一类f鞅的极大值不等式(英文)
- 格式:pdf
- 大小:195.40 KB
- 文档页数:6
概率统计概率论与数理统计词汇英汉对照表Aabsolute value 绝对值accept 接受acceptable region 接受域additivity 可加性adjusted 调整的alternative hypothesis 对立假设analysis 分析analysis of covariance 协方差分析analysis of variance 方差分析arithmetic mean 算术平均值association 相关性assumption 假设assumption checking 假设检验availability 有效度average 均值Bbalanced 平衡的band 带宽bar chart 条形图beta-distribution 贝塔分布between groups 组间的bias 偏倚binomial distribution 二项分布binomial test 二项检验Ccalculate 计算case 个案category 类别center of gravity 重心central tendency 中心趋势chi-square distribution 卡方分布chi-square test 卡方检验classify 分类cluster analysis 聚类分析coefficient 系数coefficient of correlation 相关系数collinearity 共线性column 列compare 比较comparison 对照components 构成,分量compound 复合的confidence interval 置信区间consistency 一致性constant 常数continuous variable 连续变量control charts 控制图correlation 相关covariance 协方差covariance matrix 协方差矩阵critical point 临界点critical value 临界值crosstab 列联表cubic 三次的,立方的cubic term 三次项cumulative distribution function 累加分布函数curve estimation 曲线估计Ddata 数据default 默认的definition 定义deleted residual 剔除残差density function 密度函数dependent variable 因变量description 描述design of experiment 试验设计deviations 差异df.(degree of freedom) 自由度diagnostic 诊断dimension 维discrete variable 离散变量discriminant function 判别函数discriminatory analysis 判别分析distance 距离distribution 分布D-optimal design D-优化设计Eeaqual 相等effects of interaction 交互效应efficiency 有效性eigenvalue 特征值equal size 等含量equation 方程error 误差estimate 估计estimation of parameters 参数估计estimations 估计量evaluate 衡量exact value 精确值expectation 期望expected value 期望值exponential 指数的exponential distributon 指数分布extreme value 极值Ffactor 因素,因子factor analysis 因子分析factor score 因子得分factorial designs 析因设计factorial experiment 析因试验fit 拟合fitted line 拟合线fitted value 拟合值fixed model 固定模型fixed variable 固定变量fractional factorial design 部分析因设计frequency 频数F-test F检验full factorial design 完全析因设计function 函数Ggamma distribution 伽玛分布geometric mean 几何均值group 组Hharmomic mean 调和均值heterogeneity 不齐性histogram 直方图homogeneity 齐性homogeneity of variance 方差齐性hypothesis 假设hypothesis test 假设检验Iindependence 独立independent variable 自变量independent-samples 独立样本index 指数index of correlation 相关指数interaction 交互作用interclass correlation 组内相关interval estimate 区间估计intraclass correlation 组间相关inverse 倒数的iterate 迭代Kkernal 核Kolmogorov-Smirnov test柯尔莫哥洛夫-斯米诺夫检验kurtosis 峰度Llarge sample problem 大样本问题layer 层least-significant difference 最小显著差数least-square estimation 最小二乘估计least-square method 最小二乘法level 水平level of significance 显著性水平leverage value 中心化杠杆值life 寿命life test 寿命试验likelihood function 似然函数likelihood ratio test 似然比检验linear 线性的linear estimator 线性估计linear model 线性模型linear regression 线性回归linear relation 线性关系linear term 线性项logarithmic 对数的logarithms 对数logistic 逻辑的lost function 损失函数Mmain effect 主效应matrix 矩阵maximum 最大值maximum likelihood estimation 极大似然估计mean squared deviation(MSD) 均方差mean sum of square 均方和measure 衡量media 中位数M-estimator M估计minimum 最小值missing values 缺失值mixed model 混合模型mode 众数model 模型Monte Carle method 蒙特卡罗法moving average 移动平均值multicollinearity 多元共线性multiple comparison 多重比较multiple correlation 多重相关multiple correlation coefficient 复相关系数multiple correlation coefficient 多元相关系数multiple regression analysis 多元回归分析multiple regression equation 多元回归方程multiple response 多响应multivariate analysis 多元分析Nnegative relationship 负相关nonadditively 不可加性nonlinear 非线性nonlinear regression 非线性回归noparametric tests 非参数检验normal distribution 正态分布null hypothesis 零假设number of cases 个案数Oone-sample 单样本one-tailed test 单侧检验one-way ANOVA 单向方差分析one-way classification 单向分类optimal 优化的optimum allocation 最优配制order 排序order statistics 次序统计量origin 原点orthogonal 正交的outliers 异常值Ppaired observations 成对观测数据paired-sample 成对样本parameter 参数parameter estimation 参数估计partial correlation 偏相关partial correlation coefficient 偏相关系数partial regression coefficient 偏回归系数percent 百分数percentiles 百分位数pie chart 饼图point estimate 点估计poisson distribution 泊松分布polynomial curve 多项式曲线polynomial regression 多项式回归polynomials 多项式positive relationship 正相关power 幂P-P plot P-P概率图predict 预测predicted value 预测值prediction intervals 预测区间principal component analysis 主成分分析proability 概率probability density function 概率密度函数probit analysis 概率分析proportion 比例Qqadratic 二次的Q-Q plot Q-Q概率图quadratic term 二次项quality control 质量控制quantitative 数量的,度量的quartiles 四分位数Rrandom 随机的random number 随机数random number 随机数random sampling 随机取样random seed 随机数种子random variable 随机变量randomization 随机化range 极差rank 秩rank correlation 秩相关rank statistic 秩统计量regression analysis 回归分析regression coefficient 回归系数regression line 回归线reject 拒绝rejection region 拒绝域relationship 关系reliability 可靠性repeated 重复的report 报告,报表residual 残差residual sum of squares 剩余平方和response 响应risk function 风险函数robustness 稳健性root mean square 标准差row 行run 游程run test 游程检验Ssample 样本sample size 样本容量sample space 样本空间sampling 取样sampling inspection 抽样检验scatter chart 散点图S-curve S形曲线separately 单独地sets 集合sign test 符号检验significance 显著性significance level 显著性水平significance testing 显著性检验significant 显著的,有效的significant digits 有效数字skewed distribution 偏态分布skewness 偏度small sample problem 小样本问题smooth 平滑sort 排序soruces of variation 方差来源space 空间spread 扩展square 平方standard deviation 标准离差standard error of mean 均值的标准误差standardization 标准化standardize 标准化statistic 统计量statistical quality control 统计质量控制std. residual 标准残差stepwise regression analysis 逐步回归stimulus 刺激strong assumption 强假设stud. deleted residual 学生化剔除残差stud. residual 学生化残差subsamples 次级样本sufficient statistic 充分统计量sum 和sum of squares 平方和summary 概括,综述Ttable 表t-distribution t分布test 检验test criterion 检验判据test for linearity 线性检验test of goodness of fit 拟合优度检验test of homogeneity 齐性检验test of independence 独立性检验test rules 检验法则test statistics 检验统计量testing function 检验函数time series 时间序列tolerance limits 容许限total 总共,和transformation 转换treatment 处理trimmed mean 截尾均值true value 真值t-test t检验two-tailed test 双侧检验Uunbalanced 不平衡的unbiased estimation 无偏估计unbiasedness 无偏性uniform distribution 均匀分布Vvalue of estimator 估计值variable 变量variance 方差variance components 方差分量variance ratio 方差比various 不同的vector 向量Wweight 加权,权重weighted average 加权平均值within groups 