无功补偿装置几种常见类型比较
- 格式:pdf
- 大小:97.00 KB
- 文档页数:3
动态无功补偿装置的种类一、功率、功率因数在电网中,功率分为有功功率、无功功率和视在功率。
交流电网中,由于有阻抗和电抗(感抗和容抗)的同时存在,所以电源输送到电器的电功率并不完全做功。
因为,其中有一部分电功率(电感和电容所储的电能)仍能回输到电网,因此,凡实际为电器(电阻性质)所吸收的电功率叫有功功率率。
电感和电容所储的电能仍能回输到电网,这部分功率在电源与电抗之间进行交换,交换而不会消耗,称为无功功率。
当电网电压为正弦波形,并且电压和电流同相位时,电阻性电气设备从电网吸收的功率P等于电压U和电流I的乘积,即:P=U×I电阻性电气设备包括白炽灯、电热器等。
电动机和变压器运行时需要建立磁场,这部分能量不能转化为有功功率,因此称之为无功率Q。
此时电流滞后电压一个角度φ。
在选择变配电设备时应按视在功率S,即有功功率和无功功率的几何和:S=√P2+Q2无功功率的传输加重电网的负担,使电网损耗增加,因此需要对其进行就近和就地补偿。
并联电容器可以补偿或平衡电气设备的感性无功功率。
当容性无功功率QC等于感性无功功率QL时,电网只传输有功功率P。
在交流电网中,如负载是纯电阻,电压和电流是同相位,那么电压和电流的乘积就是有功功率,但在有电感或电容的电路中,电压和电流有着相位差,所以电压和电流的乘积并不是负载电路实际吸收的电功率,而是表面上的数值,叫做视在功率,用字母S表示。
通常视在功率的单位用千伏安,用字母KVA表示。
有功功率与视在功率的比值就是功率因数,用C OSφ表示,它是没有单位的COSφ=P/S(%)。
电网基本元件:电阻性质的电器:电阻丝、加热、发光装置。
电感性质的电器:电动机、变压器等电容性质的电器:电容器、电缆等二、提高功率因数的意义:在一定的有功功率下,当用户的COSφ比较小,视在功率比较大,为了满足用电的需要,供电线路和变压器的容量需要大,这样,增加了供电投资、降低设备利用率,也增加线路网损。
4.3.4 各种补偿装置的比较1 动态无功补偿效果和应用SVC/STATCOM可以提供动态无功功率用以保证交流电压以满足并网要求,可以在几个周波内对交流电压的变化做出相应。
SVC/STATCOM 的快速响应特性可以减少系统故障时风电场电压跌落,增强了风电场的故障穿越能力;抑制电网故障清除后的过电压,降低由过电压导致的风电场切机的风险。
在正常运行方式下,恒功率因数控制的DFIG变速风电机组的运行特性与定速风电机组类似,只是无功功率需求量小于后者,所以采用SVC/STATCOM调解方案时,与用于图4-18中所示的定速风电机组风电场的调节效果相仿。
SVC/STATCOM等动态无功补偿设备最大的优点在于,电网故障期间可以提供快速无功支持,提高发电机机端电压,改善风电场暂态电压稳定性。
而基于DFIG变速风电机组的风电场也可以通过充分发挥风电机组自身控制系统的作用,改善风电场的暂态电压特性。
通过风电机组自身控制的作用不能满足系统要求时,采用SVC/STATCOM调节方案将具有更积极的作用。
基于永磁直驱(Permanent Magnet Synchronous,PMG)变速风电机组的风电场与基于DFIG变速风电机组的风电场有近似的运行特性,可采用相同的无功电压调节方案。
不过需要注意:PMG只与电网交换有功功率,基于PMG的风电机组与电网的无功功率交换由电网侧变流器完成,因此PMG发电机转速的变化不会对风电场的暂态电压稳定性造成直接影响;电网短路故障可能导致变流器闭锁,并切除风电机组,为了保证电网故障后的不间断运行,需要动态无功补偿设备的快速无功支持。
2 SVC 与STATCOM 的不同特点1)2) 无功功率特性在图4-13中,以补偿装置向系统输出的无功功率为负(即电感状态)时对应的电流为正,并有max max 0,0C L I I >>。
当系统在SVC 或STATCOM 装设点对无功功率的需求在补偿装置的额定容量之内时,SVC 与STATCOM 在功能上无优劣之分。
无功补偿设备主要分类简介无功补偿是电力系统及电力设备稳定运行的重要保障,无功补偿设备也是输配电网必备的重要设备。
无功补偿设备大致可分为三类:调相机、静止无功补偿装置(Static Var Compensator,SVC)、静止无功发生装置(Static Var Generator,SVG)。
调相机或称同步调相机、同步补偿机是较早出现的一类无功补偿设备。
调相机实际是一台空载运行的同步电动机,利用同步电动机在不同励磁电流下的发出或吸收无功电流的能力起到无功补偿作用。
当正常励磁时,调相机的电枢电流接近于零;过励磁时,调相机向电网发出无功电流;欠励磁时,调相机从电网中吸收无功电流。
因此,调相机经常运行在过励状态,励磁电流较大,损耗也比较大,发热比较严重。
