无功补偿设计原理
- 格式:doc
- 大小:35.00 KB
- 文档页数:4
无功补偿基础知识什么是无功功率电网中电力设备大多是根据电磁感应原理工作的,他们在能量转换过程中建立交变的磁场,在一个周期内吸收的功率和释放的功率相等。
电源能量在通过纯电感或纯电容电路时并没有能量消耗,仅在负荷与电源之间往复交换,在三相之间流动,由于这种交换功率不对外做功,因此称为无功功率。
从物理概念来解释感性无功功率:由于电感线圈是贮藏磁场能量的元件,当线圈加上交流电压后,电压交变时,相应的磁场能量也随着变化。
当电压增大,电流及磁场能量也就相应加强,此时线圈的磁场能量就将外电源供给的能量以磁场能量形式贮藏起来;当电流减小和磁场能量减弱时,线圈把磁场能量释放并输回到外面电路中。
交流电感电路不消耗功率,电路中仅是电源能量与磁场能量之间的往复转换。
从物理概念来解释容性无功功率:由于电容器是贮藏电场能量的元件,当电容器加上交流电压后,电压交变时,相应的电场能量也随着变化。
当电压增大,电流及电场能量也就相应加强,此时电容器的电场能量就将外电源供给的能量以电场能量形式贮藏起来;当电压减小和电场能量减弱时,电容器把电场能量释放并输回到外面电路中。
交流电容电路不消耗功率,电路中仅是电源能量与电场能量之间的往复转换。
无功分类感性无功:电流矢量滞后于电压矢量90°如电动机、变压器、晶闸管变流设备等容性无功:电流矢量超前于电压矢量90°如电容器、电缆输配电线路等基波无功:与电源频率相等的无功(50HZ )谐波无功:与电源频率不相等的无功什么是功率因数实际供用电系统中的电力负荷并不是纯感性或纯容性的,是既有电感或电容、又有电阻的负载。
这种负载的电压和电流的相量之间存在着一定的相位差,相位角的余弦cos φ称为功率因数,又称力率。
它是有功功率与视在功率之比。
三相功率因数的计算公式为:什么是功率因数式中:cos φ—功率因数P —有功功率,KWQ —无功功率,KvarS —视在功率,KVA功率因数通常分为自然功率因数、瞬时功率因数和加权平均功率因数三种。
无功补偿交流电在通过纯电阻的时候,电能都转成了热能,而在通过纯容性或者纯感性负载的时候,并不做功.也就是说没有消耗电能,即为无功功率.当然实际负载,不可能为纯容性负载或者纯感性负载,一般都是混合性负载,这样电流在通过它们的时候,就有部分电能不做功,就是无功功率,此时的功率因数小于1,为了提高电能的利用率,就要进行无功补偿.无功功率补偿装置在电子供电系统中所承担的作用是提高电网的功率因数,降低供电变压器及输送线路的损耗,提高供电效率,改善供电环境。
所以无功功率补偿装置在电力供电系统中处在一个不可缺少的非常重要的位置。
合理的选择补偿装置,可以做到最大限度的减少网络的损耗,使电网质量提高。
反之,如选择或使用不当,可能造成供电系统,电压波动,谐波增大等诸多因素。
一、按投切方式分类:1. 延时投切方式延时投切方式即人们熟称的"静态"补偿方式。
这种投切依靠于传统的接触器的动作,当然用于投切电容的接触器专用的,它具有抑制电容的涌流作用,延时投切的目的在于防止接触器过于频繁的动作时,电容器造成损坏,更重要的是防备电容不停的投切导致供电系统振荡,这是很危险的。
当电网的负荷呈感性时,如电动机、电焊机等负载,这时电网的电流滞带后电压一个角度,当负荷呈容性时,如过量的补偿装置的控制器,这是电网的电流超前于电压的一个角度,即功率因数超前或滞后是指电流与电压的相位关系。
通过补偿装置的控制器检测供电系统的物理量,来决定电容器的投切,这个物理量可以是功率因数或无功电流或无功功率。
下面就功率因数型举例说明。
当这个物理量满足要求时,如cosΦ超前且>0.98,滞后且>0.95,在这个范围内,此时控制器没有控制信号发出,这时已投入的电容器组不退出,没投入的电容器组也不投入。
当检测到cosΦ不满足要求时,如cosΦ滞后且<0.95,那么将一组电容器投入,并继续监测cosΦ如还不满足要求,控制器则延时一段时间(延时时间可整定),再投入一组电容器,直到全部投入为止。
