平行线的判定和性质经典题.
- 格式:docx
- 大小:777.12 KB
- 文档页数:15
平行线的判定与性质的综合应用专题练习平行线的判定与性质的综合运用专题一、推理填空题1.已知:如图,DE∥BC,∠ADE=∠XXX,将说明∠1=∠2成立的理由填写完整。
解:因为DE∥BC,所以∠ADE=∠XXX。
又因为DE∥BC,所以DB∥EF。
由平行线性质可知,∠1=∠ADE=∠XXX∠2.2.已知:如图所示,∠1=∠2,∠A=∠3.求证:XXX。
证明:因为∠1=∠2,所以XXX。
又因为∠A=∠3,所以AC∥BD。
由平行线性质可知,AC∥DE。
3.已知:如图,∠XXX∠ADC,BF、DE分别平分∠ABC 与∠ADC,且∠1=∠3.求证:AB∥DC。
证明:因为∠XXX∠ADC,所以∠XXX∠ADC。
又因为BF、DE分别平分∠ABC与∠ADC,所以∠1=∠ABC,∠3=∠ADC。
由∠1=∠3可得,∠2=∠ADC。
由平行线性质可知,AB∥DC。
二、证明题4.如图,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A=37º,求∠D的度数。
证明:因为AB∥CD,所以∠A+∠D=180º。
又因为DE⊥AE,所以∠ADE=90º。
由∠A=37º可得,∠ADE=53º。
由三角形内角和定理可得,∠D=80º。
5.如图,已知AB∥CD,∠1=100°,∠2=120°,求∠α的度数。
证明:因为AB∥CD,所以∠1+∠α+∠2=180º。
由∠1=100º,∠2=120º可得,∠α= -40º。
由于∠α是角度,所以∠α=320º。
6.如图,XXX,AE平分∠BAD,求证:XXX与AE相交于F,∠XXX∠EAF。
证明:因为XXX,所以∠BAD=∠ACD。
又因为AE平分∠BAD,所以∠XXX∠DAF。
由相邻角的性质可得,∠EAF+∠DAF=∠BAD=∠ACD。
又因为CD与AE相交于F,所以∠CFE+∠EAF+∠ACD=180º。
初二平行线的判定经典练习题平行线是初中数学中的重要概念之一,它在几何学中有着广泛的应用。
平行线的判定方法有很多种,下面将介绍一些经典的练习题,帮助大家掌握平行线的判定方法。
1. 判断下列直线是否平行:(1)直线l1:y = 2x + 1,直线l2:3x - 4y = 7(2)直线l1:2x - y + 3 = 0,直线l2:4x - 2y + 6 = 0(3)直线l1:x - 2y - 3 = 0,直线l2:2x - 4y - 6 = 0解答:(1)两直线斜率相等,l1的斜率为2,l2的斜率为3/4,不相等,因此两直线不平行。
(2)两直线斜率相等,l1的斜率为2/1,l2的斜率为4/2,相等,因此两直线平行。
(3)两直线斜率相等,l1的斜率为1/2,l2的斜率为2/4,相等,因此两直线平行。
2. 已知线段AB且CD平行于AB,点E是线段CD上的点,若DE = 2cm,DC = 5cm,BC = 10cm,求AE的长度。
解答:由线段比例定理可知:AE/EC = AB/BC代入已知条件,得到:AE/5 = 10/10解方程得到:AE = 5cm3. 如图,AB // DE,CB是三角形ACD的角平分线,若∠ACD = 60°,求∠CAB和∠ECB。
解答:由平行线性质可知,∠CAB = ∠ACD = 60°由角平分线性质可知,∠ECB = 1/2 * ∠ACD = 1/2 * 60° = 30°4. 在平面直角坐标系中,有四点A(1, 2),B(3, -1),C(4, 5),D(6, 2),判断线段AB和线段CD是否平行。
解答:利用斜率公式计算:线段AB的斜率为:(2 - (-1))/(1 - 3) = 3/(-2) = -3/2线段CD的斜率为:(2 - 5)/(6 - 4) = -3/2两斜率相等,因此线段AB与线段CD平行。