为方便运行起见,调相机一般与发电厂中的同步发电机组或负荷端的异步电动机组安装在一起,容量较大的调相机还需要采用氢气冷却。
以上缺点均大大限制了调相机的应用范围,目前除在高压直流输电线路的终端作动态无功支持外,已很少使用。
SVC是目前应用最为广泛的一类无功补偿设备。
单就字面而言,SVC中的“Static”即静止,是相对于调相机的旋转而言,因此除调相机和SVG之外,凡是用电感或电容进行无功补偿的装置均可称作SVC。
按国际大电网会议的定义,SVC可分为以下7类:机械投切电容器(MSC)、机械投切电抗器(MSR)、自饱和电抗器(SR)、晶闸管控制电抗器(TCR)、晶闸管投切电容器(TSC)、晶闸管投切电抗器(TSR)、自换向或电网换向转换器(SCC/LCC)。
实际上以上7类仍未能涵盖全部SVC设备,例如MCR(Magnetic Control Reactor)——磁阀式可控电抗器设备以及由以上两类或几类技术混合构成的设备。
一般认为应慎重使用SVC这一名词,因为其所能指代的范围过于宽泛。
在种类繁多的SVC设备中,一般可按控制/投切设备的种类分为机械投切型及电力电子型两大类,通常所称的SVC设备也是指这两类。
配电网四种无功补偿方式的比较电力系统中的电压与无功功率的状况密切相关,电力系统中的变化,特别是无功功率的变化,会使电力线路和变压器的电压损耗发生变化,并引起各节点电压的变化,随着电力系统装机容量的日益递增,而网络建设尤其是配电网的建设明显滞后,使10KV及以下配电网的损耗问题日益突出。
合理选择无功补偿方案和补偿容量,能有效提高系统的电压稳定性,保证电网的电压质量,提高发、输电设备的利用率,降低有功网损和减少发电费用。
标签:配电网;无功补偿;方式比较1配电及低压系统无功补偿种类无功补偿的补偿方式按照电压等级可分为高压补偿和低压补偿,其中高压补偿又分为一次侧补偿和二次侧补偿,低压补偿分为随机补偿、随器补偿和跟踪补偿。
按照投切方式可以分为静态补偿、动态补偿和动静相结合的补偿方式。
按照补偿地点划分可以分为四种,分别是:变电站高压补偿、线路分布补偿、变压器低压母线补偿和低压用户分散补偿。
每一种补偿方式都有自己的优势,必须结合农网的实际情况,进行综合对比。
按照“分层分区、就地补偿”这一原则,选用合理的无功补偿方案。
1.1变电站高压补偿变电站补偿是将电容器组连接在变电站的二次母线上,大多数采用静态补偿,也有投切方式的电容器组,但比较少。
开关设备主要选用断路器,对电容器组可实现较为完善的保护。
高压断路器的种类有油断路器、空气断路器、六氟化硫断路器、真空断路器和磁吹断路器,目前国内大多采用六氟化硫断路器,因为它的性能好,体积小,而且造价低。
由于农村变电站容量较小,因此,电容器组的安装容量大都在10000kVar以下,布置方式可专设电容器室或室外布置。
变电站补偿对农网的降损作用很小,但在下级补偿不够完善的情况下,它是保证总受电端功率因数达到考核标准的不可缺少的一种补偿方式。
高压补偿是无功平衡的一个重要组成部分,很多企业,尤其是是大中型企业存在很多高压负载,比如高压电动机、变压器、电炉等。
高压补偿的特点是电压高、补偿容量大,是低压的几倍到几十倍之多。
无功补偿分别有几种补偿方式?各自有哪些优点和缺点?无功功率补偿,简称无功补偿,在电力供电系统中起提高电网的功率因数的作用,降低供电变压器及输送线路的损耗,提高供电效率,改善供电环境。
所以无功功率补偿装置在电力供电系统中处在一个不可缺少的非常重要的位置。
合理的选择补偿装置,可以做到最大限度的减少网络的损耗,使电网质量提高。
反之,如选择或使用不当,可能造成供电系统,电压波动,谐波增大等诸多因素。
今天小编带大家了解13种无功补偿方式,各自有什么优点和缺点。
(1)同步调相机基本原理:同步电动机无负荷运行,在过励时发出感性无功;在欠励时吸收感性无功;主要优点:既能发出感性无功,又能吸收感性无功;主要缺点:损耗大,噪音大响应速度慢,结构维护复杂;适用场合:在发电厂尚有少量应用。
(3)就地补偿基本原理:一般将电容器直接与电动机变压器并联,二者共用1台开关柜;主要优点:末端补偿,能最大限度的降低线损;主要缺点:台数较多,投资量大;适用场合:水厂、水泥厂应用较多;(3)集中补偿基本原理:集中装设在系统母线上,一般设置单独的开关柜;主要优点:可对整个变电所进行补偿,投资相对较小;主要缺点:一般为固定补偿,在负载低时可能出现过补偿;适用场合:适用于负载波动小的系统;(4)自动补偿(机械开关投切电容器)基本原理:采用机械开关(接触器、断路器)等根据功率因数控制器的指令投切电容器;主要优点:能自动调节无功出力,使系统无功保持平衡,技术成熟,占地小、造价低;主要缺点:响应时间较慢,受电容器放电时间限制;适用场合:目前主流补偿方式,满足大多数行业用户需求;(5)晶闸管投切电容器基本原理:采用晶闸管阀组根据功率因数控制器的指令过零投切电