一类时标上的Opial型不等式
- 格式:pdf
- 大小:353.54 KB
- 文档页数:7
【高二学习指导】高二数学不等式的解法讲解不等式是高二学法导引本节要求在熟练掌握一元一次、一元二次不等式的解法的基础上,会解有理不等式和含绝对值的不等式及其他的不等式.关键要善于根据有关性质或定理,把它等价变形为一元一次、一元二次不等式(组).必须注意的是,每一步变形,都应是不等式的等价变形.因此,在解不等式中,“一元一次、一元二次不等式的解法是基础,等价变形是灵魂”.解高次不等式,常用数轴标根法;解含参数的不等式,要注意分类讨论,且分类讨论后的解集一般要分别写出;用零点分段法求含绝对值不等式的解集时,最后应把各段的解集合并.知识要点精讲2.高次不等式的解法解简单的高次不等式,应对所给不等式进行同解变形,变为一边为0,另一边为若干个一次因式之积的形式:(4)含有两个或两个以上绝对值符号的不等式,可用“找零点分区间讨论”的方法即零点分段法求解.思维整合【重点】本节的重点是有理不等式和含绝对值不等式的解法,其基础又是一元一次、一元二次不等式的解法.学习时要深刻理解不等式的等价变形的本质,熟练掌握一元一次、一元二次不等式的解法,只有这样,解题时才能灵活自如.【难点】本节的难点是解含有参数的不等式.由于参数的取值不同,会导致解集的形式的不同,所以应对参数的取值进行分类讨论.通常根据参数的取值对最高次项的系数的符号,根与根的大小以及不等号的影响来分类讨论.【易错点】 1.不等式的变形过程不是等价变形的过程;2.对于含有参数的不等式,不能正确合理地进行分类讨论.精典例题再现(2)对应的一元二次方程是否有实根与k的值有关,通过对判别式Δ的值的分析可求解.点拨解一元二次不等式的一般步骤可概括为:(1)判断其对应的方程是否有根,若有,则求出根;(2)判断根的大小关系;对于含有多个绝对值的不等式,常依据每个绝对值为零的点,将整个实数集划分为若干个区间,然后在每个区间内,通过讨论去掉绝对值符号,求出相应的解,最后求出所有解集的并集.这种方法被称之为零点分段法.求解时不能遗漏了各区间的端点的值.例4 (1)解不等式x+1-x-2<1;(2)若关于x的不等式x+1+x-2>k的解集为R,求k的取值范围.[解析] 本例中的不等式具有鲜明的几何特征,可以依据绝对值的几何意义来求解.[解] (1)∵x+1-x-2表示数轴上实数x对应的点到-1对应的点的距离与到2对应的点的距离之差(如图6-4-1).易知,当x=1时,x+1-x-2=1;若x>1时,x+1-x-2>1;当x<1时,x+1-x-2<1.因此,原不等式的解集为{xx<1}.(2)∵x+1+x-2表示数轴上实数x对应的点到-1对应点的距离与到2对应的点的距离之和.由图6-4-1知,当-1≤x≤2时,x+1+x-2=3,而当x<-1或x>2时,x+1+x-2>3,所以x+1+x-2的最小值为3.因此,当且仅当k<3时,不等式x+1+x-2>k的解集为R.故k的取值范围是(-∞,3).点拨对形如x-a+x-bc的不等式,由于它们分别表示数轴上的点x到a、b点的距离之和或距离之差,因此可利用其几何意义来求解.此外,还可以用零点分段法求解.涉及此类不等式的选择题、填空题用前者求解更方便.[解析] 先对所给不等式作等价变形,然后用数轴标根法可解.点拨数轴标根法是解高次不等式和分式不等式(统称为有理不等式)的最简明的方法.其一般步骤是:先将不等式化成标准形式,即一端为0,一端为若干个一次因式之积的形式,然后在数轴上依次标出各因式的根(不必计较长度单位是否一致),从最右上方开始画曲线,自右至左依次穿过各根对应的点,当曲线位于数轴上方时,表示各因式之积为正,曲线位于数轴下方时,则表示各因式之积为负,由此可写出已知不等式的解集.必须注意的是:(1)各因式中x的系数都要为正1;(2)各因式都应是一次因式;(3)对于分式不等式要限定分母不能为零.[解析] 原不等式可转化为高次不等式,利用数轴标根法可解.[解] 原不等式等价于(x-a)(x-1)(x+1)<0或x-a=0.当a<-1时,由图6-4-4知,原不等式的解集为{xx≤a或-1当-1当a>1时,由图6-4-6知,原不等式的解集为{xx<-1或1点拨一般地,含有参数的不等式中,参数的取值会影响到最高次项的系数的符号,也会影响到所对应的方程是否有根及根的大小关系,这些都会影响到解集的不同,所以要对参数的值进行分类讨论.常根据最高次项系数的符号,有没有实根及根的大小来分类.[解析] 通过解不等式,对集合A、A∪B及A∩B均可化简.然后利用数轴,由A∩B 与A∪B来认知集合B,从而求出a、b.[解]∵A=点拨涉及几个不等式的解集的交或并或包含关系的问题,应利用数轴,将它们直观地反映出来,以利于问题的解决.另外,对于集合C,由于它不易直接化简,故联系起相应的二次函数的图象,从图象中来探求m应具备的条件.这种方法是解决与此类似问题的有效方法.[错解分析] 解分式不等式不能去分母(除非已知分母的值恒正),否则会导致解集发生变化;用数轴标根法时,必须将原不等式化为一边为0,另一边为一次因式之积的形式,其中各因式中x的系数应是+1.[错解分析] 根据不等式的性质,只有当一个不等式两边均为非负数,才能对两边进行平方,否则所得不等式与原不等式不等价.[正解] 正解1:使用直接法,将原不等式等价转化为两个有理不等式组求解.原不等式等价于不等式组[错解分析] 解对数不等式主要是依据对数的运算性质和对数函数的单调性,将其转化为与之等价的不等式(组),但要注意确保原不等式中的每一个对数都要有意义,否则会扩大解集.能力升级平台【综合能力升级】会解简单的不等式是学好数学的基础.中学数学各章节里都有涉及不等式的求解问题.尤其是求函数的定义域、值域,讨论函数的单调性以及求某变量的取值范围等问题,更是离不开解不等式.各级各类考试中对解不等式的考查主要是融会在解决求变量的范围的问题中,也有单独考查含参数不等式的问题.点拨利用函数的单调性解不等式,是考查不等式的解法的热点题型.求解时,应将各个中间变量转化到给定的单调区间上来.在此条件下将给定的不等式转化为与之等价的不等式组.这里充分运用偶函数的性质f(x)=f(x),使转化过程和结果都显得简单、明了.【应用创新能力升级】本节知识常和实际应用问题中求某变量的范围的问题相结合,成为考查解不等式的命题趋势和热点例14 国家为了加强对烟酒生产管理,实行征收附加税政策.现知某种酒每瓶70元,不征收附加税时,每年大约产销100万瓶;若政府征收附加税,每销售100元征税R元(叫做税率为R%),则每年产销量大约将减少10R万瓶,要使每年在此项经营中所收附加税不少于112万元,R的取值应怎样确定?[解析] 依题意,每年所收附加税=年销售额×R%,所以求出征税后年销售额,然后解不等式即可.[解] ∵征收附加税后,每年的年销售额为70×(100-10R)万元,∴每年所征收的附加税为70×(100-10R)×R%万元.依题意,70×(100-10R)×R%≥112.∴(10-R)·R≥16,即(R-2)(R-8)≤0.因此,2≤R≤8.答:R的取值范围应定在[2,8].点拨解决此类问题的一般思路是:根据已知条件,建立不等式,然后解不等式.高考热点点拨解不等式是不等式研究的主要内容之一,是贯穿于中学数学的基础,代数、三角、解析几何、立体几何中无不涉及到解不等式的问题.为此,它是高考必考的内容.在选择题、填空题及解答题中年年出现,既有单独考查解不等式的问题,也有与其他知识贯穿在一起来考查的综合问题.(1)解这个不等式;(2)当此不等式的解集为{xx>5}时,求实数m的值.[解析] 原不等式可转化为一个一元一次不等式,对其系数分类讨论,可求其解、其值.[解析] 分别对命题p、q作等价转换,从中求各自成立时a的范围,则问题可解.根据题意知,命题p与q为有且只有一个是真命题,当命题p为真命题且命题q为假命题时a不存在;当命题p为假命题且q为真命题a的取值范围是[1,2].综上,1≤a≤2为所求.上面为大家提供的高二数学不等式的解法讲解,是高二数学不等式部分学习的重要参考资料,对大家的学习帮助作用很大,希望大家好好利用。
不等式高级水平必备目录Ch1. 伯努利不等式Ch2. 均值不等式Ch3. 幂均不等式Ch4. 柯西不等式Ch5. 切比雪夫不等式Ch6. 排序不等式Ch7. 琴生不等式Ch8. 波波维奇亚不等式Ch9. 加权不等式Ch10. 赫尔德不等式Ch11. 闵可夫斯基不等式Ch12. 牛顿不等式Ch13. 麦克劳林不等式Ch14. 定义多项式Ch15. 舒尔不等式Ch16. 定义序列Ch17. 缪尔海德不等式Ch18. 卡拉玛塔不等式Ch19. 单调函数不等式Ch20. 3个对称变量pqr法Ch21. 3个对称变量uvw法Ch22. ABC法Ch23. SOS 法 Ch24. SMV 法 Ch25. 拉格朗日乘数法 Ch26. 三角不等式 Ch27. 习题与习题解析Ch1. 伯努利不等式1.1若实数i x (i 12n ,,...,=)各项符号相同,且i x 1>-,则:12n 12n 1x 1x 1x 1x x x ()()...()...+++≥++++ 1()1()当12n x x x x ...====时,1()式变为:n 1x 1nx ()+≥+ 2() Ch2. 均值不等式2.1若12n a a a ,,...,为正实数,记:⑴n Q =,为平方平均数,简称平方均值;⑵ 12nn a a a A n...+++=,为算术平均数,简称算术均值;⑶n G =,为几何平均数,简称几何均值; ⑷ n 12nnH 111a a a ...=+++,为调和平均数,简称调和均值.则:n n n n Q A G H ≥≥≥ 3()iff 12n a a a ...===时,等号成立. (注:iff if and only if =当且仅当.) 3()Ch3.幂均不等式3.1设12n a a a a (,,...,)=为正实数序列,实数r 0≠,则记:1r r rr12n r a a a M a n ...