组内的ZZ score Z分数微积分第一章函数与极限Chapter1 Function and Limit集合 set元素 element子集 subset空集 empty set并集 union交集 intersection差集 difference of set基本集 basic set补集 complement set直积 direct product笛卡儿积 Cartesian product开区间 open interval闭区间 closed interval半开区间 half open interval有限区间 finite interval区间的长度 length of an interval无限区间 infinite interval领域 neighborhood领域的中心 centre of a neighborhood 领域的半径 radius of a neighborhood 左领域 left neighborhood右领域 right neighborhood映射 mappingX到Y的映射 mapping of X ontoY满射 surjection单射 injection一一映射 one-to-one mapping双射 bijection算子 operator变化 transformation函数 function逆映射 inverse mapping复合映射 composite mapping自变量 independent variable因变量 dependent variable定义域 domain函数值 value of function函数关系 function relation值域 range自然定义域 natural domain单值函数 single valued function多值函数 multiple valued function 单值分支 one-valued branch函数图形 graph of a function绝对值函数 absolute value符号函数 sigh function整数部分 integral part阶梯曲线 step curve当且仅当 if and only if(iff)分段函数 piecewise function上界 upper bound下界 lower bound有界 boundedness无界 unbounded函数的单调性 monotonicity of a function单调增加的 increasing单调减少的 decreasing单调函数 monotone function函数的奇偶性 parity(odevity) of a function对称 symmetry偶函数 even function奇函数 odd function函数的周期性 periodicity of a function周期 period反函数 inverse function直接函数 direct function复合函数 composite function中间变量 intermediate variable函数的运算 operation of function基本初等函数 basic elementary function初等函数 elementary function幂函数 power function指数函数 exponential function对数函数 logarithmic function三角函数 trigonometric function反三角函数 inverse trigonometric function常数函数 constant function双曲函数 hyperbolic function双曲正弦 hyperbolic sine双曲余弦 hyperbolic cosine双曲正切 hyperbolic tangent反双曲正弦 inverse hyperbolic sine反双曲余弦 inverse hyperbolic cosine反双曲正切 inverse hyperbolic tangent极限 limit数列 sequence of number收敛 convergence收敛于 a converge to a发散 divergent极限的唯一性 uniqueness of limits收敛数列的有界性 boundedness of a convergent sequence子列 subsequence函数的极限 limits of functions函数当x趋于x0时的极限 limit of functions as x approaches x0 左极限 left limit右极限 right limit单侧极限 one-sided limits水平渐近线 horizontal asymptote无穷小 infinitesimal无穷大 infinity铅直渐近线 vertical asymptote夹逼准则 squeeze rule单调数列 monotonic sequence高阶无穷小 infinitesimal of higher order低阶无穷小 infinitesimal of lower order同阶无穷小 infinitesimal of the same order整理:新少年特工 2007-10-8 18:37 回复此发言--------------------------------------------------------------------------------2 高等数学-翻译等阶无穷小 equivalent infinitesimal函数的连续性 continuity of a function增量 increment函数在x0连续 the function is continuous at x0左连续 left continuous右连续 right continuous区间上的连续函数 continuous function函数在该区间上连续 function is continuous on an interval不连续点 discontinuity point第一类间断点 discontinuity point of the first kind第二类间断点 discontinuity point of the second kind初等函数的连续性 continuity of the elementary functions定义区间 defined interval最大值 global maximum value (absolute maximum)最小值 global minimum value (absolute minimum)零点定理 the zero point theorem介值定理 intermediate value theorem第二章导数与微分Chapter2 Derivative and Differential速度 velocity匀速运动 uniform motion平均速度 average velocity瞬时速度 instantaneous velocity圆的切线 tangent line of a circle切线 tangent line切线的斜率 slope of the tangent line位置函数 position function导数 derivative可导 derivable函数的变化率问题 problem of the change rate of a function导函数 derived function左导数 left-hand derivative右导数 right-hand derivative单侧导数 one-sided derivatives在闭区间【a,b】上可导 is derivable on the closed interval [a,b]切线方程 tangent equation角速度 angular velocity成本函数 cost function边际成本 marginal cost链式法则 chain rule隐函数 implicit function显函数 explicit function二阶函数 second derivative三阶导数 third derivative高阶导数 nth derivative莱布尼茨公式 Leibniz formula对数求导法 log- derivative参数方程 parametric equation相关变化率 correlative change rata微分 differential可微的 differentiable函数的微分 differential of function自变量的微分 differential of independent variable微商 differential quotient间接测量误差 indirect measurement error绝对误差 absolute error相对误差 relative error第三章微分中值定理与导数的应用Chapter3 MeanValue Theorem of Differentials and the Application of Derivatives 罗马定理 Rolle’s theorem费马引理 Fermat’s lemma拉格朗日中值定理 Lagrange’s mean value theorem驻点 stationary point稳定点 stable point临界点 critical point辅助函数 auxiliary function拉格朗日中值公式 Lagrange’s mean value formula柯西中值定理 Cauchy’s mean value theorem洛必达法则 L’Hospital’s Rule0/0型不定式 indeterminate form of type 0/0不定式 indeterminate form泰勒中值定理 Taylor’s mean value theorem泰勒公式 Taylor formula余项 remainder term拉格朗日余项 Lagrange remainder term麦克劳林公式 Maclaurin’s formula佩亚诺公式 Peano remainder term凹凸性 concavity凹向上的 concave upward, cancave up凹向下的,向上凸的 concave downward’ concave down 拐点 inflection point函数的极值 extremum of function极大值 local(relative) maximum最大值 global(absolute) mximum极小值 local(relative) minimum最小值 global(absolute) minimum目标函数 objective function曲率 curvature弧微分 arc differential平均曲率 average curvature曲率园 circle of curvature曲率中心 center of curvature曲率半径 radius of curvature渐屈线 evolute渐伸线 involute根的隔离 isolation of root隔离区间 isolation interval切线法 tangent line method第四章不定积分Chapter4 Indefinite Integrals原函数 primitive function(antiderivative)积分号 sign of integration被积函数 integrand积分变量 integral variable积分曲线 integral curve积分表 table of integrals换元积分法 integration by substitution分部积分法 integration by parts分部积分公式 formula of integration by parts有理函数 rational function真分式 proper fraction假分式 improper fraction第五章定积分Chapter5 Definite Integrals曲边梯形 trapezoid with曲边 curve edge窄矩形 narrow rectangle曲边梯形的面积 area of trapezoid with curved edge积分下限 lower limit of integral积分上限 upper limit of integral积分区间 integral interval分割 partition积分和 integral sum可积 integrable矩形法 rectangle method积分中值定理 mean value theorem of integrals函数在区间上的平均值 average value of a function on an integvals 牛顿-莱布尼茨公式 Newton-Leibniz formula微积分基本公式 fundamental formula of calculus换元公式 formula for integration by substitution递推公式 recurrence formula反常积分 improper integral反常积分发散 the improper integral is divergent反常积分收敛 the improper integral is convergent无穷限的反常积分 improper integral on an infinite interval无界函数的反常积分 improper integral of unbounded functions绝对收敛 absolutely convergent第六章定积分的应用Chapter6 Applications of the Definite