容器;主要优点:响应速度快,无涌流,无冲击;主要缺点:占地面积大,造价高;适用场合:多用于港口等负荷变化快速的场合;(6)晶闸管控制电抗器基本原理:一般由固定并联电容器和晶闸管控制的并联电抗器并联组成,通过改变晶闸管导通角改变电感电流,从而控制整套装置的无功输出;主要优点:响应速度快,无级调节,既能补偿容性无功,又能补偿感性无功;主要缺点:占地面积大,造价高,同时对大多企业用户而言,不需要感性无功;适用场合:多用于钢铁、电气化铁路和输变电系统;(7)磁控电抗器基本原理:通过可控硅控制励磁电流的大小和铁芯饱和度改变电感电流,从而控制整套装置的无功输出;主要优点:动态响应,无级调节,双向补偿,晶闸管耐压低,无须多级串联,产生谐波小;主要缺点:响应时间较TCR稍慢,噪声大;适用场合:在高压系统中占有优势;(8)串联补偿基本原理:串联电容器组用来补偿输电线路的电感,以提高线路的输电能力和稳定性。
无功补偿装置的分类及原理无功补偿装置是电力系统中的重要设备,可以通过对无功功率的调整来提高电力系统的功率因数,提高供电质量。
本文将对无功补偿装置的分类及原理进行详细介绍。
一、无功补偿装置的分类根据无功补偿装置的工作原理和结构特点,可以将其分为以下几类:静态无功补偿装置、动态无功补偿装置、谐波滤波无功补偿装置和电容式无功补偿装置。
1. 静态无功补偿装置静态无功补偿装置是通过电子元件,如电容器、电抗器等,来实现无功补偿的装置。
根据无功补偿的方式,静态无功补偿装置可以进一步细分为并联补偿和串联补偿。
并联补偿装置主要是通过并联连接电容器来补偿电路中的无功功率,这样可以提高功率因数,提高电网的稳定性。
而串联补偿装置则是通过串联连接电抗器来调整电路中的无功功率,来实现无功补偿的效果。
2. 动态无功补偿装置动态无功补偿装置主要是通过控制器来控制电容器的连接和断开,以实现对无功功率的补偿。
具有响应速度快、调节范围大等优点,适用于电网无功功率变化较大的情况。
3. 谐波滤波无功补偿装置谐波滤波无功补偿装置主要用于滤除电网中的谐波成分,以提高电网的谐波污染程度,保证电网的供电质量。
常见的谐波滤波无功补偿装置主要包括谐波滤波器和无功发生器。
4. 电容式无功补偿装置电容式无功补偿装置是一种通过电容器来实现无功补偿的装置。
通过控制电容器的容量和连接方式,可以实现对电网的无功功率进行精确调节。
二、无功补偿装置的原理无功补偿装置的原理主要是通过改变电路的电流和电压之间的相位差,来实现对电流中的无功功率的补偿。
当电力系统中存在导致无功功率的负荷或设备时,会导致电流与电压之间的相位差,从而产生无功功率。
无功补偿装置通过调整系统中的无功补偿元件(如电容器或电抗器)的连接和断开方式,来改变电路中的相位差,从而实现对无功功率的补偿。
在静态无功补偿装置中,通过控制无功补偿元件的连接或断开来改变相位角。
对于串联补偿装置,通过增加或减少串联电抗器的容值,来改变电路的无功功率。
无功补偿装置的分类无功补偿有许多种灯类:从补偿的范围划分可以分为负荷补偿与线路补偿,从补偿的性质划分可以分为感性与容性补偿。
下面将并联容性补偿的方法大致列举:1、同步调相机调相机的基本原理与同步发电机没有区分,它只输出无功电流。
由于不发电,因此不需要原动机拖动,没有启动电机的调相机没有轴伸,实质就是相当于一台在电网中空转的同步发电机。
调相机是电网中最早使用的无功补偿装置,当增加激磁电流时,其输出的容性无功电流增大。
当削减激磁电流时,其输出的容性无功电流削减。
当激磁电场削减到肯定程度时,输出无功电流为零,只有很小的有功电流用于弥补调相机的损耗,当激磁电流进一步削减时,输出感性无功电流。
调相机容量大、对谐波不敏感,并且具有当电网电压下降时输出无功电流自动增加的特点,因此调相机对于电网的无功平安具有不行替代的作用。
由于调相机的价格高、效率低,运行成本高,因此已经渐渐被并联电容器所替代。
但是近年来出于对电网无功平安的重视,一些人主见重新启用调相机。
2、并联电容器并联电容器是目前最主要的无功补偿方法。
其主要特点是价格低,效率高,运行成本低,在爱护完善的状况下牢靠性也很高。
在高压及中压系统中主要使用固定连接的并联电容器组,而在低压配电系统中则主要使用自动掌握电容器投切的自动无功补偿装置。
自动无功补偿装置的结构则多种多样形形色色,适用于各种不同的负荷呢况。
对于低压自动无功补偿装置将另文具体介绍。
并联电容器的最主要缺点是其对谐波的敏感性。
当电网中含有谐波时,电容器的电流会急剧增大,还会与电网中的感性元件谐振使谐波放大,另外,并联电容器属于恒阻抗元件,在电网电压下降时其输出的无功电出下降,因此不利于电网的无功平安。
3、SVCSVC的全称是静止式无功补偿装置,静止两个字是同步调相机的旋转相对应的。