()⎛⎫+++= ⎪⎝⎭4()4()式的r M a ()称为幂平均函数.3.2若12n a a a a (,,...,)=为正实数序列,且实数r 0≠,则:r s M a M a ()()≤ 5()当r s ≤时,5()式对任何r 都成立,即r M a ()关于r 是单调递增函数.5()3.3设12n m m m m (,,...,)=为非负实数序列,且12n m m m 1...+++=,若12n a a a a (,,...,)=为正实数序列,且实数r 0≠,则:1m rrr rr1122n n M a m a m a m a ()(...)=+++ 6()6()式称为加权幂平均函数.3.4若12n a a a a (,,...,)=为正实数序列,且实数r 0≠,对m r M a ()则:m m r s M a M a ()()≤即:11rrr sss sr1122n n 1122n n m a m a m a m a m a m a (...)(...)+++≤+++ 7()当r s ≤时,7()式对任何r 都成立,即m r M a ()关于r 是单调递增函数.7()Ch4. 柯西不等式4.1若12n a a a ,,...,和12n b b b ,,...,均为实数,则:222222212n 12n 1122n n a a a b b b a b a b a b (...)(...)(...)++++++≥+++ 8()iffn 1212na a ab b b ...===时,等号成立.(注:iff if and only if =当且仅当.) 8()4.2柯西不等式还可以表示为:222222212n 12n 1122n n a a a b b b a b a b a b n n n.........()()()+++++++++≥ 9()简称:“平方均值两乘积,大于积均值平方” 我们将1122n na b a b a b n...+++简称为积均值,记:n D =则:224n n n Q a Q b D ab [()][()][()]≥n D ab ()≥ 10() 4.3推论1:若a b c x y z ,,,,,为实数,x y z 0,,>,则:2222n 12n 1212n 12na a a a a ab b b b b b (...)......++++++≥+++ 11() iffn 1212na a ab b b ...===时,等号成立. 11()式是柯西不等式的推论,称权方和不等式4.4推论2:若12n a a a ,,...,和12n b b b ,,...,均为实数,则:...+≥12()iffn 1212na a ab b b ...===时,等号成立. 4.5推论3:若a bc x y z ,,,,,为正实数,则:x y zb c c a a b y z z x x y()()()+++++≥+++ 13() Ch5. 切比雪夫不等式5.1若12n a a a ...≤≤≤;12n b b b ...≤≤≤,且均为实数.则:12n 12n 1122n n a a a b b b n a b a b a b (...)(...)(...)++++++≤+++ 14()iff 12n a a a ...===或12n b b b ...===时,等号成立.12()由于有12n a a a ...≤≤≤,12n b b b ...≤≤≤条件,即序列同调, 所以使用时,常采用WLOG 12n a a a ...≤≤≤……(注:WLOG Without Loss Of Generality =不失一般性) 5.2切比雪夫不等式常常表示为:12n 12n 1122n na a ab b b a b a b a b n n n.........()()()+++++++++≤ 15()简称:“切比雪夫同调数,均值积小积均值”.即:两个序列数的均值之积不大于两个序列数各积之均值. 则:2n n n A a A b D ab ()()[()]≤n D ab ()≤ 16() Ch6. 排序不等式6.1若12n a a a ...≤≤≤;12n b b b ...≤≤≤为实数,对于12n a a a (,,...,)的任何轮换12n x x x (,,...,),都有下列不等式:1122n n 1122n n n 1n 121n a b a b a b x b x b x b a b a b a b .........-+++≥+++≥+++ 17()17().其中,1122n n a b a b a b ...+++称正序和,n 1n 121n a b a b a b ...-+++称反序和,1122n n x b x b x b ...+++称乱序和. 故17()式可记为:18()6.2推论:若12n a a a ,,...,为实数,设12n x x x (,,...,)为12n a a a (,,...,)的一个排序,则:22212n 1122n n a a a a x a x a x ......+++≥+++ 19()Ch7. 琴生不等式7.1定义凸函数:对一切x y a b ,[,]∈,01(,)α∈,若函数f a b R :[,]→是向下凸函数,则:f x 1y f x 1f y (())()()()ααα+-≤+- 20()20()式是向下凸函数的定义式.注:f a b R :[,]→表示区间a b [,]和函数f x ()在a b [,]区间都是实数.7.2若f a b R :(,)→对任意x a b (,)∈,存在二次导数f x 0''()≥,则f x ()在a b (,)区间为向下凸函数;iff x a b (,)∈时,若f x 0''()>,则f x ()在a b (,)区间为严格向下凸函数. 7.3若12n f f f ,,...,在a b (,)区间为向下凸函数,则函数1122n n c f c f c f ...+++在在a b (,)区间对任何12n c c c 0,,...,(,)∈∞也是向下凸函数.7.4若f a b R :(,)→是一个在a b (,)区间的向下凸函数,设n N ∈,12n 01,,...,(,)ααα∈为实数,且12n 1...ααα+++=,则对任何12n x x x a b ,,...,(,)∈,有:1122n n 1122n n f x x x f x f x f x (...)()()...()αααααα+++≤+++ 21()21()简称:“对于向下凸函数,均值的函数值不大于函数的均值”. Ch8. 波波维奇亚不等式8.1若f a b R :[,]→是一个在a b [,]区间的向下凸函数,则对一切x y z a b ,,[,]∈,有:x y z f x f y f z 2x y y z z xf f f f 333222()()()()[()()()]++++++++≥++ 22() 22()8.2波波维奇亚不等式可以写成:x y z f x f y f z x y y z z xf f f f 3322223()()()()()()()++++++++++≥23() 简称:“对于向下凸函数的三点情况,三点均值的函数与函数的均值之平均值,不小于两点均值的函数值之平均值”.8.3若f a b R :[,]→是一个在a b [,]区间的向下凸函数,12n a a a a b ,,...,[,]∈,则:12n 12n f a f a f a n n 2f a n 1f b f b f b ()()...()()()()[()()...()]++++-≥-+++ 24()其中:12n a a a a n...+++=,i j i j 1b a n 1≠=-∑(对所有的i )24()当1a x =,2a y =,3a z =,n 3=时,x y z a 3++=,1y z b 2+=,2z x b 2+=,3x yb 2+=代入23()式得:x y z y z z x x yf x f y f z 3f 2f f f 3222()()()()[()()()]++++++++≥++ 即:x y z f x f y f z 2x y y z z xf f f f 333222()()()()[()()()]++++++++≥++ 25() 25()式正是22()式.Ch9. 加权不等式9.1若i a 0(,)∈∞,i 01[,]α∈(i 12n ,,...,=),且12n 1...ααα+++=,则:n 1212n 1122n n a a a a a a ......αααααα≤+++ 26()26()26()式形式直接理解为:几何均值不大于算术均值.Ch10. 赫尔德不等式10.1若实数a b 0,>,实数p q 1,>且111p q+=,则:p q a b ab p q ≤+ 27() iff p q a b =时,等号成立.27()10.2若12n a a a ,,...和12n b b b ,,...为正实数,p q 1,>且111p q+=,则: 11p p p q q q pq1122n n 12n 12n a b a b a b a a a b b b ...(...)(...)+++≤++++++ 28()28()iff p p pn 12q q q 12na a ab b b ...===时,等号成立.10.3赫尔德不等式还可以写成:11p p p q q q p q1122n n 12n 12n a b a b a b a a a b b b n n n.........()()+++++++++≤ 29()即:2n p q D ab M a M b [()]()()≤n D ab ()≥ 30()简称:“幂均值的几何均值不小于积均值”. (注:赫尔德与切比雪夫的不同点:赫尔德要求是111p q+=,切比雪夫要求是同调;赫尔德的积均值小,切比雪夫的积均值大.)10.4若12n a a a ,,...、12n b b b ,,...和12n m m m ,,...