从原理来讲,即并联电容器是怎样无功补偿的?我来帮他解答满意回答2009-03-10 18:011、无功补偿的原理电网输出的功率包括两部分;一是有功功率;二是无功功率.直接消耗电能,把电能转变为机械能,热能,化学能或声能,利用这些能作功,这部分功率称为有功功率;不消耗电能;只是把电能转换为另一种形式的能,这种能作为电气设备能够作功的必备条件,并且,这种能是在电网中与电能进行周期性转换,这部分功率称为无功功率,如电磁元件建立磁场占用的电能,电容器建立电场所占的电能.电流在电感元件中作功时,电流超前于电压90℃.而电流在电容元件中作功时,电流滞后电压90℃.在同一电路中,电感电流与电容电流方向相反,互差180℃.如果在电磁元件电路中有比例地安装电容元件,使两者的电流相互抵消,使电流的矢量与电压矢量之间的夹角缩小,从而提高电能作功的能力,这就是无功补偿的道理.2.无功补偿的意义(1补偿无功功率,可以增加电网中有功功率的比例常数(2减少发,供电设备的设计容量,减少投资,例如当功率因数cosΦ=0.8增加到cos4=0.95时,装1Kvar电容器可节省设备容量0.52KW;反之,增加0.52KW.对原有设备而言,相当于增大了发,供电设备容量.因此,对新建,改建工程.应充分考虑无功补偿,便可以减少设计容量,从而减少投资.(3降低线损,由公式△P%=(1-cosΦ/cosΦX100%得出其中cosΦ为补偿后的功率因数,cosΦ为补偿前的功率因数则cosΦ>cosΦ,所以提高功率因数后,线损率也下降了.减少设计容量,减少投资,增加电网中有功功率的输送比例,以及降低线损都直接决定和影响着供电企业的经济效益.所以,功率因数是考核经济效益的重要指标,规划、实施无功补偿势在必行.3.无功补偿的原则提高用电单位的自然功率因数,无功补偿分为集中补偿,分散补偿和随机随器补偿,应该遵循:全面规划,合理布局,分级补偿,就地平衡;集中补偿与分散补偿相结合,以分散补偿主;高压补偿与低压补偿相结合,以低压补偿为主;调压与降损相结合,以降损为主的原则.4.无功补偿装置的组合元件(1低压无功补偿设备的组合元件①无功功率自动补偿控制器根据电网无功功率是否达到无功设定值来控制电力电容器的投入和切除,并且有过,欠电压保护功能②无触点可控硅模块或智能复合开关③电容器(内带放电电阻④熔断器⑤电流互感器⑥避雷器⑦开关⑧电抗器(对无触点开关起到过电流保护作用;对防止电容器过电流也起到抑制作用另外,还装配监视用的电压表,电流表,功率因数表和信号指示灯等.其他回答共1条2009-03-09 22:24changmaojing|五级学过电磁学就知道了一般线路都是感性电路,为了让其功率因数达到或接近一,就要在电路旁边并联电容并且容量值大小是需要选取的,现在的工厂好像都有能自动调整容量的仪器的,这样做的好处是能减少无功电流,进而可以减少输电线的损失,可以充分发挥电力设备(发电机及变压器的潜力,因为发电机的发电潜力用KVA表示,提高功率因数它最多可以输出的功率可以提高很多。
DS5变电站自动电压无功综合控制成套装置的应用2009年5月22日作者:吴士东内容提要:指出高压供电系统无功电容补偿的重要性,论述了高压供电系统电容补偿改造为自动跟踪补偿的安全价值及应用效果。
.关键词:无功补偿改造安全效果1、概述:改善矿井用电功率因数是企业节约电能的重要课题,同时由于矿井大型设备多为感性负载,且容量较大,因而提高功率因数,实现自动等容投切电容,均衡供电系统和节约电能有着十分重要的意义。
一、简述无功补偿的原理及意义1、无功补偿的原理电网输出的功率包括两部分;一是有功功率;二是无功功率。
直接消耗电能,把电能转变为机械能,热能,化学能或声能等,利用这些能作功,这部分功率称为有功功率;不消耗电能;只是把电能转换为另一种形式的能,这种能作为电气设备能够作功的必备条件,并且,这种能是在电网中与电能进行周期性转换,这部分功率称为无功功率,如电磁元件建立磁场占用的电能,电容器建立电场所占的电能.电流在电感元件中作功时,电流超前于电压90℃.而电流在电容元件中作功时,电流滞后电压90℃.在同一电路中,电感电流与电容电流方向相反,互差180℃.如果在电磁元件电路中有比例地安装电容元件,使两者的电流相互抵消,使电流的矢量与电压矢量之间的夹角缩小,从而提高电能作功的能力,这就是无功补偿的道理.2、无功补偿的意义(1)补偿无功功率,可以增加电网中有功功率的比例常数(2)减少发,供电设备的设计容量,减少投资,例如当功率因数cosΦ=0.8增加到cos4=0.95时,装1Kvar电容器可节省设备容量0.52KW;反之,增加0.52KW.对原有设备而言,相当于增大了发,供电设备容量.因此,对新建,改建工程.应充分考虑无功补偿,便可以减少设计容量,从而减少投资.(3)降低线损,由公式△P%=(1-cosΦ/cosΦ)X100%得出其中cosΦ为补偿后的功率因数,cosΦ为补偿前的功率因数则cosΦ>cosΦ,所以提高功率因数后,线损率也下降了.减少设计容量,减少投资,增加电网中有功功率的输送比例,以及降低线损都直接决定和影响着企业的经济效益.所以,功率因数是考核经济效益的重要指标。