Integrals元素法 the element method面积元素 element of area平面图形的面积 area of a luane figure直角坐标又称“笛卡儿坐标 (Cartesian coordinates)”极坐标 polar coordinates抛物线 parabola椭圆 ellipse旋转体的面积 volume of a solid of rotation旋转椭球体 ellipsoid of revolution, ellipsoid of rotation曲线的弧长 arc length of acurve可求长的 rectifiable光滑 smooth功 work水压力 water pressure引力 gravitation变力 variable force第七章空间解析几何与向量代数Chapter7 Space Analytic Geometry and Vector Algebra向量 vector自由向量 free vector单位向量 unit vector零向量 zero vector相等 equal平行 parallel向量的线性运算 linear poeration of vector三角法则 triangle rule平行四边形法则 parallelogram rule交换律 commutative law结合律 associative law负向量 negative vector差 difference分配律 distributive law空间直角坐标系 space rectangular coordinates坐标面 coordinate plane卦限 octant向量的模 modulus of vector向量a与b的夹角 angle between vector a and b方向余弦 direction cosine方向角 direction angle向量在轴上的投影 projection of a vector onto an axis数量积,外积,叉积 scalar product,dot product,inner product 曲面方程 equation for a surface球面 sphere旋转曲面 surface of revolution母线 generating line轴 axis圆锥面 cone顶点 vertex旋转单叶双曲面 revolution hyperboloids of one sheet旋转双叶双曲面 revolution hyperboloids of two sheets柱面 cylindrical surface ,cylinder圆柱面 cylindrical surface准线 directrix抛物柱面 parabolic cylinder二次曲面 quadric surface椭圆锥面 dlliptic cone椭球面 ellipsoid单叶双曲面 hyperboloid of one sheet双叶双曲面 hyperboloid of two sheets旋转椭球面 ellipsoid of revolution椭圆抛物面 elliptic paraboloid旋转抛物面 paraboloid of revolution双曲抛物面 hyperbolic paraboloid马鞍面 saddle surface椭圆柱面 elliptic cylinder双曲柱面 hyperbolic cylinder抛物柱面 parabolic cylinder空间曲线 space curve空间曲线的一般方程 general form equations of a space curve空间曲线的参数方程 parametric equations of a space curve螺转线 spiral螺矩 pitch投影柱面 projecting cylinder投影 projection平面的点法式方程 pointnorm form eqyation of a plane法向量 normal vector平面的一般方程 general form equation of a plane两平面的夹角 angle between two planes点到平面的距离 distance from a point to a plane空间直线的一般方程 general equation of a line in space方向向量 direction vector直线的点向式方程 pointdirection form equations of a line方向数 direction number直线的参数方程 parametric equations of a line两直线的夹角 angle between two lines垂直 perpendicular直线与平面的夹角 angle between a line and a planes平面束 pencil of planes平面束的方程 equation of a pencil of planes行列式 determinant系数行列式 coefficient determinant第八章多元函数微分法及其应用Chapter8 Differentiation of Functions of Several Variables and Its Application 一元函数 function of one variable多元函数 function of several variables内点 interior point外点 exterior point边界点 frontier point,boundary point聚点 point of accumulation开集 openset闭集 closed set连通集 connected set开区域 open region闭区域 closed region有界集 bounded set无界集 unbounded setn维空间 n-dimentional space二重极限 double limit多元函数的连续性 continuity of function of seveal连续函数 continuous function不连续点 discontinuity point一致连续 uniformly continuous偏导数 partial derivative对自变量x的偏导数 partial derivative with respect to independent variable x 高阶偏导数 partial derivative of higher order二阶偏导数 second order partial derivative混合偏导数 hybrid partial derivative全微分 total differential偏增量 oartial increment偏微分 partial differential全增量 total increment可微分 differentiable必要条件 necessary condition充分条件 sufficient condition叠加原理 superpostition principle全导数 total derivative中间变量 intermediate variable隐函数存在定理 theorem of the existence of implicit function曲线的切向量 tangent vector of a curve法平面 normal plane向量方程 vector equation向量值函数 vector-valued function切平面 tangent plane法线 normal line方向导数 directional derivative梯度 gradient数量场 scalar field梯度场 gradient field向量场 vector field势场 potential field引力场 gravitational field引力势 gravitational potential曲面在一点的切平面 tangent plane to a surface at a point曲线在一点的法线 normal line to a surface at a point无条件极值 unconditional extreme values条件极值 conditional extreme values拉格朗日乘数法 Lagrange multiplier method拉格朗日乘子 Lagrange multiplier经验公式 empirical formula最小二乘法 method of least squares均方误差 mean square error第九章重积分Chapter9 Multiple Integrals二重积分 double integral可加性 additivity累次积分 iterated integral体积元素 volume element三重积分 triple integral直角坐标系中的体积元素 volume element in rectangular coordinate system 柱面坐标 cylindrical coordinates柱面坐标系中的体积元素 volume element in cylindrical coordinate system 球面坐标 spherical coordinates球面坐标系中的体积元素 volume element in spherical coordinate system 反常二重积分 improper double integral曲面的面积 area of a surface质心 centre of mass静矩 static moment密度 density形心 centroid转动惯量 moment of inertia参变量 parametric variable第十章曲线积分与曲面积分Chapter10 Line(Curve)Integrals and Surface Integrals对弧长的曲线积分 line integrals with respect to arc hength第一类曲线积分 line integrals of the first type对坐标的曲线积分 line integrals with respect to x,y,and z第二类曲线积分 line integrals of the second type有向曲线弧 directed arc单连通区域 simple connected region复连通区域 complex connected region格林公式 Green formula第一类曲面积分 surface integrals of the first type对面的曲面积分 surface integrals with respect to area有向曲面 directed surface对坐标的曲面积分 surface integrals with respect to coordinate elements 第二类曲面积分 surface integrals of the second type有向曲面元 element of directed surface高斯公式 gauss formula拉普拉斯算子 Laplace operator格林第一公式 Green’s first formula通量 flux散度 divergence斯托克斯公式 Stokes formula环流量 circulation旋度 rotation,curl第十一章无穷级数Chapter11 Infinite Series一般项 general term部分和 partial sum余项 remainder term等比级数 geometric series几何级数 geometric series公比 common ratio调和级数 harmonic series柯西收敛准则 Cauchy convergence criteria, Cauchy criteria for convergence 正项级数 series of positive terms达朗贝尔判别法 D’Alembert test柯西判别法 Cauchy test交错级数 alternating series绝对收敛 absolutely convergent条件收敛 conditionally convergent柯西乘积 Cauchy product函数项级数 series of functions发散点 point of divergence收敛点 point of convergence收敛域 convergence domain和函数 sum function幂级数 power series幂级数的系数 coeffcients of power series阿贝尔定理 Abel Theorem收敛半径 radius of convergence收敛区间 interval of convergence泰勒级数 Taylor series麦克劳林级数 Maclaurin series二项展开式 binomial expansion近似计算 approximate calculation舍入误差 round-off error,rounding error欧拉公式 Euler’s formula魏尔斯特拉丝判别法 Weierstrass test三角级数 trigonometric series振幅 amplitude角频率 angular frequency初相 initial phase矩形波 square wave谐波分析 harmonic analysis直流分量 direct component基波 fundamental wave二次谐波 second harmonic三角函数系 trigonometric