为三个正实数序列,p q 1,>且111p q+=,则:11nnnpqp qi i i i i i i i 1i 1i 1a b m a m b m ===⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭∑∑∑ 31() 31()iff p p pn 12q q q 12na a ab b b ...===时,等号成立.10.5若ij a (i 12m ,,...,=;j 12n ,,...,=),12n ,,...,ααα为正实数且...12n 1ααα+++=,则:()()jj m mnn ijij j 1j 1i 1i 1aa αα====≤∏∏∑∑ 32()32()10.6推论:若123a a a N ,,+∈,123b b b N ,,+∈,123c c c N ,,+∈,则:3333333333123123123111222333a a a b b b c c c a b c a b c a b c ()()()()++++++≥++ 33()简称:“立方和的乘积不小于乘积和的立方”. Ch11.闵可夫斯基不等式11.1若12n a a a ,,...,;12n b b b ,,...,为正实数,且p 1>,则:111nnnppppppi i i i i 1i 1i 1a b a b (())()()===+≤+∑∑∑ 34()iff n 1212na a ab b b ...===时,等号成立. 34()11.2若12n a a a ,,...,;12n b b b ,,...,为正实数,且p 1>,则:11n nnpp p p p pi i i i i 1i 1i 1a b a b ()()()===⎛⎫+≤+ ⎪⎝⎭∑∑∑ 35()iffn 1212na a ab b b ...===时,等号成立. 35()11.3若12n a a a ,,...,;12n b b b ,,...,;12n m m m ,,...,为三个正实数序列,且p 1>,则:111nnnppppppi i i i i i i i 1i 1i 1a b m a m b m (())()()===+≤+∑∑∑ 36()iffn 1212na a ab b b ...===时,等号成立. 36()Ch12.牛顿不等式12.1若12n a a a ,,...,为任意实数,考虑多项式:n n 112n 01n 1n P x x a x a x a c x c x c x c ()()()...()...--=+++=++++ 37()的系数01n c c c ,,...,作为12n a a a ,,...,的函数可表达为:0c 1=;112n c a a a ...=+++;21213n 1n i j c a a a a a a a a ...-=+++=∑;(i j n <≤) 3i j k c a a a =∑;(i j k n <<≤) ……n 12n c a a a ...=.对每个k 12n ,,...,=,我们定义k k k k n c k n k p c C n !()!!-== 38() 则37()式类似于二项式定理,系数为:kk nk c C p =. 12.2若12n a a a ,,...,为正实数,则对每个k 12n 1,,...,=-有:2k 1k 1k p p p -+≤ 39()iff 12k a a a ...===时,等号成立.39()Ch13.麦克劳林不等式13.1若12n a a a ,,...,为正实数,按38()定义,则:111kn212k n p p p p ......≥≥≥≥ 40()iff 12k a a a ...===时,等号成立.40()Ch14.定义多项式14.1若12n x x x ,,...,为正实数序列,并设12n ,,...,ααα为任意实数.记:n 1212n 12n F x x x x x x (,,...,)...ααα=;12n T [,,...,]ααα为12n F x x x (,,...,)所有可能的积之和,遍及12n ,,...,ααα的所有轮换.14.2举例说明⑴ T 100[,,]:表示共有3个参数的所有积之和,共有36!=项.第1个参数的指数是1,第2和第3个参数的指数是0.故:[,,]()!()()100100100T 10031x y z y x z z y x 2x y z =-⋅++=++.⑵ T 11[,]:表示共有2个参数的所有积之和,共有22!=项.第1个和第2个参数的指数是1.故:[,]()!()11T 1121x y 2xy =-⋅=.⑶ T 12[,]:表示共有2个参数的所有积之和,共有22!=项.第1个参数的指数是1,第2个参数的指数是2.故:[,]()!()121222T 1221x y y x xy x y =-⋅+=+.⑷ T 121[,,]:表示共有3个参数的所有积之和,共有36!=项.第1个参数的指数是1,第2个参数的指数是2,第3个参数的指数是1.故:[,,]()222T 1212xy z x yz xyz =++.即:[,,][,,]T 121T 211=⑸ T 210[,,]:表示共有3个参数的所有积之和,共有36!=项.第1个参数的指数是2,第2个参数的指数是1,第3个参数的指数是0.故:222222T 210x y x z y x y z z x z y [,,]=+++++.⑹ T 300[,,]:表示共有3个参数的所有积之和,共有36!=项.第1个参数的指数是3,第2个和第3个参数的指数是0.故:333T 3002x y z [,,]()=++.⑺ [,,]T a b c :表示共有3个参数的所有积之和,共有36!=项.第1个参数的指数是a ,第2个参数的指数是b ,第3个参数的指数是c .故:[,,]a b c a c b b c a b a c c a b c b a T a b c x y z x y z x y z x y z x y z x y z =+++++.由于[,,][,,][,,][,,][,,]...T a b c T b c a T c a b T c b a T b a c =====表达式比较多, 所以我们规定:[,,]T a b c (a b c ≥≥).Ch15.舒尔不等式15.1若R α∈,且0β>,则:[,,][,,][,,]T 200T 2T 0αβαββαββ++≥+ ()41()4115.2 解析()41式[,,]()222T 2002x y z αβαβαβαβ++++=++;[,,]()T 2x y z x y z x y z αβββαβββααββ=++;[,,]T 0x y x y y z y z x z x z αβββαβαβββαββαβαββαββ+++++++=+++++将上式代入()41式得:222x y z x y z x y z x y z αβαβαβαβββαβββα++++++++x y x y y z y z x z x z αβββαβαβββαββαβαββ++++++≥+++++即:222y x y z z x y x z x y z αβααββαβαβββββα++++++++y x y y z x y x z 0z x z βαβββααββαβββαβαββ++++++------≥即:()()22x x y z x y x z y y x z x y y z αβββββββαβββββββ++--+--()2z z x y y z x z 0αβββββββ++-≥-即:()()()()()()x x y x z y y z y x z z x z y 0αββββαββββαββββ--+--+--≥ ()42()42式与()4115.3若实数,,x y z 0>,设t R ∈,则:()()()()()()t t t x x y x z y y z y x z z x z y 0--+--+--≥ ()43iff x y z ==或,x y z 0==及轮换,等号成立.按照()41式写法,即:t α=,1β=,则:[,,][,,][,,]T t 200T t 112T t 110++≥+ ()44()43式是我们最常见的舒尔不等式形式.15.4推论:设实数,,x y z 0>,实数,,a b c 0>且a b c ≥≥或a b c ≤≤,则:()()()()()()a x y x z b y z y x c z x z y 0--+--+--≥ ()45()43式中,t x a =,t y b =,t z c =,就得到()45式.15.5推论:设实数,,x y z 0>,则:[()()()]3333332223xyz x y z 2xy yz zx +++≥++ ()4615.6推论:若(,]k 03∈,则对于一切,,a b c R +∈,有:()()()2222k 3k k abc a b c 2ab bc ca -++++≥++ ()47Ch16. 定义序列16.1设存在两个序列()(,,...,)n i i 112n ββββ==和()(,,...,)n i i 112n αααα==,当满足下列条件:⑴ ......12n 12n βββααα+++=+++ ①⑵ ...12n βββ≥≥≥且...12n ααα≥≥≥ ②⑶ ......12s 12s βββααα+++≤+++ ③对一切[,]s 1n ∈,③式都成立.则:()n i i 1β=就是()n i i 1α=的优化值,记作:()()i i βα<.注:这里的序列只有定性的比较,没有定量的比较.Ch17.缪尔海德不等式17.1若,,...,12n x x x 为非负实数序列,设()i α和()i β为正实数序列,且()()i i βα<,则:[][]i i T T βα≤ ()48iff ()()i i αβ=或...12n x x x ===时,等号成立.