无功补偿的补偿方式是什么有哪些优缺点无功补偿技术是电力系统中的一种重要的电力调节技术,可有效改善电力系统的稳定性和可靠性,降低电力系统的损耗和运行成本,提高电力系统的利用效率。
无功补偿的目的是补偿电路中的无功功率,并保持电路的功率因数稳定在一个合适的范围内。
无功补偿的补偿方式有很多种,不同的补偿方式具有不同的优缺点。
1.调节变压器调节变压器是一种改变变压器磁通,在变压器一侧引起电压波动,从而达到调节电路无功功率的目的。
调节变压器可以分为静态和动态两种类型。
静态调节变压器利用变压器的磁性饱和特性,在变压器磁导率变化的范围内,改变变压器的磁通密度,从而实现无功功率的调节。
动态调节变压器则利用高速开关器件控制变压器的二次侧绕组的磁通,从而实现无功功率的动态调节。
调节变压器的优点是调节速度快,响应时间短,但缺点是设备成本高、功率密度小、效率低。
2.电容器电容器作为一种常见的无功补偿设备,具有成本低、体积小、功率密度大、补偿效果好等优点。
电容器的补偿原理是在电路中并联一定的电容器,引入一定的无功电流,使得总无功功率为零,从而改善功率因数。
电容器可以分为固定电容器、针对电力系统中的变化而设计的自动无功补偿装置、可调节型电容器等三种类型。
固定电容器补偿效果稳定,但仅适用于负载功率变化较小的情况;自动无功补偿装置与可调节型电容器适用范围更广,可以根据负载变化动态调整电容器的补偿容量,保证电路的功率因数始终保持在合适的范围内,但设备成本较高,需要考虑调节过程中引起振荡等问题。
3.电抗器电抗器也是一种常见的无功补偿设备,其应用范围广泛,适用于配电系统、变电站、发电厂的无功补偿。
电抗器的补偿原理是串联一个适当的电感器,引入一定的无功电流,使得总无功功率为零,从而改善功率因数。
电抗器可以分为固定电抗器、切换电抗器和可调节电抗器等三种类型。
固定电抗器结构简单、成本低、补偿效果稳定,但只能对固定负载进行补偿;切换电抗器可以根据负载变化动态调整电抗器的补偿容量,但在切换时会引起瞬间开路,造成电压波动,被限制在单独电路中应用;可调节电抗器具有容量变化范围大,补偿效果好等优点,但设备总成本高、容量较大的可调节电抗器动态调整相对比较慢。
光伏svg无功补偿原理摘要:一、光伏SVG 无功补偿的原理二、光伏SVG 无功补偿的优势三、光伏SVG 无功补偿在光伏电站中的应用四、光伏SVG 无功补偿的未来发展趋势正文:一、光伏SVG 无功补偿的原理光伏SVG 无功补偿,即静态变流器(Static Var Generator)无功补偿,是一种利用电力半导体器件实现无功功率动态补偿的技术。
SVG 通过自换相桥式变流器,将电抗器并联在电网上,通过适当调节桥式电路交流侧输出电压的幅值和相位,或直接控制交流侧电流,实现快速吸收或发出所需的无功功率,从而达到动态调节无功的目的。
二、光伏SVG 无功补偿的优势相较于传统的无功补偿设备,光伏SVG 无功补偿具有以下优势:1.响应速度快:SVG 能够迅速吸收或发出所需的无功功率,实现快速动态调节无功,提高电网的稳定性。
2.控制精度高:SVG 采用自换相桥式电路,可以精确控制无功功率,提高电网的功率因数,降低谐波。
3.占地面积小:SVG 采用紧凑型设计,占地面积小,便于安装和维护。
4.系统可靠性高:SVG 采用可关断电力电子器件(IGBT)等高品质元器件,系统可靠性高,运行寿命长。
三、光伏SVG 无功补偿在光伏电站中的应用光伏SVG 无功补偿在光伏电站中的应用主要包括:1.提高光伏电站的发电量:通过动态调节无功功率,优化电网的功率因数,降低谐波,提高光伏电站的发电量。