5. 如图,已知AB // EF,且∠BCD = 90°,AC = 6cm,BC = 8cm,DE = 4cm,求EF的长度。
专题02 平行线的判定与性质1.(2022秋•项城市期末)如图,已知∠B=∠ADE,∠EDC=∠GFB,GF⊥AB,求证:CD⊥AB.把以下证明过程补充完整,并在括号内填写理由或数学式.证明:∵∠B=∠ADE(已知)∴ ∥ ( )∴∠EDC=∠DCB( )又∠EDC=∠GFB(已知)∴∠DCB= (等量代换)∴ ∥ ( )2.(2023秋•道里区校级期中)将下面的解答过程补充完整:如图,已知DE∥BC,EF平分∠CED,∠A=∠CFE,那么EF与AB平行吗?为什么?解:因为DE∥BC(已知),所以∠DEF=∠CFE( ①),因为EF平分∠CED(已知),所以∠DEF= ②(角平分线的定义),所以∠CFE=∠CEF( ③),因为∠A=∠CFE(已知),所以∠A= ④(等量代换),所以EF∥AB( ⑤).3.(2022秋•尤溪县期末)如图,∠1+∠2=180°,∠B=∠3.(1)求证:DE∥BC;(2)若∠C=76°,∠AED=2∠3,求∠CEF的度数.4.(2023秋•怀宁县期中)如图,已知EF∥CD,数学课上,老师请同学们根据图形特征添加一个关于角的条件,使得∠BEF=∠CDG,并给出证明过程.小明添加的条件:∠B=∠ADG.请你帮小明将下面的证明过程补充完整.证明:∵EF∥CD( )∴∠BEF= ( )∵∠B=∠ADG(添加条件)∴BC∥ ( )∴∠CDG= ( )∴∠BEF=∠CDG( ).5.(2022秋•长春期末)请把以下证明过程补充完整,并在下面的括号内填上推理理由:已知:如图,∠1=∠2,∠A=∠D.求证:∠B=∠C证明:∵∠1=∠2,(已知)又:∵∠1=∠3, ∴∠2= ,(等量代换)∴AE∥FD ∴∠A=∠BFD ∵∠A=∠D(已知)∴∠D= (等量代换)∴ ∥CD ∴∠B=∠C .6.(2022秋•闽清县期末)如图,AB∥CD,E是BC的延长线上的一点,AE交CD于点F,∠1=∠2,∠3=∠4.求证:(1)∠B=∠D;(2)AD∥BE.7.(2023春•石城县期末)如图,已知∠ABC=180°﹣∠A,BD⊥CD于D,EF⊥CD于E.(1)求证:AD∥BC;(2)若∠ADB=36°,求∠EFC的度数.8.(2022秋•淇县期末)如图,已知AD∥FE,∠1=∠2.(1)试说明DG∥AC;(2)若∠BAC=70°,求∠AGD的度数.9.(2022秋•禅城区期末)已知:如图,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DF∥CA,∠FDE=∠A;(1)求证:DE∥BA.(2)若∠BFD=∠BDF=2∠EDC,求∠B的度数.30.(2023春•驿城区校级期末)如图,AB∥DG,∠1+∠2=180°.(1)试说明:AD∥EF;(2)若DG是∠ADC的平分线,∠2=142°,求∠B的度数.11.(2023秋•香坊区校级期中)完成下面推理过程,并在括号里填写推理依据:如图,已知:AB∥EF,EP⊥EQ,∠EQC+∠APE=90°,求证:AB∥CD.证明:∵AB∥EF(已知),∴∠APE= ,∵EP⊥EQ(已知),∴∠PEQ=90°),即∠QEF+∠PEF=90°,∴∠QEF+∠APE=90°,∵∠EQC+∠APE=90°(已知),∴∠EQC= ( ),∴EF∥ ( ),又∵AB∥EF,∴AB∥CD( ).12.(2022秋•邓州市期末)如图,点M在CD上,已知∠BAM+∠AMD=180°,AE平分∠BAM,MF平分∠AMC,请说明AE∥MF的理由.解:因为∠BAM+∠AMD=180°( ),∠AMC+∠AMD=180°( ),所以∠BAM=∠AMC( ).因为AE平分∠BAM,所以 ( ).因为MF平分∠AMC,所以 ,得 ( ),所以 ( ).13.(2022秋•桐柏县期末)完成下面推理过程.