()4817.2解析()48式若实数123a a a 0≥≥≥,实数123b b b 0≥≥≥,且满足11a b ≥,1212a a b b +≥+,123123a a a b b b ++=++;设,,x y z 0>,则:满足序列(,,)(,,)123123b b b a a a <条件, 则:[,,]333333121221211221b b b b b b b b b b b b b b b b b b 123T b b b x y z x y z x y z x y z x y z x y z =+++++[,,]333333121221211221a a a a a a a a a a a a a a a a a a 123T a a a x y z x y z x y z x y z x y z x y z =+++++ 即()48式为: [,,][,,]123123T b b b T a a a ≤用通俗的方法表达即:331212a b a a b b sym sym x y z x y z ≥∑∑ ()49()49.17.3例题:设(,,)x y z 为非负变量序列,考虑(,,)221和(,,)311.由16.1中的序列优化得:(,,)(,,)221311<由缪尔海德不等式()48式得:[,,][,,]T 221T 311< ①[,,]()222222T 2212x y z x yz xy z =++ ②[,,]()333T 3112x yz xy z xyz =++ ③将②③代入①得:222222333x y z x yz xy z x yz xy z xyz ++≤++即:222xy yz zx x y z ++≤++ ④由柯西不等式:()()()2222222x y z y z x xy yz zx ++++≥++即:()()22222x y z xy yz zx ++≥++即:222x y z xy yz zx ++≥++ ⑤⑤式④式等价,这就证明了④式是成立的,而缪尔海德不等式直接得到①式是成立的. ⑤式可以用[,,][,,]T 200T 110≥来表示,这正是缪尔海德不等式的()48式.Ch18.卡拉玛塔不等式18.1设在实数区间I R ∈的函数f 为向下凸函数,且当,i i a b I ∈(,,...,i 12n =)两个序列()n i i 1a =和()n i i 1b =满足()()i i a b >,则:()()...()()()...()12n 12n f a f a f a f b f b f b +++≥+++ ()50()5018.2若函数f 为严格向下凸函数,即不等取等号,()()i i a b ≠,且()()i i a b >,则:()()...()()()...()12n 12n f a f a f a f b f b f b +++>+++ ()51若函数f 为严格向上凸函数,则卡拉玛塔不等式反向.Ch19.单调函数不等式19.1若实数函数:(,)f a b R →在区间(,)a b 对一切,(,)x y a b ∈为单调增函数,则当x y ≥时,有()()f x f y ≥;若f 在区间(,)a b 对一切,(,)x y a b ∈为严格单调增函数,当x y >时,有()()f x f y >.19.2若实数函数:(,)f a b R →在区间(,)a b 对一切,(,)x y a b ∈为单调减函数,则当x y ≥时,有()()f x f y ≤;若f 在区间(,)a b 对一切,(,)x y a b ∈为严格单调减函数,当x y >时,有()()f x f y <.19.3若实数函数:(,)f a b R →在区间(,)a b 为可导函数,当对一切(,)x a b ∈,'()f x 0≥,则f 在区间(,)a b 为单调递增函数;当对一切(,)x a b ∈,'()f x 0≤,则f 在区间(,)a b 为单调递减函数.19.4设两个函数:[,]f a b R →和:[,]g a b R →满足下列条件:⑴ 函数f 和g 在[,]a b 区间是连续的,且()()f a g a =;⑵ 函数f 和g 在[,]a b 区间可导;⑶ 导数'()'()f x g x >对一切(,)x a b ∈成立,则对一切(,)x a b ∈有:()()f x g x > ()52()52Ch20.3个对称变量pqr 法20.1设,,x y z R +∈,对于具有变量对称形式的不等式,采用下列变量代换:p x y z =++;q xy yz zx =++;r xyz =,则,,p q r R +∈.代换后的不等式(,,)f p q r ,很容易看出其满足的不等式关系,这样证明不等式的方法称为pqr 法.20.2常用的代换如下:⑴22cyc x p 2q =-∑ ⑵()32cyc x p p 3q 3r =-+∑ ⑶ 222cycx y q 2pr =-∑⑷ ()()()x y y z z x pq r +++=-⑸()()2cyc x y y z p q ++=+∑ ⑹ ()cycxy x y pq 3r +=-∑⑺ ()()()1x 1y 1z 1p q r +++=+++⑻ ()()cyc1x 1y 32p q ++=++∑⑼()()2cyc cycx y z xy x y pq 3r +=+=-∑∑20.3常用的pqr 法的不等式若,,x y z 0≥,则:⑴ 3p qr 4pq +≥⑵ pq 9r ≥⑶ 2p 3q ≥⑷ 3p 27r ≥⑸ 32q 27r ≥⑹ 2q 3pr ≥⑺ 32p 9r 7pq +≥⑻ 322p 9r 7pqr +≥⑼ 22p q 3pr 4q +≥Ch21.3个对称变量uvw 法21.1在,,a b c R ∈的不等式中,采用下列变量代换:3u a b c =++;23v ab bc ca =++;3w abc =.上述变换强烈含有“平均”的意味:u 对应“算术平均值”;v 对应“积均值”;w 对应“几何平均值”. 21.2当,,a b c 0≥时,则:u v w ≥≥ ()53()53即:“算术平均值”≥“积均值”≥“几何平均值”.21.3若,,a b c 0≥,则,,23u v w 0≥ ()54()5421.4若,,23u v w R ∈,任给,,a b c R ∈,则当且仅当22u v ≥,且[32323w 3uv 2u 3uv 2u ∈---+时, 则:3u a b c =++,23v ab bc ca =++,3w abc =等式成立.这称为uvw 定理.Ch22.ABC 法22.1 ABC 法即Abstract Concreteness Method设p x y z =++;q xy yz zx =++;r xyz =.则函数(,,)f x y z 变换为(,,)f r q p .这与Ch20.3个对称变量pqr 法类似.22.2若函数(,,)f r q p 是单调的,则当()()()x y y z z x 0---=时,(,,)f r q p 达到极值. 22.3若函数(,,)f r q p 是凸函数,则当()()()x y y z z x 0---=时,(,,)f r q p 达到极值. 22.4若函数(,,)f r q p 是r 的线性函数,则当()()()x y y z z x 0---=时,(,,)f r q p 达到极值. 22.5若函数(,,)f r q p 是r 的二次三项式,则当()()()x y y z z x 0---=时,(,,)f r q p 达到极值.Ch23.SOS 法23.1 SOS 法即Sum Of Squares23.2本法的全部思想是将给出的不等式改写成以下形式:()()()222a b c S S b c S a c S a b =-+-+- ()55其中,,,a b c S S S 分别都是,,a b c 的函数.⑴ 若,,a b c S S S 0≥,则S 0≥;⑵ 若a b c ≥≥或a b c ≤≤,且,,b b a b c S S S S S 0++≥,则S 0≥; ⑶ 若a b c ≥≥或a b c ≤≤,且,,,a c a b c b S S S 2S S 2S 0++≥,则S 0≥;⑷ 若a b c ≥≥,且,,22b c b a S S a S b S 0+≥,则S 0≥;⑸ 若a b S S 0+≥或b c S S 0+≥或c a S S 0+≥,且a b b c c a S S S S S S 0++≥,则S 0≥. 23.3 常用的形式⑴ ()22cyc cyc cyc 1a ab a b 2-=-∑∑∑⑵ ()32cyc cyc cyc1a 3abc a a b 2-=⋅-∑∑∑ ⑶ ()223cyc cyccyc 1a b ab a b 3-=-∑∑∑ ⑷ ()()322cyc cyc cyc1a a b 2a b a b 3-=+-∑∑∑ ⑸()333cyc cyccyc cyc 1a b ab a b a 3-=⋅-∑∑∑∑ ⑹ ()()42222cyc cyc cyca ab 2a b a b -=+-∑∑∑ Ch24.SMV 法24.1 SMV 法即Strong Mixing Variables Method本法对多于2个变量的对称不等式非常有用.24.2 设(,,...,)12n x x x 为任意实数序列,⑴ 选择,{,,...,}i j 12n ∈使min{,,...,}i 12n x x x x =,max{,,...,}j 12n x x x x =; ⑵ 用其平均数i j x x 2+代替i x 和j x ,经过多次代换后各项i x (,,...,i 12n =)都趋于相同的极限...12n x x x x n+++=. 24.3 设实数空间的函数F 是一个对称的连续函数,满足(,,...,)(,,...,)12n 12n F a a a F b b b ≥ ()56其中,(,,...,)12n b b b 序列是由(,,...,)12n a a a 序列经过预定义变换而得到的.预定义变换可根据当前的题目灵活采用,如a b2+. 24.4 例题说明例题:设实数,,a b c 0>,证明:a b c 3b c c a a b 2++≥+++. 解析:采用SMV 法. 设:(,,)a b c f a b c b c c a a b =+++++ ① 则:(,,)t t c 2t c f t t c t c c t t t t c 2t =++=+++++ ② 其中,a b t 2+=. 