2.改善电网质量:SVG 能够有效地抑制电网中的谐波,改善电网质量,降低线路损耗。
3.提高系统稳定性:SVG 能够快速响应电网的波动,提供所需的无功功率,提高系统的稳定性。
四、光伏SVG 无功补偿的未来发展趋势随着光伏发电、风能等可再生能源的快速发展,无功补偿技术在提高电网稳定性、优化电网质量方面将发挥越来越重要的作用。
光伏SVG 无功补偿作为无功补偿领域的先进技术,未来将在以下几个方面取得进一步的发展:1.技术不断优化:随着电力电子器件的不断更新换代,SVG 的技术将更加成熟,性能更加优越。
谐波抑制和无功功率补偿引言在电力系统中,谐波和无功功率是常见的问题,它们会导致电网的不稳定性、能源浪费和设备损坏等一系列负面影响。
因此,谐波抑制和无功功率补偿成为了电力系统优化和能源管理的重要课题。
本文将详细介绍谐波抑制和无功功率补偿的概念、原理、方法以及应用。
谐波抑制概念谐波是指在电力系统中频率为基波频率的整数倍的波形成分。
谐波的产生主要是由非线性负载设备引起的,例如电弧炉、电子设备等。
谐波会导致电压和电流的波形失真,进而影响电力系统的稳定性和设备的正常运行。
谐波抑制是指通过采取措施,减少或消除电力系统中的谐波成分,使电力系统的波形恢复正常,保证电力质量和设备的正常运行。
原理谐波抑制的原理主要包括两个方面:滤波和控制。
1.滤波:通过在电力系统中引入谐波滤波器,对谐波成分进行滤波,将谐波成分从电力系统中分离出来。
常用的谐波滤波器包括谐波阻抗滤波器、谐波电抗滤波器等。
2.控制:通过控制非线性负载设备的工作方式和参数,减少其对电力系统的谐波污染。
常用的控制方法包括谐波限制技术、谐波消除技术等。
方法谐波抑制的方法主要包括被动方法和主动方法。
1.被动方法:被动方法是指通过谐波滤波器等被动设备来实现谐波抑制。
被动方法具有成本低、稳定可靠等优点,但其抑制效果受到负载变化和谐波频率变化的限制。
2.主动方法:主动方法是指通过控制设备的工作方式和参数来实现谐波抑制。
主动方法具有灵活性强、抑制效果好等优点,但其成本较高。
应用谐波抑制广泛应用于电力系统中,特别是对于需要保证电力质量和设备正常运行的场合。
例如,工业生产中的电弧炉、电子设备等非线性负载设备常常会引起谐波,需要采取谐波抑制措施。
此外,谐波抑制也在电网规划、电力设备设计等领域得到广泛应用。
无功功率补偿概念无功功率是电力系统中的一种特殊功率,它与电压和电流之间的相位差有关。
无功功率的存在会造成电网电压的波动和能源的浪费,因此需要进行补偿。
无功功率补偿是指通过采取措施,使电力系统中的无功功率达到平衡,提高电网的稳定性和能源利用效率。
电网中的电力负荷如电动机、变压器等,大部分属于感性负荷,在运行过程中需向这些设备提供相应的无功功率。在电网中安装并联电容器等无功补偿设备以后,可以提供感性负载所消耗的无功功率,减少了电网电源向感性负荷提供、由线路输送的无功功率,由于减少了无功功率在电网中的流动,因此可以降低线路和变压器因输送无功功率造成的电能损耗,这就是无功补偿。 在大系统中,无功补偿还用于调整电网的电压,提高电网的稳定性。 在小系统中,通过恰当的无功补偿方法还可以调整三相不平衡电流。按照wangs定理:在相与相之间跨接的电感或者电容可以在相间转移有功电流。因此,对于三相电流不平衡的系统,只要恰当地在各相与相之间以及各相与零线之间接入不同容量的电容器,不但可以将各相的功率因数均补偿至接近1,而且可以使各相的有功电流达到平衡状态。
基本原理 无功补偿 电网输出的功率包括两部分;一是有功功率;二是无功功率.直接消耗电能,把电能转变为机械能,热能,化学能或声能,利用这些能作功,这部分功率称为有功功率;不消耗电能;只是把电能转换为另一种形式的能,这种能作为电气设备能够作功的必备条件,并且,这种能是在电网中与电能进行周期性转换,这部分功率称为无功功率,如电磁元件建立磁场占用的电能,电容器建立电场所占的电能.电流在电感元件中作功时,电流滞后于电压90°.而电流在电容元件中作功时,电流超前电压90°.在同一电路中,电感电流与电容电流方向相反,互差180°.如果在电磁元件电路中有比例地安装电容元件,使两者的电流相互抵消,使电流的矢量与电压矢量之间的夹角缩小,
实现方式 把具有容性功率负荷的装置与感性功率负荷并联接在同一电路,能量在两种负荷之间相互交换。这样,感性负荷所需要的无功功率可由容性负荷输出的无功功率补偿。