如图:已知,∠A=112°,∠ABC=68°,BD⊥DC于点D,EF⊥DC于点F,求证:∠1=∠2.证明:∵∠A=112°,∠ABC=68°(已知)∴∠A+∠ABC=180°∴AD∥BC( )∴∠1= ( )∵BD⊥DC,EF⊥DC(已知)∴∠BDF=90°,∠EFC=90°( )∴∠BDF=∠EFC=90°∴BD∥EF( )∴∠2= ( )∴∠1=∠2( )14.(2023秋•天山区校级期中)已知,GP平分∠BGH,HP平分∠GHD,∠GPH=90°.(1)求证:AB∥CD;(2)若∠AGE=60°,求∠4的度数.15.(2023春•覃塘区期末)如图:已知,∠HCO=∠EBC,∠BHC+∠BEF=180°.(1)求证:EF∥BH;(2)若BH平分∠EBO,EF⊥AO于F,∠HCO=64°,求∠CHO的度数.16.(2023春•新化县期末)如图,点E,F分别在AB,CD上,AF⊥CE,垂足为点O.已知∠1=∠B,∠A+∠2=90°.(1)求证:AB∥CD;(2)若AF=12,BF=5,AB=13,求点F到直线AB的距离.17.(2023春•温州月考)如图,已知∠1=∠3,∠2=∠B.(1)试判断DE与BC的位置关系,并说明理由;(2)若DE平分∠ADC,∠1=3∠B,求∠EFC的度数.18.(2023春•仙居县期末)如图是一个汉字“互”字,其中,AB∥CD,HF∥GE,∠HGE=∠HFE,M、H、G三点在同一直线上,N、E、F三点在同一直线上.求证:(1)GH∥EF;(2)∠CMH=∠BNE.19.(2022秋•东阳市期末)如图,长方形纸片ABCD中,G、H分别是AB、CD边上的动点,连GH,将长方形纸片ABCD沿着GH翻折,使得点B,C分别落在点E,F位置.(1)若∠BGH=110°,求∠AGE的度数.(2)若∠FHD=20°,求∠CHG的度数.(3)已知∠BGH和∠CHG始终互补,若∠BGH=α,请直接写出∠FHC的度数(含α的代数式).20.(2023春•金牛区校级期中)如图1,直线GH与直线l1,l2分别交于B,A两点,点C在直线l2上,射线AD平分∠BAC交直线l1于点E,∠GBE=2∠BAE.(1)求证:直线l1∥l2;(2)如图2,点Q在直线l1上(B点左侧),AM平分∠BAQ交l1于点M,过点M作MN⊥AD交AD于点N,请猜想∠BQA与∠AMN的关系;并证明你的结论;(3)若点P是线段AB上一点,射线EP交直线l2于点F,∠GBE=130°.点N在射线AD上,且满足∠EBN=∠EFC连接BN,请补全图形,探究∠BNA与∠FEA满足的等量关系,并证明.21.(2023春•义乌市校级期中)今年除夕夜长江两岸的灯光秀璀璨夺目,照亮山城的山水桥梁城市楼阁,人民欢欣鼓舞.观看表演的小语同学发现两岸的灯光运动是有规律的,如图1所示,灯A射出的光线从AQ开始顺时针旋转至AP便立即回转,灯B射出的光线从BM开始顺时针旋转至BN便立即回转,两灯不停旋转.假设长江两岸是平行的,即PQ∥MN,点A在PQ上,B、C、D在MN上,连接AB、AC、AD,已知AC平分∠BAP,AD平分∠CAP.(1)如图1,若∠ABD=40°,则∠CAQ= ;(2)如图2,在PQ上另有一点E,连接CE交AD于点F,点G在MN上,连接AG,若∠CAG=∠CAE,∠EFD+∠DAG=180°,试证明:EC∥AB.(3)如图3,已知灯A射出的光线旋转的速度是每秒10°,灯B射出的光线旋转的速度是每秒30°,若灯B射出的光线从BM出发先转动2秒,灯A射出的光线才从AQ出发开始转动,设灯A转动的时间为t秒,在转动过程中,当0≤t≤12时,请直接写出灯A射出的光线与灯B射出的光线相交且互相垂直时的时间t的值.22.(2022秋•萍乡期末)已知点A在射线CE上,∠C=∠ADB.(1)如图1,若AD∥BC,求证:AC∥BD;(2)如图2,若BD⊥BC,垂足为B,BD交CE于点G,请探究∠DAE与∠C的数量关系,写出你的探究结论,并说明理由;(3)如图3,在(2)的条件下,过点D作DF∥BC交射线CE于点F,当∠BAC=∠BAD,∠DFE=8∠DAE时,求∠BAD的度数.23.