由②得:(,,)()()2t c 112t c t 113f t t c 2t c 2t 22t c 2t 222+=++-=+-≥-=++ 由()56式得:(,,)(,,)3f a b c f t t c 2≥≥证毕. Ch25.拉格朗日乘数法 25.1 设函数(,,...,)12n f x x x 在实数空间的I R ∈连续可导,且(,,...,)i 12n g x x x 0=,其中(,,....i 12k =),即有k 个约束条件,则(,,...,)12n f x x x 的极值出现在I 区间的边界或偏导数(函数为ki i i 1L f g λ==-∑)全部为零的点上.Ch26.三角不等式26.1 设,,(,)0αβγπ∈,且αβγπ++=,则,,αβγ就是同一个三角形的内角. 26.2 若,,αβγ为同一个三角形的内角,则有下列不等式:⑴ sin sin sin 2αβγ++≤; ⑵ cos cos cos 32αβγ++≤;⑶ sin sin sin αβγ≤; ⑷ cos cos cos 18αβγ≤; ⑸ sin sin sin 22294αβγ++≤; ⑹ cos cos cos 22234αβγ++≥; ⑺ tan tan tan αβγ++≥;⑻ cot cot cot αβγ++≥;⑼ sinsin sin 32222αβγ++≤;⑽ coscos cos 222αβγ++≤; ⑾ sinsin sin 12228αβγ≤;⑿ cos cos cos 2228αβγ≤; ⒀ sin sin sin 22232224αβγ++≥; ⒁ cos cos cos 22292224αβγ++≤; ⒂ tantan tan222αβγ++≥ ⒃ cot cot cot222αβγ++≥Ch27.习题27.1 设,,...,(,]12n x x x 01∈,求证:()()...()321111x x x n 12n 1x 1x 1x 2+++≥. 27.2 设,,...,12n x x x 0≥,且...12n 1x x x 2+++=,求证:()()...()12n 11x 1x 1x 2---≥. 27.3 设,,...,12n a a a R +∈,且...12n a a a 1=......12n a a a +≤+++.27.4 设,,a b c 0>,且abc 1=,求证:333a b c ab bc ca ++≥++. 27.5 设,,,a b c d 0>,求证:a b c d 2b 2c 3d c 2d 3a d 2a 3b a 2b 3c 3+++≥++++++++.27.6 设,,a b c 0>,求证:222a bc b ca c aba b c b c c a a b+++++≥+++++.27.7设,a b 0>,n N ∈,求证:()()n n n 1a b112b a++++≥.27.8 设,,...,12n x x x R +∈,且...22212n x x x 1+++=,若n N ∈,n 2≥,求(,,...,)...()()()555n 1212n nnni 1i 2i ni 1i 1i 1x x x f x x x x x x x x x ====+++---∑∑∑的最小值.27.9 设,,a b c R +∈,且a b c abc ++=32≤. 27.10 设,,a b c R ∈. 27.11设,,a b c R +∈,且ab bc ca 3++=,求证:()()()2221a 1b 1c 8+++≥.27.12设,,a b c 0>,且a b c 1++=,求证:()()3332226a b c 15a b c +++≥++. 27.13设,,a b c 0≥,且a b c 2++=,求证:444333a b c abc a b c +++≥++. 27.14设,,a b c 0>,求证:()()()()3333338a b c a b b c c a ++≥+++++. 27.15设,,a b c 0≥,求证:()33331a b c abc a b c 7+++≥++. 27.16设,,a b c 0>,且a b c 1++=,求证:2224a b c 3abc 9+++≥. 27.17设,,...,12n a a a 0>,求证:()()...()()()...()222n 1212n 231a a a 1a 1a 1a 111a a a +++≤+++. 27.18设,,,a b c d 0>,且abcd 1=,求证:()()()()2222111111a 1b 1c 1d +++≥++++.27.19设,,,a b c d 0≥,且a b c d 4+++=,求证:()()()()2222abc bcd cda dab abc bcd cda dab 8+++++++≤.27.20设,,a b c 0≥,且222a b c 3++=,求证:222222a b b c c d a b c ++≤++.27.21设,,a b c R ∈,求证:()()()2222223333333a ab b b bc c c ca a a b b c c a -+-+-+≥++.27.22设,,,a b c d 0>,且a b c d abcd 5++++=,求证:11114a b c d+++≥.27.23设不等式:()()()()2222222222ab a b bc b c ca c a M a b c -+-+-≤++对一切实数,,a b c 都成立,求M 的最小值.27.24设,,a b c 0≥,且a b c 3++=,求证:()()222a b b c c a ab bc ca 9++++≤.Ch27.习题解析27.1 设,,...,(,]12n x x x 01∈,求证:()()...()321111x x x n 12n 1x 1x 1x 2+++≥.解析:设:n 11x x +=,则:因为i x 01(,]∈,所以i11x [,)∈+∞ (i 12n ,,...,=) 由伯努利不等式2():当i x 1>-且i 1[,)α∈+∞时,i i i i 1x 1x ()αα+≥+ ①iff i x 0=或i 1α=时,①式等号成立.由均值不等式3():i i 1x α+≥ ②iff i i x 1α=时,②式等号成立.由①②式得:i i 1x ()α+≥ ③iff i i x 1α==时, ③式等号成立.设:i i 11x α+=,则由③式得:i 11x i 1x ()++≥ ④则:21x 11x ()+≥31x 21x ()+≥11x n 1x ()+≥上面各式相乘得:321111x x x n 12n 1x 1x 1x 22()()...()+++≥=. 证毕.27.2 设,,...,12n x x x 0≥,且...12n 1x x x 2+++=,求证:()()...()12n 11x 1x 1x 2---≥. 解析:因为i x 0≥,ni i 11x 2==∑,所以i 1x 02[,]∈ 设i i y x =-,则i 1y 012[,]∈->-由伯努利不等式1():12n 12n 1y 1y 1y 1y y y ()()...()(...)+++≥++++ ① 将i i y x =-代入①式,并代入...12n 1x x x 2+++=得: 12n 12n 111x 1x 1x 1x x x 122()()...()(...)---≥-+++=-=. 证毕.27.3 设12n a a a 0,,...,>,且...12n a a a 1=......12n a a a +≤+++. 解析:因为12n a a a 0,,...,>,且...12n a a a 1=,所以由均值不等式3()n ...+≥=1≥ ①iff 12n a a a 1...====时,①式等号成立.由柯西不等式8():2222222111...](...)...++++++≥+即:212n a a a n (...)...+++⋅≥即:12n a a a (...)...+++≥+ ②iff 12n a a a 1...====时,②式等号成立.将①式代入②式得:12n a a a ......+++≥+ ③iff 12n a a a 1...====时, ③式等号成立. 证毕.27.4 设,,a b c 0>,且abc 1=,求证:333a b c ab bc ca ++≥++. 解析:因为,,a b c 0>,且abc 1=,所以由均值不等式3():222222222a b b c c a a b c ab bc ca 222+++++=++≥++ ① iff a b c 1===时,①式等号成立.由均值不等式3():a b c 3++≥=,即:a b c13++≥ ② iff a b c 1===时,②式等号成立.WLOG ,设a b c ≤≤,则因为,,a b c 0>,所以222a b c ≤≤由切比雪夫不等式14():222222a b c a b c 3a a b b c c ()()()++++≤⋅+⋅+⋅ 即:333222a b ca b c a b c 3()++++≥⋅++ ③ iff a b c 1===时,③式等号成立.将①②代入③式得:333a b c ab bc ca ++≥++ ④iff a b c 1===时, ④式等号成立. 证毕.27.5 设,,,a b c d 0>,求证:a b c d 2b 2c 3d c 2d 3a d 2a 3b a 2b 3c 3+++≥++++++++.