意义 ⑴补偿无功功率,可以增加电网中有功功率的比例常数。 ⑵减少发、供电设备的设计容量,减少投资,例如当功率因数cosΦ=0.8增加到cosΦ=0.95时,装1Kvar电容器可节省设备容量0.52KW;反之,增加0.52KW对原有设备而言,相当于增大了发、供电设备容量。因此,对新建、改建工程,应充分考虑无功补偿,便可以减少设计容量,从而减少投资。 ⑶降低线损,由公式ΔΡ%=(1-cosΦ/cosΦ)×100%得出其中cosΦ为补偿后的功率因数,cosΦ为补偿前的功率因数则: cosΦ>cosΦ,所以提高功率因数后,线损率也下降了,减少设计容量、减少投资,增加电网中有功功率的输送比例,以及降低线损都直接决定和影响着供电企业的经济效益。所以,功率因数是考核经济效益的重要指标,规划、实施无功补偿势在必行。
⽆功补偿原理、⽅法前⾔《国家电⽹公司农⽹“⼗⼀五电压质量和⽆功电⼒规划纲要》提出,纲要指导思想为:以公司“新农村、新电⼒、新服务农电发展战略为指导,以安全、质量、效益为核⼼,坚持科技进步,全⾯提⾼农⽹电压⽆功综合管理⽔平,持续改善供电质量,降低电能损耗,为社会主义新农村建设提供优质、经济、可靠的电⼒供应。
切实达到《国家电⽹公司电⼒系统电压质量和⽆功电⼒管理规定》的“⽆功补偿配制应按照分散就地补偿与变电站集中补偿相结合,以分散为主;⾼压补偿与低压补偿相结合,以低压为主;调压与降损相结合,以降损为主”的要求。
⽆功补偿的原理在交流电路中,由电源供给负载的电功率有两种;⼀种是有功功率,⼀种是⽆功功率。
有功功率是保持⽤电设备正常运⾏所需的电功率,是将电能转换为其他形式能量(机械能、光能、热能)的电功率。
⽆功功率⽐较抽象,它是电路内电场与磁场的交换,在电⽓设备中建⽴和维持磁场的电功率。
它不对外作功,⽽是转变为其他形式的能量。
凡是有电磁线圈的电⽓设备,要建⽴磁场,就要消耗⽆功功率。
⽆功功率决不是⽆⽤功率,它的⽤处很⼤。
电动机需要建⽴和维持旋转磁场,使转⼦转动,从⽽带动机械运动,电动机的转⼦磁场就是靠从电源取得⽆功功率建⽴的。
变压器也同样需要⽆功功率,才能使变压器的⼀次线圈产⽣磁场,在⼆次线圈感应出电压。
因此,没有⽆功功率,电动机就不会转动,变压器也不能变压,交流接触器不会吸合。
(打个⽐⽅,农村修⽔利需要开挖⼟⽅运⼟,运⼟时⽤⽵筐装满⼟,挑⾛的⼟好⽐是有功功率,挑空⽵筐就好⽐是⽆功功率,⽵筐并不是没⽤,没有⽵筐泥⼟怎么能运到堤上?)在正常情况下,⽤电设备不但要从电源取得有功功率,同时还需要从电源取得⽆功功率。
如果电⽹中的⽆功功率供不应求,⽤电设备就没有⾜够的⽆功功率来建⽴正常的电磁场,这些⽤电设备就不能维持在额定情况下⼯作,⽤电设备的端电压就要下降,从⽽影响⽤电设备的正常运⾏。
但是从发电机和⾼压输电线供给的⽆功功率远远满⾜不了负荷的需要,所以在电⽹中要设置⼀些⽆功补偿装置来补充⽆功功率,以保证⽤户对⽆功功率的需要,这样⽤电设备才能在额定电压下⼯作。
/目录摘要 (1)1.任务及题目要求 (2)2.设计原理 (3)无功功率对电压的影响 (5)无功功率负荷 (6)无功功率电源 (8)发电机 (8)】同步调相机 (8)静电电容器 (9)静止无功补偿器 (9)静止无功发生器 (9)无功补偿方式 (10)高压补偿 (10)低压补偿 (10)3.计算过程及步骤 (12)\已知的系统参数 (12)各系统元件参数计算 (12)无补偿的功率平衡估算 (14)补偿后的功率平衡计算 (17)4.计算结果分析 (19)5.体会小结 (20)参考文献 (21)附录:无功功率计算源程序 (22)…本科生课程设计成绩评定表 (39)摘要@电压是衡量电能质量的一个重要指标。
质量合格的电压应该在供电电压偏移,电压波动和闪变,电网谐波和三相不对称程度这四个方面都能满足有关国家标准规定的要求。
本课程设计能容为电力系统各元件的无功功率电压特性,无功功率平衡和各种调压手段的原理及应用。
保证用户的电压接近额定值是电力系统运行调整的基本任务之一。
电力系统的运行电压水平取决于无功功率的平衡。
系统中各种无功电源的无功功率的输出应能满足系统负荷和网络损耗在额定电压下对无功功率的要求,否则电压就会偏离额定值。