function system傅立叶系数 Fourier coefficient傅立叶级数 Forrier series周期延拓 periodic prolongation正弦级数 sine series余弦级数 cosine series奇延拓 odd prolongation偶延拓 even prolongation傅立叶级数的复数形式 complex form of Fourier series第十二章微分方程Chapter12 Differential Equation解微分方程 solve a dirrerential equation常微分方程 ordinary differential equation偏微分方程 partial differential equation,PDE微分方程的阶 order of a differential equation微分方程的解 solution of a differential equation微分方程的通解 general solution of a differential equation初始条件 initial condition微分方程的特解 particular solution of a differential equation 初值问题 initial value problem微分方程的积分曲线 integral curve of a differential equation 可分离变量的微分方程 variable separable differential equation 隐式解 implicit solution隐式通解 inplicit general solution衰变系数 decay coefficient衰变 decay齐次方程 homogeneous equation一阶线性方程 linear differential equation of first order非齐次 non-homogeneous齐次线性方程 homogeneous linear equation非齐次线性方程 non-homogeneous linear equation常数变易法 method of variation of constant暂态电流 transient stata current稳态电流 steady state current伯努利方程 Bernoulli equation全微分方程 total differential equation积分因子 integrating factor高阶微分方程 differential equation of higher order悬链线 catenary高阶线性微分方程 linera differential equation of higher order自由振动的微分方程 differential equation of free vibration强迫振动的微分方程 differential equation of forced oscillation串联电路的振荡方程 oscillation equation of series circuit二阶线性微分方程 second order linera differential equation线性相关 linearly dependence线性无关 linearly independce二阶常系数齐次线性微分方程 second order homogeneour linear differential equation with constant coefficient二阶变系数齐次线性微分方程 second order homogeneous linear differential equation with variable coefficient特征方程 characteristic equation无阻尼自由振动的微分方程 differential equation of free vibration with zero damping 固有频率 natural frequency简谐振动 simple harmonic oscillation,simple harmonic vibration微分算子 differential operator待定系数法 method of undetermined coefficient共振现象 resonance phenomenon欧拉方程 Euler equation幂级数解法 power series solution数值解法 numerial solution勒让德方程 Legendre equation微分方程组 system of differential equations常系数线性微分方程组system of linera differential equations with constant coefficient线性代数Aadjont(adjugate) of matrix A A 的伴随矩阵augmented matrix A 的增广矩阵Bblock diagonal matrix 块对角矩阵block matrix 块矩阵basic solution set 基础解系CCauchy-Schwarz inequality 柯西-许瓦兹不等式characteristic equation 特征方程characteristic polynomial 特征多项式coffcient matrix 系数矩阵cofactor 代数余子式cofactor expansion 代数余子式展开column vector 列向量commuting matrices 交换矩阵consistent linear system 相容线性方程组Cramer’s rule 克莱姆法则Cross- product term 交叉项DDeterminant 行列式Diagonal entries 对角元素Diagonal matrix 对角矩阵Dimension of a vector space V 向量空间V的维数Eechelon matrix 梯形矩阵eigenspace 特征空间eigenvalue 特征值eigenvector 特征向量eigenvector basis 特征向量的基elementary matrix 初等矩阵elementary row operations 行初等变换Ffull rank 满秩fundermental set of solution 基础解系G[center]grneral solution 通解Gram-Schmidt process 施密特正交化过程Hhomogeneous linear equations 齐次线性方程组Iidentity matrix 单位矩阵inconsistent linear system 不相容线性方程组indefinite matrix 不定矩阵indefinit quatratic form 不定二次型infinite-dimensional space 无限维空间inner product 内积inverse of matrix A 逆矩阵Llinear combination 线性组合linearly dependent 线性相关linearly independent 线性无关linear transformation 线性变换lower triangular matrix 下三角形矩阵Mmain diagonal of matrix A 矩阵的主对角matrix 矩阵N[center]negative definite quaratic form 负定二次型negative semidefinite quadratic form 半负定二次型nonhomogeneous equations 非齐次线性方程组nonsigular matrix 非奇异矩阵nontrivial solution 非平凡解norm of vector V 向量V的范数normalizing vector V 规范化向量Oorthogonal basis 正交基orthogonal complement 正交补orthogonal decomposition 正交分解orthogonally diagonalizable matrix 矩阵的正交对角化orthogonal matrix 正交矩阵orthogonal set 正交向量组orthonormal basis 规范正交基orthonomal set 规范正交向量组[b]Ppartitioned matrix 分块矩阵positive definite matrix 正定矩阵positive definite quatratic form 正定二次型positive semidefinite matrix 半正定矩阵positive semidefinite quadratic form 半正定二次型Qquatratic form 二次型[center]R[/center]rank of matrix A 矩阵A的秩 r(A) reduced echelon matrix 最简梯形阵row vector 行向量Sset spanned by { } 由向量{ }所生成similar matrices 相似矩阵similarity transformation 相似变换singular matrix 奇异矩阵solution set 解集合standard basis 标准基standard matrix 标准矩阵Isubmatrix 子矩阵subspace 子空间symmetric matrix 对称矩阵Ttrace of matrix A 矩阵A 的迹 tr(A)transpose of A 矩阵A的转秩triangle inequlity 三角不等式trivial solution 平凡解Uunit vector 单位向量upper triangular matrix 上三角形矩阵Vvandermonde matrix 范得蒙矩阵vector 向量vector space 向量空间Zzero subspace 零子空间zero vector 零空间(本文已被浏览 133 次)。
鞅不等式证明鞅(martingale)是概率论和统计学中一个重要的概念,用于描述随机过程的性质。
鞅不等式(martingale inequality)是关于鞅序列的一个重要不等式,它在概率论和数学统计中有广泛的应用。
鞅不等式是由数学家以及统计学家于20世纪初提出的,具体说明了鞅序列的性质。
它在描述随机变量的发展过程中的不确定性方面发挥了重要作用。
鞅理论是概率论和统计学中非常重要的一个分支,通过对鞅序列的研究,我们可以了解和描述随机过程中的随机变量的动态变化过程。
鞅不等式的证明是基于条件期望的性质和性质的推导。
首先,我们需要了解条件期望的定义和性质。
条件期望是对随机变量的期望进行的条件化,即在给定某些条件的情况下进行的期望计算。
条件期望的性质包括线性性、无偏性、塔区性、蒙特卡洛性质等,这些性质是证明鞅不等式的基础。
设{Xn}是一个鞅序列,即对于任意的n,E(Xn|X1,X2,...,Xn-1)=Xn-1。
鞅不等式的基本形式为:P(max{X1,X2,...,Xn}≥a)≤E(1/(a-X0)), a>X0证明鞅不等式时,我们需要先证明涉及的条件期望E(Xn|X1,X2,...,Xn-1)=Xn-1的性质,这是鞅序列的基本性质。
然后,我们通过引入指示函数和条件期望性质,对不等式的左侧和右侧分别进行研究和推导。
首先,我们对左侧进行研究,利用条件期望的线性性和塔区性质,得到:P(Xn≥a,Xk=a)=E(1_{Xn≥a}Xn)=E(E(1_{Xn≥a}Xn|X1,X2,...,Xn-1))≤E(E(1_{Xn≥a}Xn|X1,X2,...,Xn-1)=E(1_{Xn≥a}E(Xn|X1,X2,...,Xn-1))=E(1_{Xn≥a}Xn-1)我们进一步进行推导,使用条件期望的蒙特卡洛性质,得到:E(1_{Xn≥a}Xn-1)=E(E(1_{Xn≥a}Xn-1|X1,X2,...,Xn-2))≤E(1_{Xn≥a}E(Xn-1|X1,X2,...,Xn-2))=E(1_{Xn≥a}Xn-2)我们继续类似的推理,得到:E(1_{Xn≥a}Xn-2)≤E(1_{Xn≥a}Xn-3)≤...≤E(1_{Xn≥a}X0)将这些推导的结果汇总,可以得到:P(Xn≥a,Xk=a)≤E(1_{Xn≥a}Xn-1)≤E(1_{Xn≥a}Xn-2)≤...≤E(1_{Xn≥a}X0)左侧的最大值不大于右侧的期望值,由此得到鞅不等式的最终结果:P(max{X1,X2,...,Xn}≥a)≤E(1/(a-X0))这就是鞅不等式的证明过程。