解析:记A b 2c 3d =++,B c 2d 3a =++,C d 2a 3b =++,D a 2b 3c =++则:aA bB cC dD 4ab ac ad bc bd cd ()+++=+++++ ① 待证式为:a b c d 2A B C D 3+++≥ ② 由柯西不等式8():2a b c daA bB cC dD a b c d A B C D()()()++++++≥+++ 即:2a b c d a b c d A B C D aA bB cC dD ()++++++≥+++ ③由②③式,只需证明2a b c d 2aA bB cC dD 3()+++≥+++ ④设多项式:P x x a x b x c x d ()()()()()=++++43201234c x c x c x c x c =++++则: 1c a b c d =+++ ⑤2c ab ac ad bc bd cd =+++++代入①式得:2aA bB cC dD 4c +++= ⑥ 根据定义38():k k k nc p C =得:11114c c p C 4==,即:11c 4p =;22224c c p C 6==,即:22c 6p = 则:2221112222c 16p p 24c a b cd aA bB cC 6p 3D p d 4()==⋅++⋅+++=+ ⑦ 由麦克劳林不等式40():1212p p ≥,即:212p 1p ≥代入⑦式得:2a b c d aA bB c dD 23C ()++++≥++,④式得证. iff a b c d ===时,等号成立. 证毕.27.6 设,,a b c 0>,求证:222a bc b ca c aba b c b c c a a b +++++≥+++++. 解析:不等式左边=222a b c b c c b c c b c a c a a b ba a ab +++++++++++ 不等式右边=()()()a c ab a bc b c a b c c a a b b c +++++=+++++222ab a ac b c c a b c c a a b b c ca b b =+++++++++++ 则不等式其实就是:222222a b c c a b b c c a a b b c c a a b++≥++++++++ ① 由于是对称不等式,WLOG ,假设a b c ≥≥,则222a b c ≥≥ ②且b c a c a b +≤+≤+,即:111b c c a a b ≥≥+++③则有排序不等式()18:222222a b c c a b b c c a a b b c c a a b ++≥++++++++ 其中,222a b c b c c a a b +++++为正序和;222c a b b c c a a b+++++为乱序和. iff a b c ==时,等号成立. 证毕.27.7设,a b 0>,n N ∈证:()()n n n 1a b112b a++++≥.解析:当n 0=时,()()00a b112b a+++=,0122+=,不等式成立;当n 1=时,()()11a b a b1124b a b a+++=++≥,1124+=,不等式成立;当n 2≥时,构建函数()n f x x =. 则函数的导数'()n 1f x nx -=;二次导数''()()n 2f x n n 1x 0-=-≥,故在x 0>时函数为向下凸函数. 由琴生不等式()20:()()()1212f x f x x x f 22++≥ ①将()()n 1a f x 1b =+,()()n 2bf x 1a=+ ,()()()[][()]n n n 12b a 11x x 1b a a b f 12222a b++++==++≥ 带入①式得:()()n nn a b11b a 22+++≥,即:()()n n n 1a b 112b a ++++≥ 综上,当n 0=、n 1=和n 2≥时, ()()n n n 1a b112b a ++++≥都成立,即n N ∈时,()()n n n 1a b112b a++++≥成立. 证毕.27.8 设,,...,12n x x x R +∈,且...22212n x x x 1+++=,若n N ∈,n 2≥,求(,,...,)...()()()555n 1212n nnni 1i 2i ni 1i 1i 1x x x f x x x x x x x x x ====+++---∑∑∑的最小值.解析:记ni i 1S x ==∑,(,,...,i 12n =).则(,,...,) (555)n 1212n 12nx x x f x x x S x S x S x =+++---①WLOG 假设...12n x x x ≥≥≥,则...44412n x x x ≥≥≥ ② 由于ni i 1S x ==∑,所以()nk i k i 1S x x x =-=-∑与k x 无关,则kkx S x -与k x 同单调性. 即:...n 1212nx x x S x S x S x ≥≥≥--- ③ 由切比雪夫不等式14():若(,,...,)12n a a a 与(,,...,)12n b b b 同单调性,则有:12n 12n 1122n n a a a b b b n a b a b a b (...)(...)(...)++++++≤+++ ④设:4i i a x =,ni nx b S x =-,(,,...,i 12n =),则满足{}i a 与{}i b 同单调性. 代入④式得:(...)(...)(...)4444n n 111n 1n 1n 1nx x x x x x n x x S x S x S x S x ++++≤⋅++⋅---- 即:......()(...)5445n 1n n 111n 1n x x x x x xf S x S x n S x S x ++=++≥⋅++---- ⑤由均值不等式()3:n n Q A ≥...221n x x 1n n ++=故:...441n 1x x n++≥ ⑥ 构建函数:()xg x S x=- ⑦ 则导函数:'()()2S g x S x =-,''()()32Sg x 0S x =>- 故()g x 为向下凸函数.由琴生不等式21():(...)()()...()1122n n 1122n n g x x x g x g x g x αααααα+++≤+++ 取加权i 1nα=(,,...,i 12n =)时,上式变为:...()()...()()12n 12n x x x g x g x g x g n n++++++≤⑧ 即:...()()...()()12n12n x x x g x g x g x n g n++++++≥⋅即:.........12n n 112n1n x x x Sx x n n n n n x x x S S x S x n 1S S n n +++++≥⋅=⋅=+++----- ⑨ 将⑥和⑨式代入⑤式得:...()55n 11n x x 11n 1f S x S x n n n 1n n 1=++≥⋅⋅=---- 故:(,,...,)12n f x x x 的最小值是()1n n 1-.27.9 设,,a b c R +∈,且a b c abc ++=32≤. 解析:在圆锥曲线里,椭圆方程为:2222x y 1ab+=时,常常采用的参数方程是:cos x a θ=,sin y b θ=,因为将它带入方程时满足cos sin 221θθ+=,这个三角函数的基本关系. 对于三角形的内角,,A B C ,同样有关系A B C π++=和tan tan tan tan tan tan A B C A B C ++=. 而本题初始条件a b c abc ++=.设tan a A =.tan b B =,tan c C =,因为,,a b c R +∈,所以,,(,)A B C 02π∈ ①则当,,A B C 为三角形的内角时,A B C π++=, tan tan tan tan tan tan A B C A B C ++=满足条件. 带入不等式左边得:+=+cos cos cos A B C =++ ②构建函数()cos f x x =-,则在(,)x 02π∈区间函数()f x 为向下凸函数,故由琴生不等式21()得:函数值的均值不小于均值的函数值.1122n n 1122n n f x x x f x f x f x (...)()()...()αααααα+++≤+++ ③当加权...12n 1nααα====时,③式变为: ()()...()...()12n 12nf x f x f x x x x f n n++++++≥即:()()()()f A f B f C A B Cf 33++++≥ ④即:cos cos cos cos()cos A B C A B C 13332π++++-≥-=-=-即:cos cos cos 3A B C 2++≤ ⑤32≤. 证毕.27.10 设,,a b c R ∈2+≥. 解析:因为,,a b c R ∈,由柯西不等式12()式...+≥=≥2==.≥证毕.27.11设,,a b c R +∈,且ab bc ca 3++=,求证:()()()2221a 1b 1c 8+++≥. 解析:对赫尔德不等式32():jjm nn mijij i 1j 1j 1i 1aa ()()αα====≤∑∏∏∑ 32()当 n 4=,m 4=,123414αααα====时,32()式为: ()()()()1111444411121314212223243132333441424344a a a a a a a a a a a a a a a a +++[()()()()]1411213141122232421323334314243444a a a a a a a a a a a a a a a a ≤++++++++++++即:()()()()11213141122232421323334314243444a a a a a a a a a a a a a a a a ++++++++++++[()()()()]11114444411121314212223243132333441424344a a a a a a a a a a a a a a a a ≥+++ ①设:11a 1=,221a a =,231a b =,2241a a b =;12a 1=,2222a c a =,232a c =,242a a =; 13a 1=,223a c =,2233a b c =,243a b =; 14a 1=,24a 1=,34a 1=,44a 1=.