国际大电网会议将SVC定义为7个子类:a、机械投切电容器(MSC)b、机械投切电抗器(MSR)c、自饱和电抗器(SR)d、晶闸管掌握电抗器(TCR)e、晶闸管投切电容器(TCR)f、晶闸管投(TSC)g、自换向或电网换向转换器(SCC/LCC)依据以上这些子类,我们可以看出:除调相机之外,用电感或电容进行无功补偿的装置几乎均被定义为SVC。
无功补偿装置几种常见类型① 调压式动态无功补偿装置调压式动态补偿装置原理是:在普通的电容器组前面增加一台电压调节器,利用电压调节器来改变电容器端部输出电压。
根据Q=2πfCU2改变电容器端电压来调节无功输出,从而改变无功输出容量来调节系统功率因数,目前生产的装置大多可分九级输出。
该装置为分级补偿方式,容易产生过补、欠补。
由于调压变压器的分接头开关为机械动作过程,响应时间慢(约3~4s),虽能及时跟踪系统无功变化和电压闪变,但跟踪和补偿效果稍差。
但比常规的电容器组的补偿效果要好的多;在调压过程中,电容器频繁充、放电,极大影响电容器的使用寿命。
由于有载调压变压器的阻抗,使得滤波效果差。
虽然价格便宜,占地面积小,维护方便,一般年损耗在0、2%以下。
② 磁控式(MCR型)动态无功补偿装置磁控式动态无功补偿装置原理是:在普通的电容器组上并联一套磁控电抗器。
磁控电抗器采用直流助磁原理,利用附加直流励磁磁化铁心,改变铁心磁导率,实现电抗值的连续可调,从而调节电抗器的输出容量,利用电抗器的容量和电容器的容量相互抵消,可实现无功功率的柔性补偿。
能够实现快速平滑调节,响应时间为100-300ms,补偿效果满足风场工况要求。
磁控电抗器采用低压晶闸管控制,其端电压仅为系统电压的%~2%,无需串、并联,不容易被击穿,安全可靠。
设备自身谐波含量少,不会对系统产生二次污染。
占地面积小,安装布置方便。
装置投运后功率因数可达0、95以上,可消除电压波动及闪变,三相平衡符合国际标准。
免维护,损耗较小,年损耗一般在0、8%左右。
③相控式动态无功补偿装置(TCR)相控式动态无功补偿装置(TCR)原理是:在普通的电容器组上并联一套相控电抗器(相控电抗器一般由可控硅、平衡电抗器、控制设备及相应的辅助设备组成)。
相控式原理的可控电抗器的调节原理见下图所示。
通过对可控硅导通时间进行控制,控制角(相位角)为α,电流基波分量随控制角α的增大而减小,控制角α可在0~90范围内变化。
无功补偿装置的分类及特点无功补偿装置是电力系统中用来改善功率因数的重要设备之一。
它通过补偿无功功率,提高电力系统的效率和稳定性。
根据不同的工作原理和功能,无功补偿装置可以分为静态无功补偿装置和动态无功补偿装置两大类。
本文将对这两类装置的特点进行探讨。
一、静态无功补偿装置静态无功补偿装置是一种通过静态元件来实现无功功率补偿的装置。
主要有电容补偿装置、电抗补偿装置和混合补偿装置。
1. 电容补偿装置电容补偿装置采用电容器来产生无功电流,补偿电网中的感性无功功率。
它主要可以分为固定电容补偿装置和可变电容补偿装置两种类型。
固定电容补偿装置适用于无功负荷变化不大的场合。
它具有简单、可靠的特点,并且成本较低。
但是,由于负载变化时的固定补偿容量不能适应需求,可能导致补偿效果不佳。
可变电容补偿装置能够根据负荷变化自动调整补偿容量,适用于负荷波动较大的场合。
它通过控制开关和电容器的并联或串联连接来实现不同的电容量组合,从而提供灵活的无功补偿调节。
2. 电抗补偿装置电抗补偿装置主要采用电感器来产生无功电流,补偿电网中的容性无功功率。
它主要包括固定电抗补偿装置和可变电抗补偿装置两种类型。
固定电抗补偿装置适用于容性负荷变化不大的场合。
它能够稳定供电系统电压,改善电网的稳定性和功率因数。
但是由于固定电感器无法应对负荷波动,因此其补偿效果受到一定限制。
可变电抗补偿装置能够根据负荷变化自动调整补偿容量,适用于波动性负荷较大的场合。
它通过调节器件的感应度和接入方式实现电抗的动态调节,以满足不同负荷条件下的无功补偿需求。
3. 混合补偿装置混合补偿装置是将电容补偿装置和电抗补偿装置组合在一起使用的装置。
通过合理地选择电容和电抗的组合方式,可以更精确地对功率因数进行补偿。
这种补偿方式在大型电力系统中应用较多,可以提高电网的功率因数、稳定性和可靠性。
二、动态无功补偿装置动态无功补偿装置是一种根据电网运行状态实时调整补偿容量的装置。
主要包括SVG(Static Var Generator)和SVC(Static Var Compensator)。
无功补偿几种补偿方式的优缺点无功功率补偿,简称无功补偿,在电力供电系统中起提高电网的功率因数的作用,降低供电变压器及输送线路的损耗,提高供电效率,改善供电环境。
所以无功功率补偿装置在电力供电系统中处在一个不可缺少的非常重要的位置。
合理的选择补偿装置,可以做到最大限度的减少网络的损耗,使电网质量提高。
反之,如选择或使用不当,可能造成供电系统,电压波动,谐波增大等诸多因素。
今天就带大家了解13 种无功补偿方式,各自有什么优点和缺点。