(2022秋•鲤城区校级期末)如图①,已知AB∥CD,一条直线分别交AB、CD于点E、F,∠EFB=∠B,FH⊥FB,点Q在BF上,连接QH.(1)已知∠EFD=70°,求∠B的度数;(2)求证:FH平分∠GFD.(3)在(1)的条件下,若∠FQH=30°,将△FHQ绕着点F顺时针旋转,如图②,若当边FH转至线段EF上时停止转动,记旋转角为α,请求出当α为多少度时,QH与△EBF某一边平行?(4)在(3)的条件下,直接写出∠DFQ与∠GFH之间的关系.24.(2023秋•香坊区校级期中)如图1,直线MN与直线AB、CD分别交于点E、F,∠1+∠2=180°.(1)求证:AB∥CD;(2)如图2,∠BEF与∠EFD的角平分线交于点P,延长EP交CD于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,∠HPQ=45°,K是GH上一点,连接PK,作PQ平分∠EPK,若∠PHG=15°,求∠QPK的度数.25.(2023秋•吉林期中)如图①,直角三角形DEF与直角三角形ABC的斜边在同一直线上,∠ACB=∠E=90°,∠EDF=36°,∠ABC=40°,CD平分∠ACB,将△DEF绕点D按逆时针方向旋转,如图②,记∠ADF为α(0°<α<180°),在旋转的过程中:(1)当∠α= °时,DE∥BC,当∠α= °时,DE⊥BC;(2)如图③,当顶点C在△DEF的内部时,边DF、DE分别交BC、AC的延长线于点M、N.①求出此时∠α的度数范围;②∠1与∠2的度数和是否变化?若不变,请直接写出∠1与∠2的度数和;若变化,请说明理由.。
平行线的判定证明题平行线的判定证明题平行线的判定证明题1)两条平行线被第三条直线所截,同位角相等;(2)两条平行线被第三条直线所截,内错角相等;(3)两条平行线被第三条直线所截,同旁内角互补。
(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;(3)两条直线被第三条直线所截,如果同旁内角相等,那么这两条直线平行。
按这个判定,绝对没错。
这两种的第一条都没有办法判定,而后两条就完全可以按照第一条来判定,最后的结果一定是对的。
2平行线的性质:(1)两条平行线被第三条直线所截,同位角相等;(2)两条平行线被第三条直线所截,内错角相等;(3)两条平行线被第三条直线所截,同旁内角互补。
平行线的判定定理:(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;(3)两条直线被第三条直线所截,如果同旁内角相等,那么这两条直线平行。
平行线的性质:在同一平面内永不相交的两条直线叫做平行线。
平行线的判定定理:(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;(3)两条直线被第三条直线所截,如果同旁内角相等,那么这两条直线平行。
3光学原理。
延长GE角D于Q因为∠2=∠3,所以AB∥D由AB∥D可得∠1=∠GQD又∠1=∠4所以∠4=∠GQD所以GQ∥FH 即:GE∥FH因为∠2=∠3所以AB∥D所以角FE=角FEB所以大角HFE=大角FEG所以HF∥GE4)要证明AB∥GD,只要证明∠1=∠BAD即可,根据∠1=∠2,只要再证明∠2=∠BAD即可证得;(2)根据AB∥D,∠1:∠2:∠3=1:2:3即可求得三个角的度数,再根据∠EBA与∠ABD互补,可求得∠EBA的度数,即可作出判断.解答:解:(1)证明:∵AD⊥B,EF⊥B(已知)∴∠EFB=∠ADB=90°(垂直的定义)∴EF∥AD(同位角相等,两直线平行)(2分)∴∠2=∠BAD(两直线平行,同位角相等)(3分)∵∠1=∠2,(已知)∴∠1=∠BAD(等量代换)∴AB∥DG.(内错角相等,两直线平行)(4分)(2)判断:BA平分∠EBF(1分)证明:∵∠1:∠2:∠3=1:2:3∴可设∠1=k,∠2=2k,∠3=3k(k 0)∵AB∥D∴∠2+∠3=180°(2分)∴2k+3k=180°∴k=36°∴∠1=36°,∠2=72°(4分)∴∠ABE=72°(平角定义)∴∠2=∠ABE∴BA平分∠EBF(角平分线定义).(5分)。