弱(下)鞅的一类Marshall型不等式冯德成;王英;李琴社【摘要】给出弱下鞅的Marshall型极大值不等式,同时将关于非负弱鞅{Sn,n≥1}的Marshall型极小值不等式推广到了{g(Sn),n≥1}的情形下,这里g是R上的不减凸函数.后者推广了相关文献中的结论.【期刊名称】《四川师范大学学报(自然科学版)》【年(卷),期】2018(041)004【总页数】5页(P495-499)【关键词】弱(下)鞅;Marshall型不等式;极大值不等式;极小值不等式【作者】冯德成;王英;李琴社【作者单位】西北师范大学数学与统计学院,甘肃兰州730070;西北师范大学数学与统计学院,甘肃兰州730070;西北师范大学数学与统计学院,甘肃兰州730070【正文语种】中文【中图分类】O211.41 预备知识本文中,{Xn,n≥1}或{Sn,n≥1}是定义在概率空间(Ω,F,P)上的随机变量序列.记S0=0,IA是集合A的示性函数.定义 1.1[1] 设{Sn,n≥1}是L1下的随机变量序列,如果对任意的1≤i<j<∞,有E[(Sj-Si)f(S1,…,Si)]≥0,其中f是任意使上述期望有定义且对每个变元均非降的函数,那么称{Sn,n≥1}是一个弱鞅(demimartingale).若进一步假定f是非负的,则称{Sn,n≥1}是一个弱下鞅(demisubmartingale).弱鞅的概念是由Newman等[1]提出的,他们证明了均值为零的PA序列的部分和序列是一个弱鞅.自此之后,很多学者对弱(下)鞅进行了研究,给出了弱(下)鞅的一些概率不等式及其应用结果[2-14].众所周知,对均值为零的平方可积随机变量X,有∀ε>0.Marshall[15]将上述不等式推广到如下形式:∀ε>0,(1)其中,EX1=0,E(Xi|X1,X2,…,Xi-1)=0 a.e.,i≥2,且在上述条件下,若令则{Sn,n≥1}是一个鞅.Mu等[16]在E|Xi|p<∞,i≥1,p≥2的条件下,将(1)式推广,得到如下形式的Marshall型不等式:∀ε>0,其中α是下列函数的最大值,h(x)=1-x+(1-x)2-qxq-1, x∈[0,1].之后,Hu等[17]将文献[16]中若干结论推广到弱鞅的情形下,得到了弱鞅的Marshall型概率不等式.受文献[16-17]的启发,本文将文献[17]中关于弱鞅{Sn,n≥1}的Marshall型极大值不等式推广到弱下鞅的情形,同时将文献[17]中关于非负弱鞅{Sn,n≥1}的Marshall 型极小值不等式推广到{g(Sn),n≥1}的情形下,这里g是R上的不减凸函数,后者推广和改进了文献[17]中的相关结果.2 弱下鞅的Marshall型极大值不等式令p>0,p≠1且记引理 2.1[18] 若E|X|p<∞,E|Y|q<∞,则(2)0<p<1.(3)引理 2.2[2] 设{Sn,n≥1}是一个弱下鞅,且满足Si∈L1,i≥1,则对任意的ε>0,有引理 2.3 设{Sn,n≥1}是一个弱下鞅,且满足ESn≤0,n≥1.若存在p>1,使得对所有的n≥1,有E|Sn|p<∞,则对任意的ε>0,有(4)证明由于对所有的n≥1,都有ESn≤0.若令Y=IΛ,则由(2)式和引理2.2得E[(Y-EY)Sn]=E[YSn-SnEY]=E[YSn]-EYESn≥E[SnIΛ]≥εP(Λ).显然有E|Y-EY|q=P(Λ)(1-P(Λ))q+(1-P(Λ))P(Λ)q.(6)结合(5)和(6)式,得证.定理 2.1 设{Sn,n≥1}是一个弱下鞅,且满足ESn≤0,n≥1.若存在p>1,使得对任意的n≥1,有0<E|Sn|p<∞,则对任意的ε>0,有这里M是下面方程的正解xq=(β-1)x+β, x∈(0,∞),(7)其中证明显然方程(7)只有一个正解.(i) 当时,结论显然成立.(ii) 当P(Λ)>0时,由引理2.3得[P(Λ)(1-P(Λ))q+(1-P(Λ))P(Λ)q]×上式两边同除以P(Λ)q,有若令则有因此即令u(x)=xq-(β-1)x-β,M是(7)式的正解.由于u″(x)=q(q-1)xq-2>0,x∈(0,+∞),故u(x)在[0,∞)上是一个凸函数,则对任意的x∈(0,M),有由于u(0)=-β<0,u(M)=0,故对任意的x∈(0,M),都有u(x)<0,因此M是使(4)式成立的最小值,则此结论成立.定理 2.2 设{Sn,n≥1}是一个弱下鞅,且满足ESn≤0,n≥1.若存在p≥2,使得对任意的n≥1,有E|Sn|p<∞,则对任意的ε>0,有(8)其中α是下列函数的最大值h(x)=1-x+(1-x)2-qxq-1, x∈[0,1].证明当p≥2时,有1<q≤2,显然h(x)在[0,1]上有最大值,记为α.因此运用不等式(4),有两边同时除以有再两边同时取p次方,得到αp-1(1-P(Λ))E|Sn|p≥εpP(Λ).故(8)式得证.定理 2.3 设{Sn,n≥1}是一个弱下鞅,且满足ESn≤0,n≥1.若存在δ>0,使得对任意的n≥1,有E|Sn|1+δ<∞,则对任意的ε≥E|Sn|,有(9)证明令则故当ε≥E|Sn|时,由引理2.2可得令1<p<1+δ,则|Sn|p≤|Sn|+|Sn|1+δ.由控制收敛定理有从而有此外则有在(4)式中令p→1,可得(1-P(Λ))E|Sn|≥εP(Λ),则(9)式得证.3 弱鞅的Marshall型极小值不等式下面将文献[17]中非负弱鞅{Sn,n≥1}的Marshall型极小值不等式推广到{g(Sn),n≥1}的情形下,这里g是R上的不减凸函数.令记引理 3.1[14] 设{Sn,n≥1}是一个弱鞅,g是R上的不减凸函数,使得对任意的i≥1,有E|g(Si)|<∞,则对任意的ε>0,n≥1,有引理 3.2 设{Sn,n≥1}是一个非负弱鞅,g是R上的不减凸函数,满足g(0)=0,若0<p<1,使得对任意的n≥1,有E|g(Sn)|p<∞,则对任意的ε>0,有证明由于{Sn,n≥1}是非负弱鞅,g是R上的不减凸函数且g(0)=0,故对任意的n≥1,有g(Sn)≥0.因此,令Y=IN,由(3)式和引理3.1,有E[|(Y-EY)g(Sn)|]=(10)结合(6)和(10)式,得证.注 3.1 在引理3.2的条件下,很容易得到上述不等式的一个上界(11)定理 3.1 设{Sn,n≥1}是一个非负弱鞅,g是R上的不减凸函数,且g(0)=0.若存在0<p<1,使得E[g(Sn)]p>0,n≥1,则对任意的ε>0,令有(12)当P(N)>0,(13)其中M1和M2均为方程(7)的正解,且M1≤M2.证明 (i) 当P(N)=0时,(12)式显然成立.(ii) 当P(N)>0时,由不等式(11)得[P(N)(1-P(N))q+(1-P(N))P(N)q]×两边同除以P(N)q,得(14)若令则有(15)因此(14)式等价于即(16)因为再由(3)式和{Sn,n≥1}的非负性,有故对ε>0和q<0,有用M1和M2来表示方程(7)的正解,其中M2≥M1,由于当q<0,β<1时,满足(16)式.故(13)式可以由(15)式直接得到.特别地,若M2=M1,则结论得证.若在定理3.1中取g(x)=x,则有下面的推论.推论 3.1 设{Sn,n≥1}是一个非负弱鞅,若存在0<p<1,使得E(Sn)p>0,n≥1,则对任意的ε>0,令有其中M1和M2均为方程(7)的正解,且M1≤M2.注 3.2 推论3.1即为文献[17]中的定理2.2.因此本文定理3.1是文献[17]中定理2.2的推广.致谢西北师范大学青年教师科研能力提升计划项目(NWNU-LKQN-11-2)对本文给予了资助,谨致谢意.参考文献[1] NEWMAN C M, WRIGHT A L. Associated random variables and martingale inequalities[J]. Zeitschrift Für Wahrscheinlichkeitstheorie und Verwandte Gebiete,1982,59(3):361-371.[2] CHRISTOFIDES T C. Maximal inequalities for demimartingales and a strong law of large numbers[J]. Statistics and ProbabilityLetters,2000,50(4):357-363.[3] CHRISTOFIDES T C. U-statistics on associated random variables[J]. J Statistical Planning and Inference,2004,119(1):1-15.[4] WANG J F. Maximal inequalities for associated random variables and demimartingales[J]. Statistics and Probability Letters,2004,66(3):347-354.[5] HU S H, WANG X J, YANG W Z, et al. The Hjek-Rènyi-type inequality for associated random variables[J]. Statistics and ProbabilityLetters,2009,79(7):884-888.[6] WANG X J, HU S H. Maximal inequalities for demimartingales and their applications[J]. Science in China:Mathematics,2009,A52(10):2207-2217. [7] WANG X J, PRAKASA RAO B L S, HU S H, et al. On some maximal inequalities for demimartingales and N-demimartingales based on concave Young functions[J]. J Mathematical Analysis and Applications,2012,396(2):434-440.[8] PRAKASA RAO B L S. On some maximal inequalities for demisubmartingales and N-demisupermart-ingales[J]. J Inequalities in Pure and Applied Mathematics,2007,8(4):112.[9] PRAKASA RAO B L S. Conditional independence, conditional mixing and conditional association[J]. Ann the Institute of Statistical Mathematics,2009,61(2):441-460.[10] PRAKASA RAO B L S. Remarks on maximal inequalities for nonnegative demisubmartingales[J]. Statistics and Probability Letters,2012,82(7):1388-1390.[11] 王学军,胡舒合. 弱鞅的极大值不等式及其应用[J]. 中国科学,2009,A39(4):489-499.[12] 胡舒合,杨文志,王学军,等. 关于N-弱鞅和弱鞅不等式的一个注记[J]. 系统科学与数学,2010,30(8):1052-1058.[13] DAI P P, SHEN Y, HU S H, et al. Some results for demimartingales and N-demimartingales[J]. J Inequalities and Applications,2014,2014(1):489-501.[14] 冯德成,张潇,周霖. 弱鞅的一类极小值不等式[J]. 山东大学学报(自然科学版),2017,52(8):65-69.[15] MARSHALL A W. A one-sided analog of Kolmogorov’s inequality[J].Ann Mathematical Statistics,1960,31(2):483-487.[16] MU J Y, MIAO Y. Generalizing the Marshall’s inequality[J]. Communications in Statistics Theory and Methods,2011,40(15):2809-2817.[17] HU S H, WANG X H, YANG W Z, et al. Some inequalities for demimartingales and N-demimartingales[J]. Statistics and Probability Letters,2012,82(2):232-239.[18] LIN Z Y, BAI Z D. Probability Inequalities[M]. Beijing:Science Press,2006.。
考研数学极值用到的不等式
在考研数学中,求解极值问题时常常会用到以下不等式:
1.拉格朗日乘数法(Lagrange Multiplier Method):在约束优化问题中,通过引入拉格朗日乘子来构造拉格朗日函数,并利用临界点求解极值。
2.泰勒公式(Taylor's Formula):在判断局部极值时,可以通过函数在某一点的泰勒展开,特别是二阶导数判据来分析极值性质。
如果一阶导数为0且二阶导数在该点大于0,则可能是局部最小值;若二阶导数小于0,则可能是局部最大值。
3.Jensen不等式:当处理某些期望或积分形式的函数极值问题时,可以借助Jensen不等式进行初步判断和推导。
4.均值不等式:包括算术-几何平均不等式、Holder不等式、Cauchy-Schwarz不等式等,这些不等式在证明或计算过程中经常用于估计函数值域或者确定极值的存在性。
5.KKT条件(Karush-Kuhn-Tucker Conditions):非线性规划问题中的约束优化问题也可以使用KKT条件来寻找可能的全局最优解或局部最优解。
6.不等式链(Inequality Chain):在一些复杂问题中,需要通过一系列不等式变换和应用已知的经典不等式(如AM-GM不等式、琴生不等式等)来缩小函数取值范围,进而找到极值点。
7.函数单调性的判定:根据函数的一阶导数判断函数的增减性,从而确定极大值或极小值的位置。
8.二重积分中的极值问题:可能需要用到格林定理、高斯积分以及相关的曲面积分理论,结合区域边界条件求解极值。
以上列举了考研数学中涉及求解极值问题时可能会用到的一些不等式和方法。
具体运用哪一种不等式取决于问题的具体类型和结构。
(0,2) 插值||(0,2) interpolation0#||zero-sharp; 读作零井或零开。
0+||zero-dagger; 读作零正。
1-因子||1-factor3-流形||3-manifold; 又称“三维流形”。