代入①式得:()()()()2222222222221a b a b 1c a c a 1c b c b 1111+++⋅+++⋅+++⋅+++[()()()()]1111222222222222444441111a c a c 1b c b c 1a b a b 1≥⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅ ()41ac bc ab =+++ ②②式就是赫尔德不等式.()()()2222221a 1b 1c +++()()()()()()2222221a 1b 1c 1a 1b 1c =++⋅++⋅++()()()2222222222221a b a b 1c a c a 1b c b c =+++⋅+++⋅+++()()()()222222222222222211a b a b 1c a c a 1b c b c 11114=+++⋅+++⋅+++⋅+++()()()()222222222222222211a b a b 1c a c a 1c b c b 11114=+++⋅+++⋅+++⋅+++ 将②式代入上式得:(())()()2222224111a 1b 1c 4ac bc ab ++++++≤开方出来即:()()()()222211a 1b 1c 21ac bc ab ++++++≤③ 将ab bc ca 3++=代入③式得:()()(())222211a 1b 1c 8213++++=≤. iff a b c 1===时等号成立. 证毕.27.12设,,a b c 0>,且a b c 1++=,求证:()()3332226a b c 15a b c +++≥++. 解析:采用pqr 法.设:p a b c =++,q ab bc ca =++,r abc =,则:p 1=⑴22cycx p 2q=-∑; ⑵ ()32cycx p p 3q 3r =-+∑则:2222a b c p 2q ++=-;()3332a b c p p 3q 3r 13q 3r ++=-+=-+于是,待证式变为:()()2613q 3r 15p 2q -++≥-即:28q 18r 0-+≥,即:14q 9r 0-+≥,即:3p 4pq 9r 0-+≥ ①⑴ 3p qr 4pq +≥,即:3p 4pq 9r 0-+≥ 故:①式成立,即待证式成立. 证毕.27.13设,,a b c 0≥,且a b c 2++=,求证:444333a b c abc a b c +++≥++. 解析:由舒尔不等式()43:()()()()()()t t t x x y x z y y z y x z z x z y 0--+--+--≥ ①即:()()()t 2t 2t 2x x xy xz yz y y yz xy zx z z zx yz xy 0--++--++--+≥ 即:()()()()()()t 2t 2t 2t 1t 1t 1x x yz y y zx z z xy x y z y z x z x y ++++++++≥+++++ 即:()()()t 2t t 2t t 2t t 1t 1t 1x x yz y xy z z xyz x y z y z x z x y +++++++++++≥+++++ 即:()()()()t 2t 2t 2t 1t 1t 1t 1t 1t 1x y z x y z xyz x y z y z x z x y +++---++++++++≥+++++ 两边都加t 2t 2t 2x y z +++++得:()()()()t 2t 2t 2t 1t 1t 1t 1t 1t 12x y z x y z xyz x y z x y z +++---++++++++≥++++ ② ②式就是舒尔不等式.设t 2=,代入②式得:()()()()4443332x y z x y z xyz x y z x y z +++++≥++++ 将a b c 2++=代入上式得:()()4443332x y z 2xyz 2x y z +++≥++ 即:444333a b c abc a b c +++≥++ ③ ③式就是我们要证明的不等式. 证毕.27.14设,,a b c 0>,求证:()()()()3333338a b c a b b c c a ++≥+++++.解析:待证式化为:()()()3333332222228a b c 2a b c 3a b ab b c bc c a ca ++≥++++++++即:()3332222222a b c a b ab b c bc c a ca ++≥+++++ ① 解析1:缪尔海德不等式()48:[][]i i T T βα≤ ()48iff ()()i i αβ=或...12n x x x ===时,等号成立.由于[,,]()333T 3002a b c =++,[,,]222222a b ab b c bc c a ca T 210+++++= 满足缪尔海德不等式的条件,即:(,,)(,,)123b b b 210=,(,,)(,,)123a a a 300=,故满足序列(,,)(,,)123123b b b a a a <.则:[,,][,,]T 210T 300≤,即:①式成立. 证毕. 解析2:采用pqr 法.设:p a b c =++,q ab bc ca =++,r abc =. 在20.2常用的代换如下:。
一类条件不等式的一种代换证明作者:姜坤崇来源:《中学数学杂志(高中版)》2015年第02期对于或可化为条件为A+B+C=1(A,B,C>0)一类条件不等式的证明,其方法灵活多样且没有固定、统一的方法,本文介绍一种代换证法,可有效地证明这类不等式,即可令A=aa+b+c,B=ba+b+c,C=ca+b+c(a,b,c>0),这样就可将所证不等式转化为关于三元a,b,c的一个无条件约束的代数不等式从而加以证明.例1(1998年日本IMO选拔赛试题)若x,y,z>0,且11+x+11+y+11+z=1,求证:xyz≥8.证明令11+x=aa+b+c,11+y=ba+b+c,11+z=ca+b+c(a,b,c>0),则x=b+ca,y=c+ab,z=a+bc,所证不等式可化为p=(a+b)(b+c)(c+a)abc≥8.①由二元均值不等式得p≥2ab·2bc·2caabc=8,所以原不等式得证.例2(《数学通报》2014年第9期问题2201)已知a,b,c∈R+,且满足a21+a2+b21+b2+c21+c2=1,求证:abc≤24.问题提供人给出的证明很繁琐,以下利用代换法给出一种简证.证明令a21+a2=xx+y+z,b21+b2=yx+y+z,c21+c2=zx+y+z(x,y,z>0),则a2=xy+z,b2=yz+x,c2=zx+y,于是abc≤24(abc)2≤18xy+z·yz+x·zx+y≤18(x+y)(y+z)(z+x)≥8xyz.以上最后一个不等式即例1中已证的不等式①,故原不等式成立.说明将例2中的不等式推广,可得:设xi∈R+(i=1,2,…,n,n≥2),且∑ni=1x2i1+x2i=1,则有x1x2…xn≤1(n-1)n2.例3(2005年伊朗数学奥林匹克试题、2007年美国国家集训队测试题)设x,y,z是正数,且1x2+1+1y2+1+1z2+1=2,证明:xy+yz+zx≤32.证明由于条件式1x2+1+1y2+1+1z2+1=2x2x2+1+y2y2+1+z2z2+1=1,所以可令x2x2+1=aa+b+c,y2y2+1=ba+b+c,z2z2+1=ca+b+c(a,b,c>0),则x=ab+c,y=bc+a,z=ca+b,所证不等式可化为q=ab+c·bc+a+bc+a·ca+b+ca+b·ab+c≤32.②由二元均值不等式得q=bb+c·ac+a+cc+a·ba+b+aa+b·cb+c≤12[(bb+c+ac+a)+(cc+a+ba+b)+(aa+b+cb+c)]=12(a+ba+b+b+cb+c+c+ac+a)=32,所以原不等式得证.例4(1998年伊朗数学奥林匹克试题)如果x,y,z≥1,且1x+1y+1z=2,证明:x+y+z≥x-1+y-1+z-1.分析所证不等式等价于(x+y+z)2≥(x-1+y-1+z-1)2x-1·y-1+y-1·z-1+z-1·x-1≤32.③令x-1=a,y-1=b,z-1=c,代入1x+1y+1z=2得1a2+1+1b2+1+1c2+1=2,而代入③式得ab+bc+ca≤32,因此本题同例3是等价的,具体证明从略.例5(2004年上海竞赛试题)若α,β,γ∈(0,π2),sin2α+sin2β+sin2γ=1,求证:cotα+cotβ+cotγ≥32.证明由sin2α+sin2β+sin2γ=1可令sin2α=aa+b+c,sin2β=ba+b+c,sin2γ=ca+b+c(a,b,c>0),则cotα=b+ca,cotβ=c+ab,cotγ=a+bc,所证不等式可化为r=b+ca+c+ab+a+bc≥32.而由三元均值不等式及不等式①得b+ca+c+ab+a+bc≥36(b+c)(c+a)(a+b)abc≥32,所以原不等式得证.例6(2005年罗马尼亚数学奥林匹克预选试题)设x,y,z是正数,且xy+yz+zx+2xyz=1,求证:xy+yz+zx≤32.分析条件式xy+yz+zx+2xyz=1从表面上看不为A+B+C=1的形式,但通过恒等变形可化为xx+1+yy+1+zz+1=1.证明因为xy+yz+zx+2xyz=1xx+1+yy+1+zz+1=1,故可令xx+1=aa+b+c,yy+1=ba+b+c,zz+1=ca+b+c(a,b,c>0),则x=ab+c,y=bc+a,z=ca+b,所证不等式可化为不等式②,所以原不等式得证.例7(第20届伊朗数学奥林匹克竞赛题)设x,y,z∈R+,且x2+y2+z2+xyz=4,证明:x+y+z≤3.证明因为x2+y2+z2+xyz=4AA+1+BB+1+CC+1=1(其中A=yz2x,B=zx2y,C=xy2z),所以可令AA+1=aa+b+c,BB+1=ba+b+c,CC+1=ca+b+c(a,b,c>0),则yz2x=ab+c,zx2y=bc+a,xy2z=ca+b,于是x=2bc(c+a)(a+b),y=2ca(a+b)(b+c),z=2ab(b+c)(c+a),所证不等式可化为不等式②,所以原不等式得证.例8(1996年越南数学奥林匹克试题)设x,y,z∈R+,且xy+yz+zx+xyz=4,证明:x+y+z≥xy+yz+zx.证明由于xy+yz+zx+xyz=4xx+2+yy+2+zz+2=1,故可令xx+2=aa+b+c,yy+2=ba+b+c,zz+2=ca+b+c(a,b,c>0),则x=2ab+c,y=2bc+a,z=2ca+b,所证不等式可化为u=ab+c+bc+a+ca+b≥2[ab(b+c)(c+a)+bc(c+a)(a+b)+ca(a+b)(b+c)].而由二元均值不等式得u=a(b+c)(b+c)2+b(c+a)(c+a)2+c(a+b)(a+b)2=ab[1(b+c)2+1(c+a)2]+bc[1(c+a)2+1(a+b)2]+ca[1(a+b)2+1(b+c)2]≥2[ab(b+c)(c+a)+bc(c+a)(a+b)+ca(a+b)(b+c)].所以原不等式得证.。