(1 )同步调相机基本原理:同步电动机无负荷运行,在过励时发出感性无功;在欠励时吸收感性无功;主要优点:既能发出感性无功,又能吸收感性无功;主要缺点:损耗大,噪音大响应速度慢,结构维护复杂;适用场合:在发电厂尚有少量应用。
(3 )就地补偿基本原理:一般将电容器直接与电动机变压器并联,二者共用台开关柜;主要优点:末端补偿,能最大限度的降低线损;主要缺点:台数较多,投资量大;适用场合:水厂、水泥厂应用较多;3 )集中补偿基本原理:集中装设在系统母线上,一般设置单独的开关柜;主要优点:可对整个变电所进行补偿,投资相对较小;主要缺点:一般为固定补偿,在负载低时可能出现过补偿;适用场合:适用于负载波动小的系统4 )自动补偿(机械开关投切电容器)基本原理:采用机械开关(接触器、断路器)等根据功率因数控制器的指令投切电容器;主要优点:能自动调节无功出力,使系统无功保持平衡,技术成熟,占地小、造价低;主要缺点:响应时间较慢,受电容器放电时间限制;适用场合:目前主流补偿方式,满足大多数行业用户需求;5 )晶闸管投切电容器基本原理:采用晶闸管阀组根据功率因数控制器的指令过零投切电容器;主要优点:响应速度快,无涌流,无冲击;主要缺点:占地面积大,造价高;适用场合:多用于港口等负荷变化快速的场合;(6 )晶闸管控制电抗器基本原理:一般由固定并联电容器和晶闸管控制的并联电抗器并联组成,通过改变晶闸管导通角改变电感电流,从而控制整套装置的无功输出;主要优点:响应速度快,无级调节,既能补偿容性无功,又能补偿感性无功;主要缺点:占地面积大,造价高,同时对大多企业用户而言,不需要感性无功;适用场合:多用于钢铁、电气化铁路和输变电系统;(7 )磁控电抗器基本原理:通过可控硅控制励磁电流的大小和铁芯饱和度改变电感电流,从而控制整套装置的无功输出;主要优点:动态响应,无级调节,双向补偿,晶闸管耐压低,无须多级串联,产生谐波小;主要缺点:响应时间较TCR 稍慢,噪声大;适用场合:在高压系统中占有优势;8 )串联补偿基本原理:串联电容器组用来补偿输电线路的电感,以提高线路的输电能力和稳定性。
火电厂厂用电系统的三种无功补偿方法
火电厂厂用电系统的三种无功补偿方法包括:静态无功补偿器(SVC)、静态同步无功补偿器(STATCOM)和串联电容补偿器。
这些方法可以通过调整电压和电流的相位角来实现无功功率的平衡,并提高系统的功率因数。
1. 静态无功补偿器(SVC):SVC是一种通过改变电容、电抗器的接入或退出来实现无功功率补偿的装置。
它是一种电力电子装置,能够自动检测系统中的无功功率,并通过调整电抗和电容的连接方式,来快速补偿无功功率。
2. 静态同步无功补偿器(STATCOM):STATCOM是一种通过控制电压源型逆变器输出电压的幅值和相位来实现无功功率补偿的装置。
它采用了电力电子设备,能够快速地控制无功功率的流动,从而提高系统的功率因数。
3. 串联电容补偿器:串联电容补偿器是通过在系统中串联电容器来实现无功功率的补偿。
它能够提供无穷大的无功功率,从而使系统的功率因数达到1。
它是一种简单、经济、可靠的无功补偿装置,广泛应用于电力系统中。
这些无功补偿方法能够有效地改善系统的功率因数,减轻无功功率的损失,并提高电力系统的稳定性、可靠性和运行效率。
无功补偿装置的选型与设计无功补偿装置是一种用于改善电力系统功率因数的设备,它通过补偿电流中的无功成分,提高功率因数,减少系统的无功功率损耗。
本文将探讨无功补偿装置的选型与设计,以帮助读者了解如何选择合适的无功补偿装置及其设计原则。
1. 无功补偿装置的选型在选择无功补偿装置时,需要考虑以下几个因素:1.1 系统功率因数系统的功率因数是选择无功补偿装置的基本依据。
当系统功率因数低于设定值时,需要考虑安装无功补偿装置来提高功率因数。
1.2 负载类型根据负载的类型,可以选择不同类型的无功补偿装置。
常见的无功补偿装置包括静态无功发生器(SVC)、无功发生器组(STATCOM)和固定补偿电容器等。
1.3 控制方式无功补偿装置可以通过电容器开关或智能无功补偿控制器进行控制。
根据实际需求,选择适合的控制方式。
1.4 额定容量根据负载的需求和系统的容量,选择合适的无功补偿装置额定容量。
过小的容量可能无法满足需求,而过大的容量将浪费资源。
2. 无功补偿装置的设计无功补偿装置的设计需要考虑以下几个方面:2.1 电容器选择选择适当的电容器是无功补偿装置设计中的关键之一。
电容器的选择应考虑其额定电压、容量和损耗等因素,以确保电容器可以正常运行并满足功率需求。
此外,电容器还需要具备耐高压、低损耗和较长的使用寿命等特性。
2.2 保护措施为了确保无功补偿装置的安全稳定运行,需要采取相应的保护措施。
例如,安装电容器过电流保护器、电压保护器和温度保护器等,以防止电流过载、电压过高和温度过高等问题。