AIC准则||AIC criterion, Akaike information criterionAp 权||Ap-weightA稳定性||A-stability, absolute stabilityA最优设计||A-optimal designBCH 码||BCH code, Bose-Chaudhuri-Hocquenghem codeBIC准则||BIC criterion, Bayesian modification of the AICBMOA函数||analytic function of bounded mean oscillation; 全称“有界平均振动解析函数”。
BMO鞅||BMO martingaleBSD猜想||Birch and Swinnerton-Dyer conjecture; 全称“伯奇与斯温纳顿-戴尔猜想”。
B样条||B-splineC*代数||C*-algebra; 读作“C星代数”。
C0 类函数||function of class C0; 又称“连续函数类”。
CAT准则||CAT criterion, criterion for autoregressiveCM域||CM fieldCN 群||CN-groupCW 复形的同调||homology of CW complexCW复形||CW complexCW复形的同伦群||homotopy group of CW complexesCW剖分||CW decompositionCn 类函数||function of class Cn; 又称“n次连续可微函数类”。
Cp统计量||Cp-statisticC。
微积分术语中英文对照A、B:Absolute convergence :绝对收敛Absolute extreme values :绝对极值Absolutemaximum and minimum :绝对极大与极小Absolute value:绝对值Absolute value function :绝对值函数Acceleration:加速度Antiderivative :原函数,反导数Approximate integration:近似积分(法)Approximation :逼近法bydifferentials:用微分逼近linear :线性逼近法by Simpson’s Rule :Simpson法则逼近法by the Trapezoidal Rule :梯形法则逼近法Arbitrary constant :任意常数Arc length :弧长Area :面积under a curve :曲线下方之面积between curves :曲线间之面积in polar coordinates:极坐标表示之面积ofasector of a circle:扇形之面积of a surface of a revolution :旋转曲面之面积Asymptote :渐近线horizontal :水平渐近线slant:斜渐近线vertical :垂直渐近线Averagespeed :平均速率Average velocity :平均速度Axes,coordinate:坐标轴Axesofellipse :椭圆之对称轴Binomial series:二项式级数Binomial theorem:二项式定理C:Calculus :微积分differential:微分学integral:积分学Cartesian coordinates:笛卡儿坐标一般指直角坐标Cartesian coordinatessystem:笛卡儿坐标系Cauch’s Mean ValueTheorem:柯西中值定理Chain Rule:链式法则Circle :圆Circular cylinder :圆柱体,圆筒Closedinterval:闭区间Coefficient :系数Composition of function :复合函数Compound interest :复利Concavity:凹性Conchoid:蚌线Conditionally convergent:条件收敛Cone:圆锥Constant function :常数函数Constant of integration:积分常数Continuity :连续性atapoint :在一点处之连续性of afunction:函数之连续性on an interval:在区间之连续性from the left:左连续from the right:右连续Continuous function :连续函数Convergence:收敛interval of:收敛区间radius of :收敛半径Convergent sequence :收敛数列series :收敛级数Coordinates:坐标Cartesian :笛卡儿坐标cylindrical:柱面坐标polar :极坐标rectangular :直角坐标spherical:球面坐标Coordinateaxes:坐标轴Coordinate planes :坐标平面Cosine function:余弦函数Criticalpoint:临界点Cubicfunction:三次函数Curve :曲线Cylinder:圆筒,圆柱体,柱面Cylindrical Coordinates :圆柱坐标D:Decreasing function :递减函数Decreasing sequence :递减数列Definiteintegral:定积分Degree of a polynomial:多项式之次数Density :密度Derivative :导数of a composite function:复合函数之导数of a constant function :常数函数之导数directional :方向导数domainof:导数之定义域of exponential function :指数函数之导数higher :高阶导数partial:偏导数of a powerfunction :幂函数之导数of apowerseries:羃级数之导数of a product:积之导数of a quotient :商之导数asa rate of change :导数当作变化率right—hand :右导数second:二阶导数as theslope of a tangent:导数看成切线之斜率Determinant :行列式Differentiablefunction :可导函数Differential :微分Differential equation :微分方程partial:偏微分方程Differentiation:求导法implicit :隐求导法partial :偏微分法term by term :逐项求导法Directional derivatives :方向导数Discontinuity :不连续性Disk method:圆盘法Distance:距离Divergence:发散Domain:定义域Dotproduct :点积Double integral:二重积分change of variable in:二重积分之变数变换in polar coordinates :极坐标二重积分E、F、G:Ellipse :椭圆Ellipsoid :椭圆体Epicycloid :外摆线Equation:方程式Even function:偶函数Expected Valued :期望值Exponential Function:指数函数Exponents , laws of:指数率Extremevalue:极值ExtremeValueTheorem :极值定理Factorial :阶乘First DerivativeTest :一阶导数试验法First octant :第一卦限Focus :焦点Fractions:分式Function :函数FundamentalTheorem ofCalculus:微积分基本定理Geometricseries:几何级数Gradient:梯度Graph :图形Green Formula :格林公式H:Half-angle formulas :半角公式Harmonic series:调和级数Helix:螺旋线Higher Derivative:高阶导数Highermathematics高等数学Horizontal asymptote:水平渐近线Horizontalline :水平线Hyperbola:双曲线Hyperboloid :双曲面I:Implicit differentiation:隐求导法Implicit function :隐函数Improper integral :反常积分, 广义积分Increasing,Decreasing Test :递增或递减试验法Increment :增量Increasing Function :增函数Indefinite integral :不定积分Independentvariable:自变量Indeterminatefrom :不定型Inequality :不等式Infinite point:无穷极限点Infinite series :无穷级数Inflectionpoint :反曲点Instantaneous velocity:瞬时速度Integer:整数Integral :积分Integrand :被积函数Integration:积分Integration by part:分部积分法Intercepts :截距Intermediatevalue of Theorem:中值定理Interval:区间Inversefunction :反函数Inversetrigonometricfunction :反三角函数Iterated integral :逐次积分L:Laplace transform :Laplace 变换Law ofsines:正弦定理Law ofCosines :余弦定理Leastupper bound :最小上界Left-handderivative:左导数Left—handlimit:左极限Lemniscate :双钮线Length :长度Levelcurve :等高线L'Hospital's rule: 洛必达法则Limacon :蚶线Limit :极限Linear approximation:线性近似Linear equation :线性方程式Linear function:线性函数Linearity :线性Linearization:线性化Line in theplane :平面上之直线Line in space:空间之直线Local extreme :局部极值Local maximumand minimum :局部极大值与极小值Logarithm:对数Logarithmic function:对数函数M、N、O:Maximumandminimum values :极大与极小值Mean Value Theorem:均值定理Multipleintegrals :重积分Multiplier :乘子Natural exponential function:自然指数函数Natural logarithmfunction:自然对数函数Natural number:自然数Normal line:法线Normal vector:法向量Number:数Octant :卦限Oddfunction:奇函数One-sided limit:单边极限Open interval :开区间Optimization problems :最佳化问题Order :阶Ordinary differential equation:常微分方程Origin :原点Orthogonal :正交的P、Q:Parabola:拋物线Parabolic cylinder:抛物柱面Paraboloid:抛物面Parallelepiped:平行六面体Parallel lines :平行线Parameter :参数Partial derivative:偏导数Partial differential equation:偏微分方程Partialfractions:部分分式Partial integration:部分积分Partition :分割Period:周期Periodic function:周期函数Perpendicular lines :垂直线Piecewise defined function:分段定义函数Plane:平面Point of inflection:反曲点Polar axis :极轴Polar coordinate:极坐标Polarequation:极方程式Pole :极点Polynomial:多项式Positive angle :正角Point—slopeform:点斜式Power function:幂函数Product:积Quadrant :象限QuotientLaw of limit :极限的商定律Quotient Rule:商定律R:Radius of convergence :收敛半径Rangeof a function :函数的值域Rate of change :变化率Rational function:有理函数Rationalizing substitution :有理代换法Rational number:有理数Real number:实数Rectangular coordinates:直角坐标Rectangular coordinate system :直角坐标系Relativemaximum and minimum :相对极大值与极小值Revenue function :收入函数Revolution ,solid of :旋转体Revolution,surface of:旋转曲面Riemann Sum:黎曼和Right-handderivative:右导数Right—hand limit:右极限Root :根S:Saddlepoint :鞍点Scalar:纯量Secant line:割线Secondderivative :二阶导数SecondDerivative Test :二阶导数试验法Second partialderivative:二阶偏导数Sector :扇形Sequence:数列Series:级数Set :集合Shell method:剥壳法Sinefunction:正弦函数Singularity :奇点Slant,Obliqueasymptote :斜渐近线Slope:斜率Slope-intercept equationof a line :直线的斜截式Smooth curve:平滑曲线Smoothsurface :平滑曲面Solid of revolution :旋转体Space :空间Speed :速率Spherical coordinates :球面坐标Squeeze Theorem:夹挤定理Stepfunction :阶梯函数Strictlydecreasing:严格递减Strictly increasing :严格递增Substitutionrule: 替代法则Sum:和Surface :曲面Surface integral :面积分Surface of revolution :旋转曲面Symmetry :对称T:Tangent function:正切函数Tangentline:切线Tangentplane :切平面Tangentvector :切向量Taylor'sformula :泰勒公式Totaldifferential :全微分Trigonometric function:三角函数Trigonometric integrals :三角积分Trigonometric substitutions:三角代换法Tripe integrals :三重积分V、X、Z:Valueof function:函数值Variable :变量Vector :向量Velocity:速度Verticalasymptote :垂直渐近线Volume :体积X—axis:x轴X —coordinate :x坐标X -intercept :x截距Zerovector:函数的零点Zeros of a polynomial :多项式的零点。