平行线的判定》证明题1.当∠1=∠2时,直线a、b平行。
因为这时∠1+∠2=180°,根据平行线的性质可知a、b平行。
2.已知∠XXX∠BCD,且∠ABC+∠CDG=180°,因此∠BCD=∠XXX根据三角形内角和定理可知∠XXX∠BCD+∠XXX∠ABC+∠BCD=180°,所以BC∥GD。
3.已知∠1=15°,∠2=15°,因此∠ACE=∠BDF=75°。
但AE与BF不平行,因为它们交于点F。
4.BE平分∠ABD,DE平分∠XXX,且∠DQP=∠1=∠2,因此∠XXX∠XXX∠BCQ。
根据同位角和内错角性质可知AB∥CD,DE∥BE,因此AD∥BC。
5.已知∠2=∠3,且∠1+∠2=90°,因此∠1=90°-∠2=90°-∠3.根据同位角和内错角性质可知BE∥DF,因为∠AEB=∠DFB=90°。
6.已知∠1=30°,∠B=60°,因此∠C=90°。
根据三角形内角和定理可知∠ABC=∠ACB=60°,因此AB=AC。
又因为∠BAC=90°,所以AD∥BC。
7.已知∠BAD=∠DCB,∠BAC=∠DCA,因此三角形ABD与三角形CBD相似。
根据相似三角形的性质可知AB∥CD。
8.直线EF分别与直线AB、CD相交于点P和点Q,PG 平分∠APQ,QH平分∠DPQ。
根据角平分线的性质可知∠XXX∠GPQ+∠HPQ=1/2(∠APQ+∠DPQ)=1/2(180°)=90°,因此GH∥AB∥CD。
9.已知XXX,XXX,∠1=∠2,因此∠XXX∠BCD。
根据同位角和内错角性质可知BE∥CF。
10.已知AB⊥DF,∠2=90°,∠2=∠3,因此∠1=90°-∠2=90°-∠3.根据同位角和内错角性质可知BE∥DF,因为∠AEB=∠DFB=90°。
平行线的判定及性质一、【基础知识精讲】1、平行线的判定(1)平行公理:经过直线外一点,有且只有一条直线与已知直线平行. (2)平行公理的推论:平行于同一条直线的两条直线. (3)在同一平面内,垂直于同一条直线的两条直线. (4)同位角相等,两直线平行. (5)内错角相等,两直线平行.(6)同旁内角互补,两直线平行.3、平行线的性质(1)两直线平行,同位角相等. (2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.二、【例题精讲】专题一:余角、补角、对顶角与三线八角例题1:∠A的余角与∠A的补角互为补角,那么2∠A是()A.直角 B.锐角 C.钝角 D.以上三种都有可能【活学活用1】如图2-79中,下列判断正确的是()A.4对同位角,2对内错角,4对同旁内角B.4对同位角,2对内错角,2对同旁内角C.6对同位角,4对内错角,4对同旁内角D.6对同位角,4对内错角,2对同旁内角【活学活用2】如图2-82,下列说法中错误的是( )A.∠3和∠5是同位角B.∠4和∠5是同旁内角C.∠2和∠4是对顶角D.∠1和∠2是同位角【活学活用3】如图,直线AB与CD交于点O,OE⊥AB于O,图中∠1与∠2的关系是()A.对顶角B.互余C.互补D相等例题2:如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角分别是_______.【活学活用4】如图,∠AOC +∠DOE +∠BOF = .专题二:平行线的判定例题3:如图,已知∠EFB+∠ADC=180°,且∠1=∠2,试说明DG ∥AB.1 2A BCDF E G【活学活用】1、长方体的每一对棱相互平行,那么这样的平行棱共有 ( )A .9对B .16对 C.18对 D .