电力系统无功功率平衡的基本要求是:系统中的无功电源可能发出的无功功率应该大于或至少等于符合所需要的无功功率和网络中的无功损耗之和。
为了保证运行可靠性和适应无功负荷的增长,系统还必须配置一定的无功备用容量。
关键词:无功功率平衡,电压调整,无功补偿…(1.任务及题目要求系统如图所示,电力系统电压为110KV,有电源G1和G2,变压器T1,T2和T3,以及双回路L1和L2。
负载都为30+ MVA。
`令Q GC为电源供应的无功功率之和,Q LD为无功负荷之和,Q L为网络无功功率损耗之和,Q res为无功功率备用,则系统中无功功率的平衡关系式为Q GC−Q LD−Q L=Q resQ res>0表示系统中无功功率可以平衡且有适量的备用;如Q res<0表示系统中无功功率不足,应考虑加设无功补偿装置。
无功补偿的作用和原理无功补偿是电力系统中重要的一项技术措施,用于解决电力系统中的功率因数问题。
本文将讨论无功补偿的作用和原理,并探讨其在电力系统中的应用。
一、无功补偿的作用1. 改善功率因数:在电力系统运行中,负载电流中可能存在有功功率和无功功率成分。
功率因数是描述有功功率和无功功率之间关系的参数。
当负载电流中存在大量的无功功率成分时,功率因数较低。
功率因数越低,说明系统中所消耗的有功功率越少,电网运行效率低下。
无功补偿可以通过补偿电容或电感的方式,使系统中的无功功率成分减少,从而提高功率因数,改善电网的运行效率。
2. 提高电网稳定性:电力系统中的无功功率流动会引起电压不稳定性问题。
当无功功率流入电力系统时,会导致电网电压升高,而无功功率流出电力系统时,会导致电网电压降低。
这样的电压不稳定性会对电力设备和用户的正常运行产生不利影响。
通过无功补偿,可以调整电力系统中的无功功率流动,使电压保持在稳定的水平,提高电网的稳定性。
3. 提高电力系统的传输能力:无功补偿可以减少电力系统传输线路上的无功功率流动,从而增加有功功率的传输能力。
传输线路在传输电能时,除了有功功率外,还会带有一定量的无功功率。
过多的无功功率流动会减少传输线路的有效传功能力,限制系统的输电能力。
通过无功补偿装置的补偿作用,可以减少无功功率流动,提高电力系统的传输能力。
二、无功补偿的原理无功补偿的主要原理是改变电力系统中的电流相位差,实现无功功率的补偿。
根据补偿的方式不同,无功补偿可分为电容式和电感式两种。
1. 电容式无功补偿:电容式无功补偿是通过并联连接电容器的方式,将电网中的无功功率进行补偿。
补偿电容器能够储存电能,并在电网电压下释放出来,产生无功功率供电网使用。
电容式无功补偿主要用于消除电网中的电感性负载和补偿电容性负载。
2. 电感式无功补偿:电感式无功补偿是通过串联连接电感器的方式,将电网中的无功功率进行补偿。
补偿电感器能够产生电磁感应,吸收电网中的无功功率,减少电网的无功功率流动。
无功补偿 无功功率补偿装置在电子供电系统中所承担的作用是提高电网的功率因数,降低供电变压器及输送线路的损耗,提高供电效率,改善供电环境。所以无功功率补偿装置在电力供电系统中处在一个不可缺少的非常重要的位置。合理的选择补偿装置,可以做到最大限度的减少网络的损耗,使电网质量提高。反之,如选择或使用不当,可能造成供电系统,电压波动,谐波增大等诸多因素。 一、按投切方式分类: 1. 延时投切方式 延时投切方式即人们熟称的"静态"补偿方式。这种投切依靠于传统的接触器的动作,当然用于投切电容的接触器专用的,它具有抑制电容的涌流作用,延时投切的目的在于防止接触器过于频繁的动作时,电容器造成损坏,更重要的是防备电容不停的投切导致供电系统振荡,这是很危险的。当电网的负荷呈感性时,如电动机、电焊机等负载,这时电网的电流滞带后电压一个角度,当负荷呈容性时,如过量的补偿装置的控制器,这是电网的电流超前于电压的一个角度,即功率因数超前或滞后是指电流与电压的相位关系。通过补偿装置的控制器检测供电系统的物理量,来决定电容器的投切,这个物理量可以是功率因数或无功电流或无功功率。 下面就功率因数型举例说明。当这个物理量满足要求时,如cosΦ超前且>0.98,滞后且>0.95,在这个范围内,此时控制器没有控制信号发出,这时已投入的电容器组不退出,没投入的电容器组也不投入。