鞅论中两权(p,q)极大不等式两权(p,q)极大不等式,又称最大权不等式,是最古老也是最有通用性的数学不等式之一。
它也被称为势能不等式或权能不等式,是数理统计学中的一种不等式,描述的是一个总量的最大权重表示两个不同子集的和的最大值。
概括地说,两权(p,q)极大不等式表示如下:1. p+q≤12. p≥0,q≥03. p,q不能都为0一般来说,p表示一个子集的权重,当p=1时表示全体成员都是这个子集的成员;q表示另一个子集的权重,当q=1时表示全体成员都是另一个子集的成员;第一条不等式表明总权重不能超过1;第二条不等式和第三条不等式表明p和q都必须大于等于0,也就是权重不能为负数。
两权(p,q)极大不等式的实际用途:1. 用于估算统计量的参数两权(p,q)极大不等式可以用来估算某些统计量的参数,例如,估计事件的发生概率、群体的平均值以及f值等。
采用权重作为约束条件,可以将要估算的参数约束到给定的范围内,从而使得估算所得到的参数更加精确。
2.用于数据分析在数据分析中,两权(p,q)极大不等式可以用来确定变量之间的关系,比如,依据相关系数和权重的比较,可以判断变量是否相关;或者用来比较两个组的平均数,以及变量之间的相关性等。
3. 用于多元统计分析两权(p,q)极大不等式也被广泛应用于多元统计分析中,通常用于限制分析方法和回归方程的约束变量,以免出现明显的失误。
4. 用于多元回归研究两权(p,q)极大不等式可以用于模型拟合,以研究和预测变量之间的关系,以及相关变量的影响力。
总结:两权(p,q)极大不等式是一种最古老也是最有通用性的数学不等式,可用来估算总量的最大权重,用于数据分析、多元统计分析以及多元回归研究。
p表示一个子集的权重,q表示另一个子集的权重,p,q都必须大于等于0,且p+q≤1。
微积分英⽂词汇,⾼数名词中英⽂对照,⾼等数学术语英语翻译⼀览V、X、Z:Value of function :函数值Variable :变数Vector :向量Velocity :速度Vertical asymptote :垂直渐近线Volume :体积X-axis :x轴x-coordinate :x坐标x-intercept :x截距Zero vector :函数的零点Zeros of a polynomial :多项式的零点T:Tangent function :正切函数Tangent line :切线Tangent plane :切平⾯Tangent vector :切向量Total differential :全微分Trigonometric function :三⾓函数Trigonometric integrals :三⾓积分Trigonometric substitutions :三⾓代换法Tripe integrals :三重积分S:Saddle point :鞍点Scalar :纯量Secant line :割线Second derivative :⼆阶导数Second Derivative Test :⼆阶导数试验法Second partial derivative :⼆阶偏导数Sector :扇形Sequence :数列Series :级数Set :集合Shell method :剥壳法Sine function :正弦函数Singularity :奇点Slant asymptote :斜渐近线Slope :斜率Slope-intercept equation of a line :直线的斜截式Smooth curve :平滑曲线Smooth surface :平滑曲⾯Solid of revolution :旋转体Space :空间Speed :速率Spherical coordinates :球⾯坐标Squeeze Theorem :夹挤定理Step function :阶梯函数Strictly decreasing :严格递减Strictly increasing :严格递增Sum :和Surface :曲⾯Surface integral :⾯积分Surface of revolution :旋转曲⾯Symmetry :对称R:Radius of convergence :收敛半径Range of a function :函数的值域Rate of change :变化率Rational function :有理函数Rationalizing substitution :有理代换法Rational number :有理数Real number :实数Rectangular coordinates :直⾓坐标Rectangular coordinate system :直⾓坐标系Relative maximum and minimum :相对极⼤值与极⼩值Revenue function :收⼊函数Revolution , solid of :旋转体Revolution , surface of :旋转曲⾯Riemann Sum :黎曼和Riemannian geometry :黎曼⼏何Right-hand derivative :右导数Right-hand limit :右极限Root :根P、Q:Parabola :拋物线Parabolic cylinder :抛物柱⾯Paraboloid :抛物⾯Parallelepiped :平⾏六⾯体Parallel lines :并⾏线Parameter :参数Partial derivative :偏导数Partial differential equation :偏微分⽅程Partial fractions :部分分式Partial integration :部分积分Partiton :分割Period :周期Periodic function :周期函数Perpendicular lines :垂直线Piecewise defined function :分段定义函数Plane :平⾯Point of inflection :反曲点Polar axis :极轴Polar coordinate :极坐标Polar equation :极⽅程式Pole :极点Polynomial :多项式Positive angle :正⾓Point-slope form :点斜式Power function :幂函数Product :积Quadrant :象限Quotient Law of limit :极限的商定律Quotient Rule :商定律M、N、O:Maximum and minimum values :极⼤与极⼩值Mean Value Theorem :均值定理Multiple integrals :重积分Multiplier :乘⼦Natural exponential function :⾃然指数函数Natural logarithm function :⾃然对数函数Natural number :⾃然数Normal line :法线Normal vector :法向量Number :数Octant :卦限Odd function :奇函数One-sided limit :单边极限Open interval :开区间Optimization problems :最佳化问题Order :阶Ordinary differential equation :常微分⽅程Origin :原点Orthogonal :正交的L:Laplace transform :Leplace 变换Law of Cosines :余弦定理Least upper bound :最⼩上界Left-hand derivative :左导数Left-hand limit :左极限Lemniscate :双钮线Length :长度Level curve :等⾼线L'Hospital's rule :洛必达法则Limacon :蚶线Limit :极限Linear approximation:线性近似Linear equation :线性⽅程式Linear function :线性函数Linearity :线性Linearization :线性化Line in the plane :平⾯上之直线Line in space :空间之直线Lobachevski geometry :罗巴切夫斯基⼏何Local extremum :局部极值Local maximum and minimum :局部极⼤值与极⼩值Logarithm :对数Logarithmic function :对数函数I:Implicit differentiation :隐求导法Implicit function :隐函数Improper integral :瑕积分Increasing/Decreasing Test :递增或递减试验法Increment :增量Increasing Function :增函数Indefinite integral :不定积分Independent variable :⾃变数Indeterminate from :不定型Inequality :不等式Infinite point :⽆穷极限Infinite series :⽆穷级数Inflection point :反曲点Instantaneous velocity :瞬时速度Integer :整数Integral :积分Integrand :被积分式Integration :积分Integration by part :分部积分法Intercepts :截距Intermediate value of Theorem :中间值定理Interval :区间Inverse function :反函数Inverse trigonometric function :反三⾓函数Iterated integral :逐次积分H:Higher mathematics ⾼等数学/⾼数E、F、G、H:Ellipse :椭圆Ellipsoid :椭圆体Epicycloid :外摆线Equation :⽅程式Even function :偶函数Expected Valued :期望值Exponential Function :指数函数Exponents , laws of :指数率Extreme value :极值Extreme Value Theorem :极值定理Factorial :阶乘First Derivative Test :⼀阶导数试验法First octant :第⼀卦限Focus :焦点Fractions :分式Function :函数Fundamental Theorem of Calculus :微积分基本定理Geometric series :⼏何级数Gradient :梯度Graph :图形Green Formula :格林公式Half-angle formulas :半⾓公式Harmonic series :调和级数Helix :螺旋线Higher Derivative :⾼阶导数Horizontal asymptote :⽔平渐近线Horizontal line :⽔平线Hyperbola :双曲线Hyper boloid :双曲⾯D:Decreasing function :递减函数Decreasing sequence :递减数列Definite integral :定积分Degree of a polynomial :多项式之次数Density :密度Derivative :导数of a composite function :复合函数之导数of a constant function :常数函数之导数directional :⽅向导数domain of :导数之定义域of exponential function :指数函数之导数higher :⾼阶导数partial :偏导数of a power function :幂函数之导数of a power series :羃级数之导数of a product :积之导数of a quotient :商之导数as a rate of