2.3 协调性设计对于较大规模的无功补偿装置系统,需要进行协调性设计,以保证系统各个组件之间的协调运行。
例如,根据系统的特点选择合适的滤波器、电抗器和电流互感器等,以优化系统的无功补偿效果。
2.4 安装位置无功补偿装置的安装位置也需要仔细考虑。
选择合适的安装位置可以最大程度地减少电缆长度和功率损耗,提高系统的效率。
综上所述,无功补偿装置的选型与设计需要综合考虑系统功率因数、负载类型、控制方式、额定容量等因素。
无功补偿SVG、SVC、MCR、TCR、TSC 区别TSC:晶闸管投切电容器,采用无源器件(电容器)进行无功补偿,分级补偿,不能实现连续可调。
TCR:晶闸管控制电抗器。
MCR:磁控电抗器,与TCR类似,需要和电容柜配合实现动态无功补偿,可实现连续可调。
SVC:静止无功补偿装置,采用无源器件进行无功补偿的技术总称,包括:TSC、TCR等,“静止”是与同步调相机对应,一般来说将使用晶闸管进行控制的补偿装置成为“SVC"。
SVG:静止无功发生器,采用电能变换技术实现的无功补偿。
SVG与其它的最大区别在于能主动发出无功电流,补偿负载无功电流。
而其它均为无源方式,依靠无源器件自身属性进行无功补偿。
SVG与两种类型SVC动态无功补偿装置比较表静止无功补偿器(SVC)与静止无功发生器(SVG)有什么异同?静止无功补偿器(SVC)该装宜产生无功和濾除谐波是靠其电容和电抗木身的性质产生的。
静止无功发生器(SVG)该装置产生无功和滤除谐波是発其内部电子开关频繁动作产生无功电流和与谐波电流相反的电流。
相关知识静止无功补偿湍又称SVC.传统无功补偿用断路器或接触器投切电容,SCV用可控硅等电子开关.没有机械运动部分.所以较静态无功补偿装迓。
通常的SVC组成部分为1 •固定电容器和固定电抗器组成的一个无功补偿加滤波支路该部分适、”1选择电抗器和电容器容虽.可滤除电网谐波.并补偿容性无功.将电网补偿到容性状态。
2•固定电抗器3.可控硅电子开关可控硅用來调节电抗器导通角.改变感性无功输出來抵消补偿滤波支路容性无功,并保持在感性较商功率因数。
动态无功补偿技术应用在电力系统中,如果无功储备不足将会导致电网电压水平降低,冲击性的无功功率负载还会使电压产生剧烈的波动,恶化电网的供电质量。
对于给立的有功分布,要想使无功潮流最小以减少系统的损耗,就要求对无功功率的流向与转移进行很好的控制。
随着电网的不断发展,对无功功率进行控制与补偿的重要性与曰俱增:①输电网络对运行效率的要求日益提高,为了有效利用输变电容疑,应对无功进行就地补偿:②电源(尤英水电)远离负荷中心,远距离的输电需要灵活调控无功以支撑解决稳泄性及电压控制问题:③配电网中存在大量的电感性负载,在运行中消耗大量无功,使得配电系统损耗大大增加:④直流输电系统要求在换流器的交流侧进行无功控制:⑤用户对于供电电能质量的要求日益提高。
低压无功补偿装置的常见类别称谓介绍前言:随着低压无功补偿技术的发展,在传统无功补偿装置的类别上新出现了许多新类别称谓,比如:动态无功补偿装置、滤波补偿装置、复合开关投切补偿装置、可控硅投切无功补偿装置、混合补偿装置等。
这些新类别有的关联、有的排斥,在许多资料中介绍也不统一,造成许多技术人员对这些概念形成误解,甚至影响到对设计图纸的理解执行。
本文依据标准和权威资料,对这些称谓分别予以介绍,和大家共同理解认识这些概念。
一、常见类别称谓的含义1、动态无功补偿装置在GB/T15576-2008《低压成套无功功率补偿装置》的分类中,没有动态无功补偿装置的分类,但规定装置动态响应的时间:采用半导体电子开关或复合开关投切的装置,其动态响应的时间应不大于1S。
在JB/T9663-1999《低压无功功率自动补偿控制器》中,定义“动态无功功率补偿”为:一种延时时间很短(其延时时间一般不大于5S)的无功功率补偿,它主要应用于负载变化较快的场合。
那么,动态无功补偿装置实际上就可理解为:采用半导体电子开关或复合开关投切的无功补偿装置,或采用其它方式投切但延时时间不大于5S的无功补偿装置。
2、滤波补偿装置GB/T15576-2008《低压成套无功功率补偿装置》的分类中,产品按有无抑制谐波或滤波功能分为:无抑制谐波或滤波功能、有抑制谐波功能、有滤波功能。
对有有抑制谐波功能的要求为:装置投入运行不能使系统谐波含量增加;对有滤波功能的要求为:装置投入运行使系统谐波含量减少,且试验中通过适量谐波电流时,系统中的谐波电流应减少至规定值的50%。
可见,滤波补偿装置实际上是一种将系统谐波滤除50%以上的补偿装置。
而其它系统谐波滤除量低于50%,投入运行不使系统谐波含量增加的装置只能是抑波补偿装置。
常见取电抗率为6%、7%、12%、14%的带电抗器的无功补偿装置,无法将系统谐波滤除50%以上,其实质是一种抑波补偿装置。
3、复合开关投切无功补偿装置GB/T15576-2008《低压成套无功功率补偿装置》的分类中,产品按投切电容器的元件划分:机电开关、半导体电子开关、复合开关(机电开关和半导体电子开关的组合体)。