当检测到cosΦ不满足要求时,如cosΦ滞后且<0.95,那么将一组电容器投入,并继续监测cosΦ如还不满足要求,控制器则延时一段时间(延时时间可整定),再投入一组电容器,直到全部投入为止。当检测到超前信号如cosΦ<0.98,即呈容性载荷时,那么控制器就逐一切除电容器组。要遵循的原则就是:先投入的那组电容器组在切除时就要先切除。如果把延时时间整定为300s,而这套补偿装置有十路电容器组,那么全部投入的时间就为30分钟,切除也这样。在这段时间内无功损失补只能是逐步到位。如果将延时时间整定的很短,或没有设定延时时间,就可能会出现这样的情况。当控制器监测到cosΦ〈0.95,迅速将电容器组逐一投入,而在投入期间,此时电网可能已是容性负载即过补偿了,控制器则控制电容器组逐一切除,周而复始,形成震荡,导致系统崩溃。是否能形成振荡与负载的性质有密切关系,所以说这个参数需要根据现场情况整定,要在保证系统安全的情况下,再考虑补偿效果。 2. 瞬时投切方式 瞬时投切方式即人们熟称的"动态"补偿方式,应该说它是半导体电力器件与数字技术综合的技术结晶,实际就是一套快速随动系统,控制器一般能在半个周波至1个周波内完成采样、计算,在2个周期到来时,控制器已经发出控制信号了。通过脉冲信号使晶闸管导通,投切电容器组大约20-30毫秒内就完成一个全部动作,这种控制方式是机械动作的接触器类无法实现的。动态补偿方式作为新一代的补偿装置有着广泛的应用前景。现在很多开关行业厂都试图生产、制造这类装置且有的生产厂已经生产出很不错的装置。当然与国外同类产品相比从性能上、元器件的质量、产品结构上还有一定的差距。 动态补偿的线路方式 (1)LC串接法原理如图1所示 这种方式采用电感与电容的串联接法,调节电抗以达到补偿无功损耗的目的。从原理上分析,这种方式响应速度快,闭环使用时,可做到无差调节,使无功损耗降为零。从元件的选择上来说,根据补偿量选择1组电容器即可,不需要再分成多路。既然有这么多的优点,应该是非常理想的补偿装置了。但由于要求选用的电感量值大,要在很大的动态范围内调节, 所以体积也相对较大,价格也要高一些,再加一些技术的原因,这项技术到目前来说还没有被广泛采用或使用者很少。 (2)采用电力半导体器件作为电容器组的投切开关,较常采用的接线方式如图2。图中BK为半导体器件,C1为电容器组。这种接线方式采用2组开关,另一相直接接电网省去一组开关,有很多优越性。 作为补偿装置所采用的半导体器件一般都采用晶闸管,其优点是选材方便,电路成熟又很经济。其不足之处是元件本身不能快速关断,在意外情况下容易烧毁,所以保护措施要完善。当解决了保护问题,作为电容器组投切开关应该是较理想的器件。动态补偿的补偿效果还要看控制器是否有较高的性能及参数。很重要的一项就是要求控制器要有良好的动态响应时间,准确的投切功率,还要有较高的自识别能力,这样才能达到最佳的补偿效果。 当控制器采集到需要补偿的信号发出一个指令(投入一组或多组电容器的指令),此时由触发脉冲去触发晶闸管导通,相应的电容器组也就并人线路运行。需要强调的是晶闸管导通的条件必须满足其所在相的电容器的端电压为零,以避免涌流造成元件的损坏,半导体器件应该是无涌流投切。当控制指令撤消时,触发脉冲随即消失,晶闸管零电流自然关断。关断后的电容器电压为线路电压交流峰值,必须由放电电阻尽快放电,以备电容器再次投入。 元器件可以选单项晶闸管反并联或是双向晶闸管,也可选适合容性负载的固态接触器,这样可以省去过零触发的脉冲电路,从而简化线路,元件的耐压及电流要合理选择,散热器及冷却方式也要考虑周全。 3.混合投切方式 实际上就是静态与动态补偿的混合,一部分电容器组使用接触器投切,而另一部分电容器组使用电力半导体器件。这种方式在一定程度上可做到优势互补,但就其控制技术,目前还见到完善的控制软件,该方式用于通常的网络如工矿、小区、域网改造,比起单一的投切方式拓宽了应用范围,节能效果更好。补偿装置选择非等容电容器组,这种方式补偿效果更加细致,更为理想。还可采用分相补偿方式,可以解决由于线路三相不平行造成的损失。 4. 在无功功率补偿装置的应用方面,选择那一种补偿方式,还要依电网的状况而定,首先对所补偿的线路要有所了解,对于负荷较大且变化较快的工况,电焊机、电动机的线路采用动态补偿,节能效果明显。对于负荷相对平稳的线路应采用静态补偿方式,也可使用动态补偿装置。