以上答案都不对2、已知:如图2-96,DE ⊥AO 于E,BO ⊥AO,FC ⊥AB 于C ,∠1=∠2,求证:DO ⊥AB.3、如图2-97,已知:∠1=∠2=,∠3=∠4,∠5=∠6.求证:AD ∥BC.4、如图2—101,若要能使AB ∥ED ,∠B 、∠C 、∠D 应满足什么条件?ABCDOE F5、同一平面内有四条直线a 、b 、c 、d ,若a ∥b ,a ⊥c ,b ⊥d ,则c 、d 的位置关系为( ) A.互相垂直 B .互相平行 C.相交 D .没有确定关系专题三:平行线的性质1、如图,110,ABC ACB BO ∠+∠=、CO 分别平分ABC ∠和,ACB EF ∠过点O 与BC 平行,则BOC ∠= . 2、如图,AB //CD ,BC //DE ,则∠B+∠D = .3、如图,直线AB 与CD 相交于点O ,OB 平分∠DOE .若60DOE ∠=,则∠AOC 的度数是 .4、 如图,175,2120,375∠=∠=∠=,则4∠= .13 425、如图,//AB CD ,直线EF 分别交AB 、CD 于E 、F ,ED 平分BEF ∠,若172∠=,则2∠= .【例题讲解】例1:如图,已知:AD ∥BC, ∠AEF=∠B,求证:AD ∥EF 。
平行线的判定与性质练习题平行线的判定与性质练习题平行线是几何学中的基本概念之一,它在我们的日常生活中无处不在。
从道路上的交叉口到建筑物的设计,平行线都扮演着重要的角色。
在几何学中,我们需要学会判定平行线,并掌握它们的性质。
下面,我将给大家提供一些平行线的判定与性质练习题,希望能帮助大家更好地理解和应用平行线的知识。
练习题一:判定平行线1. 在下图中,判断线段AB和线段CD是否平行。
A-----B| |C-----D2. 在下图中,判断线段AB和线段EF是否平行。
A-----B| || |E-----F3. 在下图中,判断线段AB和线段CD是否平行。
A-----B\ /\ /C-----D练习题二:平行线的性质1. 若两条平行线被一条横线所截,那么对应的内角互补。
2. 若两条平行线被一条横线所截,那么对应的外角相等。
3. 若两条直线分别与一条平行线相交,那么对应的内角相等。
4. 若两条直线分别与一条平行线相交,那么同旁内角互补。
练习题三:平行线的应用1. 若两条平行线被一条横线所截,且已知其中一个内角的度数为60°,求对应的内角和外角的度数。
2. 若两条平行线被一条横线所截,且已知其中一个外角的度数为120°,求对应的内角和另一个外角的度数。
3. 若两条直线分别与一条平行线相交,且已知其中一个内角的度数为70°,求对应的内角和同旁内角的度数。
4. 若两条直线分别与一条平行线相交,且已知其中一个同旁内角的度数为45°,求对应的内角和另一个同旁内角的度数。
通过以上练习题,我们可以加深对平行线的判定与性质的理解。
判定平行线需要观察线段的走向,若两条线段的走向相同,即不相交且不重合,则可以判定它们为平行线。
而平行线的性质则是通过观察线段之间的关系得出的。
掌握这些性质可以帮助我们解决更复杂的几何问题。
在应用平行线的过程中,我们可以根据已知条件利用平行线的性质进行推导。
平行线的判定与性质专项训练(20题)一、解答题1.已知:如图,∠1=∠C,∠2+∠3=180°.求证:AD∥EF.3.如图,△ABC中,AB=AC,D为BC边的中点,AF⊥AD,垂足为A.求证:∠1=∠24.已知AB∥DE,∠1=∠2,若∠C=54°,求∠AEC的度数.5.如图,C为∠AOB平分线上一点,CD//OB交OA于点D.求证:OD=CD.6.如图,在四边形ABCD中,AB=CD,AD=BC,点O为BD上任意一点,过点O的直线分别交AD,BC于M,N两点.求证:∠1=∠2.7.如图,AB∥CD,∠ABE=∠DCF.