无功补偿装置的分类及特点分析无功补偿装置是一种用于改善电力系统中电力因数的设备,通过补偿无功功率,提高电力系统的效率和稳定性。
本文将对无功补偿装置进行分类,并分析各类装置的特点。
一、静态无功补偿装置静态无功补偿装置是一种常见的补偿装置,主要通过电容器或电感器实现对无功功率的补偿。
根据功能和性能,静态无功补偿装置可以进一步分为以下几类:1. 电容器补偿装置电容器补偿装置主要通过串联或并联连接电容器来补偿无功功率。
它能够快速响应电力系统对无功功率的需求,并具有较高的效率和可靠性。
电容器补偿装置广泛应用于高电压和中电压电力系统中,并具有容量大、造价低等特点。
2. 电感器补偿装置电感器补偿装置通过串联或并联连接电感器来补偿无功功率。
它主要用于低电压电力系统中,能够提供稳定的无功功率支持,并具有稳定性好、响应速度快等特点。
电感器补偿装置常用于电力变电站、电力电容器组等设备中。
二、动态无功补偿装置动态无功补偿装置相对于静态装置来说,具有更快的响应速度和更高的补偿灵活性。
根据其工作原理和特点,动态无功补偿装置可以分为以下几类:1. SVC(静止无功补偿器)SVC是一种通过控制可变电抗器进行无功功率补偿的装置。
它能够根据电力系统的需求实时调整补偿电抗值,并对系统的电压进行调节。
SVC具有高精度、快速响应的特点,广泛应用于电力系统中。
2. STATCOM(静止同步补偿器)STATCOM是一种利用可控开关器件(如IGBT)控制电流的无功补偿装置。
它能够根据电力系统的需求实时地注入或吸收无功功率,以维持电力系统的电压稳定。
STATCOM具有高动态响应能力、低电压谐振等特点,常用于电力变电站和风电场等场合。
3. DSTATCOM(动态同步补偿器)DSTATCOM是一种集动态无功补偿和无功电流过滤功能于一体的设备。
它通过控制其内部的逆变器,能够实现高精度的无功功率补偿,并减少谐波对电力系统的影响。
DSTATCOM广泛应用于工业电力系统和电力变电站等场合。
无功补偿的方案及分析无功补偿是指在电力系统中,由于电感电容等元件的存在,所产生的无功功率需要通过无功补偿装置来进行补偿,以提高电力系统的功率因数。
下面将介绍无功补偿的方案及其分析。
一、无功补偿方案1.静态无功补偿装置(SVC):SVC是一种采用电力电子技术实现的无功补偿装置,可以通过电容器和电感器的组合实现电力系统的无功调节。
静态无功补偿装置可以实现高速响应、精密补偿的特点,广泛应用于电力系统中。
2.静态同步补偿装置(STATCOM):STATCOM是一种利用电力电子技术实现的无功补偿装置,通过控制电压的相位和幅值来提供无功功率的调节。
STATCOM具有可调节容量、快速响应、高精度、无接触的优点,可广泛应用于电力系统中。
3.动态无功补偿装置(DSTATCOM):DSTATCOM是一种通过电力电子技术实现的无功补偿装置,主要用于电力系统中电压暂时性的调节和电力系统的无功稳定。
DSTATCOM可以实现快速响应、精确补偿、动态调节等特点,适用于电力系统中无功补偿的需求。
4.串联无功补偿装置(SVCUPFC):SVCUPFC是一种通过串联电容和电抗器实现电力系统无功调节的装置。
SVCUPFC可以实现动态调节、可调节容量的特点,适用于电力系统中的无功补偿需求。
二、无功补偿分析1.能够提高电力系统的功率因数:通过无功补偿装置的应用,可以减少电力系统的无功功率损耗,提高电力系统的功率因数,降低电力系统的无功功率流动,提高电力系统的效率和稳定性。
2.能够提高电力系统的电压稳定性:在电力系统中,无功补偿装置可以通过调节电压的相位和幅值,稳定电力系统的电压,减少电力系统中的电压波动,提高电力系统的稳定性。
3.能够提高电力系统的负载能力:通过无功补偿装置的应用,可以有效地调节电力系统中的无功功率,提高电力系统的负载能力,降低电力系统的负载损耗,延长电力设备的使用寿命。
4.能够减少电力设备的故障率:在电力系统中,无功补偿装置可以有效地减少电力设备的负荷压力,提高电力设备的工作环境,降低电力设备的故障率,延长电力设备的使用寿命。
无功补偿装置的选型与设计要点分析无功补偿装置是电力系统中用于调节功率因数的重要设备。
它的选型与设计对于保证电力系统的稳定运行和提高能源利用效率至关重要。
本文将从选型和设计两个方面对无功补偿装置进行分析,并探讨其中的要点。
一、无功补偿装置的选型1.考虑电力系统的负荷特性:根据电力系统的负荷特性,选择合适的无功补偿装置。
对于大型电力系统,一般采用静态无功补偿装置(SVC)或静态无功发生器(SVG);而对于中小型电力系统,采用电容式无功补偿装置比较常见。
2.考虑无功补偿装置的容量:根据电力系统的功率因数和需求量,确定无功补偿装置的容量。