change :导数当作变率right-hand :右导数second :⼆阶导数as the slope of a tangent :导数看成切线之斜率Determinant :⾏列式Differentiable function :可导函数Differential :微分Differential equation :微分⽅程partial :偏微分⽅程Differentiation :求导法implicit :隐求导法partial :偏微分法term by term :逐项求导法Directional derivatives :⽅向导数Discontinuity :不连续性Disk method :圆盘法Distance :距离Divergence :发散Domain :定义域Dot product :点积Double integral :⼆重积分change of variable in :⼆重积分之变数变换in polar coordinates :极坐标⼆重积分C:Calculus :微积分differential :微分学integral :积分学Cartesian coordinates :笛卡⼉坐标⼀般指直⾓坐标Cartesian coordinates system :笛卡⼉坐标系Cauch’s Mean Value Theorem :柯西均值定理Chain Rule :连锁律Change of variables :变数变换Circle :圆Circular cylinder :圆柱Closed interval :封闭区间Coefficient :系数Composition of function :函数之合成Compound interest :复利Concavity :凹性Conchoid :蚌线Cone :圆锥Constant function :常数函数Constant of integration :积分常数Continuity :连续性at a point :在⼀点处之连续性of a function :函数之连续性on an interval :在区间之连续性from the left :左连续from the right :右连续Continuous function :连续函数Convergence :收敛interval of :收敛区间radius of :收敛半径Convergent sequence :收敛数列series :收敛级数Coordinate:s:坐标Cartesian :笛卡⼉坐标cylindrical :柱⾯坐标polar :极坐标rectangular :直⾓坐标spherical :球⾯坐标Coordinate axes :坐标轴Coordinate planes :坐标平⾯Cosine function :余弦函数Critical point :临界点Cubic function :三次函数Curve :曲线Cylinder:圆柱Cylindrical Coordinates :圆柱坐标A、B:Absolute convergence :绝对收敛Absolute extreme values :绝对极值Absolute maximum and minimum :绝对极⼤与极⼩Absolute value :绝对值Absolute value function :绝对值函数Acceleration :加速度Antiderivative :反导数Approximate integration :近似积分Approximation :逼近法by differentials :⽤微分逼近linear :线性逼近法by Simpson’s Rule :Simpson法则逼近法by the Trapezoidal Rule :梯形法则逼近法Arbitrary constant :任意常数Arc length :弧长Area :⾯积under a curve :曲线下⽅之⾯积between curves :曲线间之⾯积in polar coordinates :极坐标表⽰之⾯积of a sector of a circle :扇形之⾯积of a surface of a revolution :旋转曲⾯之⾯积Asymptote :渐近线horizontal :⽔平渐近线slant :斜渐近线vertical :垂直渐近线Average speed :平均速率Average velocity :平均速度Axes, coordinate :坐标轴Axes of ellipse :椭圆之轴Binomial series :⼆项级数关键词:微积分英⽂,⾼等数学英⽂翻译,⾼数英语词汇。
The Extreme V alue TheoremFor a function R D f →:, we definef(D)={y in R|y=f(x) for some x in D}and call ()f D the image(象) of R D f →:. We say that a function R D f →:attains a maximum value(最大值) provided that its image ()f D has a maximum; that is, there is a point 0x in D such that0()()f x f x ≤ for all x in D .We will call such a point in D a maximizer(最大值点) of the function R D f →:. Similarly , the function R D f →:is said to attain a minimum value(最小值) provided that its image ()f D has a minimum; a point in D at which this minimum value is attained is called a minimizer(最小值点) of R D f →:.In general, no assertion can be made concerning the existence of a minimum or maximum value for a function R D f →:. However, in the case when the domain [,]D a b = and the function R D f →:is continuous, we have the following important theorem.THEOREM 3.4 The Extreme Value Theorem(最值定理) Suppose that the function R b a f →],[:is continuous. Then R b a f →],[:attains both a minimum or maximum value.In order to prove this theorem, it is convenient first to prove a weaker result.LEMMA 3.5 Suppose that the function R b a f →],[:is continuous. Then the image of R b a f →],[:is be bounded above(有上界的); that is, there is a number M such that()f x M ≤ for all x in DProof : We will argue by contradiction. Assume there is no such number M .Let n be a natural number. Then it is not true that()f x n ≤ for all x in [,]a b .Thus, there is a point x in [,]a b at which ()f x n > . Choose such a point and label it n x . This defines a sequence {}n x in [,]a b with the property that ()n f x n >for every natural number n . We can employ the Bolzano-Weierstrass Theorem to find a sub-sequence {}k n x of {}n x that converges to a point 0x in [,]a b . Since the function R b a f →],[: is continuous at 0x , the image sequence {()}k n f x converges to 0()f x . This contradicts the unboundedness of the sequence )}({k n x f . This contradictionproves that the image of R b a f →],[: is bounded above.Define ([,])S f a b =. Then S is a nonempty set of real numbers that, by the preceding lemma, is bounded above. According to the Completeness Axiom, S has a supremum(上确界). Define sup c S =. It is necessary to find a point x in [,]a b at which ()c f x =Let n be a natural number. Then the number 1/c n -is smaller than c , and is therefore not an upper bound for the set S . Thus there is a point x in [,]a b at which ()1/f x c n >-. Choose such a point and label it n x . From this choice and from the fact that c is an upper bound for S , we see that 1/()n c n f x c -<≤ for every natural number n . Hence the sequence {()}n f x converges to c.The Bolzano-Weierstrass Theorem asserts that there is a subsequence {}k n x of {}n x that converges to a point 0x in [,]a b . Since R b a f →],[:is continuous at 0x , {()}k n f x converges to 0()f x . But {()}k n f x is a subsequenceof {()}n f x , so 0()c f x =. The point 0x is a maximizer of the function R b a f →],[:.To complete the proof, we observe that the function ,[:is also continuous. Consequently, using what we have just f→-]baRproven, we may select a point in[,]-],[:attains aaa b at which Rbf→maximum value, and at this point the function R,[:attains a]baf→minimum value.If one examines the proofs of the preceding lemma and theorem, one sees that the only property of the domain of the function that was used was that each sequence in[,]a b had a subsequence that converged to a point in[,]a b. This property is so important that it deserves to be singled out.DEFINITION A set K of real numbers is said to be compact(紧的) provided that every sequence in k has a subsequence that converges to a point in K.In this new terminology, the Bolzano-Weierstrass Theorem is simply the assertion that if a and b are numbers such that a b<, then the set[,]a b is compact.THEOREM 3.6Let K be a compact nonempty set of real numbers and suppose that the function RKf→:attains:is continuous. Then Rf→Kboth a minimum value or maximum value.Proof Exercise.。