求证:∠E=∠F.8.如图,已知∠1+∠2=180°,∠DEF=∠A,∠BED=60°,求∠ACB的度数.9.如图,BE平分∠ABC,EB∥CD,∠ABC=2∠1.判断直线AD与BC的位置关系,并说明理由.10.已知:∠DEC+∠C=180°,DE平分∠ADF,∠F=∠1.求证:∠B=∠C.11.如图,已知∠1=∠2,AB∥EF,∠3=130°,求∠4的度数.12.如图,AB//CD,点C为直线BC,CD的交点,∠B+∠CDE=180°.求证:BC//DE.13.如图,已知AD∥BE,∠1=∠C,请判断∠A与∠E是否相等?并说明理由.14.如图,已知∠ABC=∠1,∠P=∠Q.试说明∠2=∠3.15.如图,已知∠A=∠F=40°,∠C=∠D=70°,求∠ABD,∠CED的度数.16.如图,A,C,F,D在同一直线上,AB∥DE,AB=DE,AF=DC,求证:BC∥EF.17.如图,∠1=60°,∠2=60°,∠3=100°。
要使AB∥EF,∠4应为多少度?说明理由。
18.如图,已知:AB∥CD,∠BAE=∠DCF,AC,EF相交于点M,有AM=CM.(1)求证:AE∥CF;(2)若AM平分∠FAE,求证:FE垂直平分AC.19.如图,在△ABC中,D,E,F分别是AB,AC,BC上的点,∠AED=∠C,EF//AB.求证:∠B=∠DEF.20.如图,∠1+∠2=180°,∠C=∠D.求证:AD∥BC.。
平行线的判定和性质经典题.
平行线的判定和性质经典题
一.选择题(共18小题)
1.如图所示,同位角共有()
2.如图所示,将一张长方形纸对折三次,则产生的折痕与折痕间的位置关系是()
3.下列说法中正确的个数为()
①不相交的两条直线叫做平行线
②平面内,过一点有且只有一条直线与已知直线垂直
③平行于同一条直线的两条直线互相平行
4.在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…
6.如图所示,AC⊥BC,DE⊥BC,CD⊥AB,∠ACD=40°,则∠BDE等于()
7.如图,AB∥CD,且∠BAP=60°﹣α,∠APC=45°+α,∠PCD=30°﹣α,则α=()
8.下列所示的四个图形中,∠1和∠2是同位角的是()
10.如图,AB∥CD∥EF,AF∥CG,则图中与∠A(不包括∠A)相等的角有()
11.如图所示,BE∥DF,DE∥BC,图中相等的角共有()
13.如图所示,DE∥BC,DC∥FG,则图中相等的同位角共有()
14.如图所示,AD∥EF∥BC,AC平分∠BCD,图中和α相等的角有()
15.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角是
16.把直线a沿水平方向平移4cm,平移后的像为直线b,则直线a与直线b之间的距离为17.(2009?宁德)在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是
B
18.(2004?烟台)4根火柴棒摆成如图所示的象形“口”字,平移火柴棒后,原图形变成的象形文字是()
B
二.填空题(共12小题)
19.已知∠α和∠β的两边互相平行,且∠α=60°,则∠β=_________.
20.(2004?西宁)如图,AD∥EG∥BC,AC∥EF,则图中与∠1相等的角(不含∠1)有_________个;若∠1=50°,则∠AHG=_________度.
21.(2009?永州)如图,直线a、b分别被直线c、b所截,如果∠1=∠2,那么∠3+∠4=
_________度.直线a、b分别被直线c、b所截.
22.(2010?抚顺)如图所示,已知a∥b,∠1=28°,∠2=25°,则∠3=_________度.
23.如图,已知BO平分∠CBA,CO平分∠ACB,MN∥BC,且过点O,若AB=12,AC=14,则△AMN的周长是_________.