一般电焊工作时间均在几秒钟以上,电动机启动也在几秒钟以上,而动态补偿的响应时间在几十毫秒,按40毫秒考虑则从40毫秒到5秒钟之内是一个相对的稳态过程,动态补偿装置能完成这个过程。 二、无功功率补偿控制器 无功功率补偿控制器有三种采样方式,功率因数型、无功功率型、无功电流型。选择那一种物理控制方式实际上就是对无功功率补偿控制器的选择。控制器是无功补偿装置的指挥系统,采样、运算、发出投切信号,参数设定、测量、元件保护等功能均由补偿控制器完成。十几年来经历了由分立元件--集成线路--单片机--DSP芯片一个快速发展的过程,其功能也愈加完善。就国内的总体状况,由于市场的需求量很大,生产厂家也愈来愈多,其性能及内在质量差异很大,很多产品名不符实,在选用时需认真对待。在选用时需要注意的另一个问题就是国内生产的控制器其名称均为"XXX无功功率补偿控制器",名称里出现的"无功功率"的含义不是这台控制器的采样物理量。采样物理量取决于产品的型号,而不是产品的名称。 1.功率因数型控制器 功率因数用cosΦ表示,它表示有功功率在线路中所占的比例。当cosΦ=1时,线路中没有无功损耗。提高功率因数以减少无功损耗是这类控制器的最终目标。这种控制方式也是很传统的方式,采样、控制也都较容易实现。 * "延时"整定,投切的延时时间,应在10s-120s范围内调节 "灵敏度"整定,电流灵敏度,不大于0-2A 。 * 投入及切除门限整定,其功率因数应能在0.85(滞后)-0.95(超前)范围内整定。 * 过压保护设量 * 显示设置、循环投切等功能 这种采样方式在运行中既要保证线路系统稳定、无振荡现象出现,又要兼顾补偿效果,这是一对矛盾,只能在现场视具体情况将参数整定在较好的状态下工作。即使调整的较好,也无法祢补这种方式本身的缺陷,尤其是在线路重负荷时。举例说明:设定投入门限;cosΦ=0.95(滞后)此时线路重载荷,即使此时的无功损耗已很大,再投电容器组也不会出现过补偿,但cosΦ只要不小于0.95,控制器就不会再有补偿指令,也就不会有电容器组投入,所以这种控制方式建议不做为推荐的方式。 2. 无功功率(无功电流)型控制器 无功功率(无功电流)型的控制器较完善的解决了功率因数型的缺陷。一个设计良好的无功型控制器是智能化的,有很强的适应能力,能兼顾线路的稳定性及检测及补偿效果,并能对补偿装置进行完善的保护及检测,这类控制器一般都具有以下功能: * 四象限操作、自动、手动切换、自识别各路电容器组的功率、根据负载自动调节切换时间、谐波过压报警及保护、线路谐振报警、过电压保护、线路低电流报警、电压、电流畸变率测量、显示电容器功率、显示cosΦ、U、I、S、P、Q及频率。 由以上功能就可以看出其控制功能的完备,由于是无功型的控制器,也就将补偿装置的效果发挥得淋漓尽致。如线路在重负荷时,那怕cosΦ已达到0.99(滞后),只要再投一组电容器不发生过补,也还会再投入一组电容器,使补偿效果达到最佳的状态。采用DSP芯片的控制器,运算速度大幅度提高,使得富里叶变换得到实现。当然,不是所有的无功型控制器都有这么完备的功能。国内的产品相对于国外的产品还存在一定的差距。 3. 用于动态补偿的控制器 对于这种控制器要求就更高了,一般是与触发脉冲形成电路一并考虑的,要求控制器抗干扰能力强,运算速度快,更重要的是有很好的完成动态补偿功能。由于这类控制器也都基于无功型,所以它具备静态无功型的特点。 目前,国内用于动态补偿的控制器,与国外同类产品相比有较大的差距,一是在动态响应时间上较慢,动态响应时间重复性不好;二是补偿功率不能一步到位,冲击电流过大,系统特性容易漂移,维护成本高、造成设备整体投资费用高。另外,相应的国家标准也尚未见到,这方面落后于发展。 三、滤波补偿系统 由于现代半导体器件应用愈来愈普遍,功率也更大,但它的负面影响就是产生很大的非正弦电流。使电网的谐波电压升高,畸变率增大,电网供电质量变坏。 如果供电线路上有较大的谐波电压,尤其5次以上,这些谐波将被补偿装置放大。电容器组与线路串联谐振,使线路上的电压、电流畸变率增大,还有可能造成设备损坏,再这种情况下补偿装置是不可使用的。最好的解决方法就是在电容器组串接电抗器来组成谐波滤波器。滤波器的设计要使在工频情况下呈容性,以对线路进行无功补偿,对于谐波则为感性负