的连续性(连续性的四则运算法则,复合函数的连续性,反函数的连续性)和间断点的类型。
矩阵考研知识点总结一、矩阵的定义矩阵是由 m×n 个数排成的矩形阵列。
这 m×n 个数称为矩阵的元素,通常用aij (i=1,2,…,m;j=1,2,…,n) 表示矩阵的元素。
当 m=n 时,矩阵称为方阵,特别地,当 m=1 或 n=1 时,矩阵称为行矩阵或列矩阵。
二、矩阵的运算1. 矩阵的加法和减法定义:设 A=(aij) 和 B=(bij) 是同型矩阵,那么 A+B 和 A-B 分别定义为A+B = (aij+bij) 和 A-B = (aij-bij) 。
性质:(1)交换律:A+B = B+A;A-B ≠ B-A(2)结合律:A+(B+C) = (A+B)+C;A-(B-C) ≠ (A-B)-C(3)0 矩阵:对任意矩阵 A 有 A+0=A 和 A-0=A2. 矩阵的数乘定义:数 k 与一个 m×n 阶矩阵 A=(aij) 相乘,得到一个 m×n 阶矩阵 kA=(kaij)。
性质:(1)k(A+B)=kA+kB(2)(k+l)A=kA+lA(3)k(lA)=(kl)A3. 矩阵的乘法定义:设 A 是一个 m×s 阶的矩阵,B 是一个 s×n 阶的矩阵,那么称 C=AB 为 A 和 B 的乘积,其中C=(cij) (i=1,2,…,m;j=1,2,…,n) 且cij=a(i1)b(1j)+a(i2)b(2j)+…+a(is)b(sj)。
性质:(1)乘法不交换:一般情况下,AB≠BA。
(2)结合律:A(BC)=(AB)C(3)单位矩阵:对于任意 n 阶方阵 A,有IA=AI=A(4)分配律:A(B+C)=AB+AC4. 矩阵的转置定义:设 A=(aij) 是一个 m×n 阶矩阵,把它的行和列互换得到一个 n×m 阶矩阵,这个矩阵称为 A 的转置矩阵,记做 A^T。
性质:(1)(A^T)^T=A(2)(kA)^T=kA^T(3)(A+B)^T=A^T+B^T5. 矩阵的逆定义:设 A 是一个 n 阶方阵,如果存在 n 阶方阵 B 使得 AB=BA=I,那么称 B 为 A 的逆矩阵,记做 A^{-1}。
有关研究生入学考试“数学二”的考试内容
有关研究生入学考试“数学二”的考试内容如下:
研究生入学考试数学二主要包括高等数学和线性代数两部分内容。
具体来说,高等数学部分主要涉及函数、极限、连续、一元函数微分学、一元函数积分学、多元函数微积分学等方面的知识和能力。
线性代数部分主要涉及行列式、矩阵、向量、线性方程组、特征值和特征向量等方面的知识和能力。
在考试形式和题型上,数学二一般为填空题和解答题两种题型,其中填空题主要考察基本概念和基础知识的掌握程度,而解答题则主要考察考生对知识点的综合运用能力和解题技巧。
总体来说,研究生入学考试数学二的难度较大,需要考生具备扎实的数学基础和较强的分析能力。
同时,考生还需要掌握各种题型的解题方法和技巧,以便在考试中灵活应对各种题目。