24.(1)如图1,在长方形ABCD中,AB=3cm,BC=2cm,则AB与CD之间的距离为
_________cm;
(2)如图2,若∠_________=∠_________,则AD∥BC;
(3)如图3,DE∥BC,CD是∠ACB的平分线,∠ACB=50°,则∠EDC=_________度;
25.已知直线a∥b,点M到直线a的距离是5cm,到直线b的距离是3cm,那么直线a和直线b之间的距离为_________.26.如图,已知AB∥CD∥EF,BC∥AD,AC平分∠BAD,那么图中与∠AGE相等的角有_________个.
27.如图所示,AD∥EF∥BC,AC∥EN,则图中与∠1相等的角有_________个.
28.如图:直角△ABC中,AC=5,BC=12,AB=13,则内部五个小直角三角形的周长为_________.
29.如图,将网格中的三条线段沿网格线平移后组成一个首尾相接的三角形,至少需要移动_________格.
30.如图,面积为12cm2的△ABC沿BC方向平移至△DEF位置,平移的距离是边BC长的两倍,则图中的四边形ACED的面积是_________cm2.
平行线的判定和性质经典题
参考答案与试题解析
一.选择题(共18小题)
1.如图所示,同位角共有()
2.如图所示,将一张长方形纸对折三次,则产生的折痕与折痕间的位置关系是()
3.下列说法中正确的个数为()
①不相交的两条直线叫做平行线
②平面内,过一点有且只有一条直线与已知直线垂直
③平行于同一条直线的两条直线互相平行
4.在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…
6.如图所示,AC⊥BC,DE⊥BC,CD⊥AB,∠ACD=40°,则∠BDE等于()
7.如图,AB∥CD,且∠BAP=60°﹣α,∠APC=45°+α,∠PCD=30°﹣α,则α=()
8.下列所示的四个图形中,∠1和∠2是同位角的是()
10.如图,AB∥CD∥EF,AF∥CG,则图中与∠A(不包括∠A)相等的角有()
11.如图所示,BE∥DF,DE∥BC,图中相等的角共有()
13.如图所示,DE∥BC,DC∥FG,则图中相等的同位角共有()
14.如图所示,AD∥EF∥BC,AC平分∠BCD,图中和α相等的角有()
15.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角是
16.把直线a沿水平方向平移4cm,平移后的像为直线b,则直线a与直线b之间的距离为
17.(2009?宁德)在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是
B
18.(2004?烟台)4根火柴棒摆成如图所示的象形“口”字,平移火柴棒后,原图形变成的象形文字是()
B
二.填空题(共12小题)
19.已知∠α和∠β的两边互相平行,且∠α=60°,则∠β=60°或120°.
20.(2004?西宁)如图,AD∥EG∥BC,AC∥EF,则图中与∠1相等的角(不含∠1)有5个;若∠1=50°,则∠AHG=130度.
21.(2009?永州)如图,直线a、b分别被直线c、b所截,如果∠1=∠2,那么∠3+∠4=180度.直线a、b分别被直线c、b所截.
22.(2010?抚顺)如图所示,已知a∥b,∠1=28°,∠2=25°,则∠3=53度.
23.如图,已知BO平分∠CBA,CO平分∠ACB,MN∥BC,且过点O,若AB=12,AC=14,则△AMN的周长是26.
24.(1)如图1,在长方形ABCD中,AB=3cm,BC=2cm,则AB与CD之间的距离为2 cm;
(2)如图2,若∠1=∠2,则AD∥BC;
(3)如图3,DE∥BC,CD是∠ACB的平分线,∠ACB=50°,则∠EDC=25度;
25.已知直线a∥b,点M到直线a的距离是5cm,到直线b的距离是3cm,那么直线a和直线b之间的距离为2cm或8cm.
26.如图,已知AB∥CD∥EF,BC∥AD,AC平分∠BAD,那么图中与∠AGE相等的角有5个.
27.如图所示,AD∥EF∥BC,AC∥EN,则图中与∠1相等的角有5个.
28.如图:直角△ABC中,AC=5,BC=12,AB=13,则内部五个小直角三角形的周长为30.
29.如图,将网格中的三条线段沿网格线平移后组成一个首尾相
接的三角形,至少需要移动9格.。