一般来说,无功补偿装置的容量应该与电力系统的无功功率需求相匹配,以达到适当的功率因数校正效果。
3.考虑无功补偿装置的控制方式:根据电力系统的特点和需求,选择无功补偿装置的控制方式。
常见的控制方式包括手动控制、自动控制和远程控制等,可以根据具体情况进行选择。
二、无功补偿装置的设计要点1.合理布置无功补偿装置:在电力系统中,无功补偿装置的布置应该合理,以达到最佳的无功补偿效果。
一般来说,无功补偿装置应该布置在负荷高峰区,以最大限度地减少无功功率的损耗。
2.充分考虑无功补偿装置的稳定性:无功补偿装置在运行过程中应该具备稳定性,以避免对电力系统的负荷和功率因数产生不良的影响。
因此,在设计无功补偿装置时,需要充分考虑其稳定性和抗干扰能力。
3.保证无功补偿装置的可靠性:无功补偿装置在运行过程中应该具备较高的可靠性,以确保电力系统的稳定运行。
因此,在设计无功补偿装置时,需要采用可靠的元器件和设备,并加强对无功补偿装置的维护和监测。
4.考虑无功补偿装置的经济性:在设计无功补偿装置时,需要充分考虑其经济性,以提高电力系统的能源利用效率。
选择合适的无功补偿装置和控制策略,可以降低无功功率的损耗,并减少电力系统的运行成本。
总之,无功补偿装置的选型与设计是保证电力系统稳定运行和提高能源利用效率的重要任务。
无功补偿装置几种常见类型比较 常见的动态无功补偿装置有四种:调压式动态无功补偿装置、磁控式动态无功补偿装置、相控式(TCR型)动态无功补偿装置、SVG 动态无功发生器。
① 调压式动态无功补偿装置
调压式动态补偿装置原理是:在普通的电容器组前面增加一台电压调节器,利用电压调节器来改变电容器端部输出电压。
根据
Q=2πfCU2改变电容器端电压来调节无功输出,从而改变无功输出容量来调节系统功率因数,目前生产的装置大多可分九级输出。
该装置为分级补偿方式,容易产生过补、欠补。
由于调压变压器的分接头开关为机械动作过程,响应时间慢(约3~4s),虽能及时跟踪系统无功变化和电压闪变,但跟踪和补偿效果稍差。
但比常规的电容器组的补偿效果要好的多;在调压过程中,电容器频繁充、放电,极大影响电容器的使用寿命。
由于有载调压变压器的阻抗,使得滤波效果差。
虽然价格便宜, 占地面积小,维护方便,一般年损耗在0.2%以下。
② 磁控式(MCR型)动态无功补偿装置
磁控式动态无功补偿装置原理是:在普通的电容器组上并联一套磁控电抗器。
磁控电抗器采用直流助磁原理,利用附加直流励磁磁化铁心,改变铁心磁导率,实现电抗值的连续可调,从而调节电抗器的输出容量,利用电抗器的容量和电容器的容量相互抵消,可实现无功功率的柔性补偿。
能够实现快速平滑调节,响应时间为100-300ms,补偿效果满足风场工况要求。
磁控电抗器采用低压晶闸管控制,其端电压仅为系统电压的1%~2%,无需串、并联,不容易被击穿,安全可靠。
设备自身谐波含量少,不会对系统产生二次污染。
占地面积小,安装布置方便。
装置投运后功率因数可达0.95以上,可消除电压波动及闪变,三相平衡符合国际标准。
免维护,损耗较小,年损耗一般在0.8%左右。
③相控式动态无功补偿装置(TCR)
相控式动态无功补偿装置(TCR)原理是:在普通的电容器组上并联一套相控电抗器(相控电抗器一般由可控硅、平衡电抗器、控制设备及相应的辅助设备组成)。
相控式原理的可控电抗器的调节原理见下图 所示。
通过对可控硅导通时间进行控制,控制角(相位角)为α,电流基波分量随控制角α的增大而减小,控制角α可在0°~90°范围内变化。
控制角α的变化,会导致流过相控电抗器的电流发生变化,从而改变电抗器输出的感性无功的容量。
普通的电容器组提供固定的容性无功,感性无功和容性无功相抵消,从而实现总的输出无功的连续可调。
i
相控式原理图
优点: 响应速度快,≤40ms。
适合于冶金行业。
一般年损耗在0.5%以下。
缺点:晶闸管要长期运行在高电压和大电流工况下,容易被
击穿,维护困难;晶闸管发热量大,一般情况采用纯水冷却,除了有一套水处理装置可靠的水源外,还需配监护维修人员。
另外,其晶闸管产生的大量谐波电压污染电网,需配套滤波装置。
整套装置占地面积很大,价格较贵。
在风电工况下不予推荐使用。
而且本工程位于海边滩涂,盐雾腐蚀较严重,相控式动态无功补偿装置有部分装置为户外敞开布置,不利于设备在重雾潮湿地区的安全运行。
④SVG型动态无功发生器
SVG是当今无功领域最新技术的代表。
SVG并联于电网中,相当于一个可变的无功电流源,其无功电流可以快速地跟随负荷无功电流的变化而变化,自动补偿系统所需的无功功率。
可直接发感性或容性无功,补偿效果好。
由于SVG响应速度极快,所以又称静止同步补偿器,其响应时间为5ms 。
该产品是动态无功补偿的装置的换代产品,其占地面积极小,免维护, 一般年损耗在0.3%以下,可布置在户内。
但价格最贵,当其价格合理时应优先选用。
且SVG设备紧凑,占地较小可布置在户内。