含高阶导数和变积分限的opial型不等式Opial型不等式是数学分析中的一类重要不等式,它由波兰数学家Zdzisław Opial于1960年提出。
这类不等式通常具有含有高阶导数和变积分限的形式,具有广泛的应用背景和深刻的数学内涵。
Opial型不等式的一般形式可以表示为:$$f(x(t)) \geq g(x(t)) + \int_{a}^{t} h(x(s), x'(s), \ldots, x^{(n)}(s)) \, ds$$其中,$x(t)$是定义在区间$[a,b]$上的函数,$f,g,h$是给定的函数,$x'(t),x''(t),\ldots,x^{(n)}(t)$是$x(t)$的一阶到$n$阶导数。
这个不等式的含义是,对于给定的函数$f,g,h$和定义在区间$[a,b]$上的函数$x(t)$,如果满足上述不等式,那么函数$x(t)$在区间$[a,b]$上的某些性质将得到保证。
Opial型不等式在函数分析、偏微分方程、动力系统等领域有广泛的应用。
它可以用来研究函数的增长性、振动性、边界性质等,也可以用来证明偏微分方程的解的存在性和唯一性,以及动力系统的稳定性等问题。
在实际应用中,Opial型不等式常常被用来证明各种不等式和不等式组。
例如,在函数分析领域,可以利用Opial型不等式证明Hardy不等式、Sobolev不等式等;在偏微分方程领域,可以利用Opial型不等式证明椭圆型偏微分方程解的存在性和唯一性;在动力系统领域,可以利用Opial型不等式证明系统的稳定性和渐近行为等。
Opial型不等式的证明方法通常是基于函数分析和积分学的基本理论,需要运用到拓扑空间、测度论、泛函分析等数学工具。
证明过程中,常常需要运用到分部积分、Cauchy-Schwarz不等式、Holder 不等式、Young不等式等基本不等式。
Opial型不等式作为一类重要的数学工具,具有广泛的应用背景和深刻的数学内涵。
专题六不等式与线性规划6.1 五种常见类型的不等式解法不等式的求解是高考卷面中必不可少的一部分,它渗透在整个卷面中,各种题型,各个知识点都有它的影子. 主要考查五种不等式的解法:一元二次不等式,分式不等式,分段不等式,绝对值不等式,含参数的不等式.与这些不等式有关的还有指、对、幂不等式,三角不等式的求解,函数与不等式是息息相关的,所以在处理不等式的问题时,经常要用到函数的思想..此考点考查概率为100%,2013年各省市卷面均有出现,本省2013年的卷面中,第1题、第11题、16题、21题均与解不等式有关.题型1 一元二次不等式的解法考查说明:一元二次不等式是高考必考内容,很少单独出题,经常与集合、函数与导数结合出题,各种题型均有出现,难度不大,但是要求较高,计算必须正确无误.方法突破1:解一元二次不等式时,要掌握一元二次不等式与相应的二次函数及一元二次方程的关系,如下表:方法突破2:一元二次不等式与一元二次函数关系紧密,主要是利用一元二次函数的图象解不等式. 一元二次不等式求解分三个步骤:(1)将不等式的右边化为零,左边化为二次项系数大于零的不等式ax 2+bx +c >0(a >0)或ax 2+bx +c <0(a >0).(2)求出相应的一元二次方程的根.(3)利用二次函数的图象与x 轴的交点确定一元二次不等式的解集.不等式中有等号时注意解集中要含端点. 特别地,若一元二次不等式的左边的二次三项式能分解因式,则可立即写出不等式的解集.可根据“大于取两边,小于夹中间”求解集. 例1、(2013安徽理6题5分)已知一元二次不等式()<0f x 的解集为{}1|<-1>2x x x 或,则(10)>0xf 的解集为( ) A. {}|<-1>lg2x x x 或 B. {}|-1<<lg2x xC. {}|>-lg2x x D.{}|<-lg2x x解析:由题知,一元二次不等式()>0f x 的解集为1(-1,)2,所以由(10)>0xf 得到,1-1102x <<,解得ln 2x <-.所以选D 。
一类分数边值问题的Lyapunov-型不等式一、引言在数学中,分数边值问题是一类非常有趣的问题,而Lyapunov-型不等式则是解决这类问题时的重要工具。
本文将围绕这一主题展开讨论,并深入探究其数学内涵和应用实例。
二、分数边值问题的定义与特点分数边值问题指的是一类边值问题,其中微分方程的导数阶数为分数阶。
这类问题的特点是无法直接应用传统的边值问题的解法,而需要借助特定的数学工具来解决。
分数阶微积分的引入使得这类问题具有了更丰富的内涵和更广阔的应用领域。
三、Lyapunov-型不等式的基本形式与含义Lyapunov-型不等式是解决分数边值问题的重要方法之一。
其基本形式为V(x)≤-W(x),其中V(x)和W(x)分别为Lyapunov函数和比较函数。
这一不等式的含义是通过选择合适的Lyapunov函数和比较函数,可以证明分数阶微分方程的边值问题存在唯一性解。
四、Lyapunov-型不等式在分数边值问题中的应用以具体的数学应用为例,考虑分数阶边值问题Dαu(x) = f(x,u(x),u′(x)),u(a) = u(b) = 0。
其中Dα为Riemann-Liouville分数微积分算子。
通过构造Lyapunov函数V(x),选择合适的比较函数W(x),并应用Lyapunov-型不等式,可以证明该边值问题存在唯一性解,并且给出解的性质和特点。
这一过程既深刻又复杂,需要借助Lyapunov-型不等式的严格推导和应用。
五、总结与回顾本文围绕一类分数边值问题的Lyapunov-型不等式展开了深入的讨论。
通过对该主题的全面评估和丰富展开,我们不仅对分数边值问题有了更深入的理解,同时也领略了Lyapunov-型不等式在数学中的重要作用。
Lyapunov-型不等式的应用不仅局限于分数边值问题,还可以推广至动力系统、控制理论等领域,具有广泛的应用前景和理论意义。
六、个人观点与理解个人认为Lyapunov-型不等式作为一种重要的数学工具,不仅在解决分数边值问题中具有重要应用,同时也在其他领域发挥着重要作用。
2.2 不等式的分类及解法1、分类:(1)一元一次不等式、一元二次不等式、绝对值不等式;(2)指数不等式、对数不等式、分式不等式、均值不等式、高次不等式。
2、解法:--------直接法(1)一元一次次不等式),(R b a b ax ∈>0>a ⎭⎬⎫⎩⎨⎧>a b x x 0<a ⎭⎬⎫⎩⎨⎧<a b x x 0=a 0<b 0≥b R∅无论何种解法都务必保证每步变形都是同解变形------口诀法(2)①一元二次不等式、②简单绝对值不等式口诀:大两边,小中间(前提:a>0;大、小指不等号)。
21221)0(0,x x a c bx ax x x <≠=++的两个根,且是方程)0(0)1(2>>++a c bx ax 042>-=∆ac b 0=∆0<∆()()+∞∞,-21x x ,⎪⎭⎫ ⎝⎛∞+-⎪⎭⎫ ⎝⎛∞,,a b a b 22-- R)0(0)2(2<>++a c bx ax 042>-=∆ac b 0=∆0<∆()21,x x ∅∅2x 1x 1x 2x ab2-注:由此表可知,解一元二次不等式可用判别式法(Δ)。
①、解一元二次不等式的基本步骤:,012≠++c bx ax )整理成(的根,根公式解出方程)利用因式分解法、求(022=++c bx ax 的解。
)利用口诀写出不等式(3②、简单绝对值不等式;;,01a x a a x a x a x a x a <<-⇔<>-<⇔>>或)若(.,,02;0,00,01,0200∅∈⇔<∈⇔><∅∈⇔<≠⇔>=≥x a x R x a x a x x x x a x 若若所以:)因为(-------口诀:大两边,小中间。
.13,210300的系数为化中的常数项消去的解,诀写出运用整体思想,利用口的解法及步骤:)(x b b ax b ax b ax ++≠+方法解得相应结果。
均值不等式:被称为均值不等式。
·即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数,简记为“调几算方”。
为调和平均数。
为几何平均数。
为算术平均数。
为平方平均数。
Cauchy不等式:二阶(a2+b2)(c2+d2)≥(ac+bd)2等号在且仅在ad-bc=0即ad=bc时成立。
高阶(a12+a22+……a n2)(b12+b22+……b n2)≥(a1b1+a2b2+……+a n b n)2三角不等式:|a|-|b| ≤|a±b|≤|a|+|b|排序不等式:设有两组数a1,a2,……a n,b1,b2,……b n满足a1≤a2≤……≤a n,b1≤b2≤……≤b n 则有a1b n+a2b n-1+……+a n b1≤a1b t+a2b t+……+a n b t≤a1b1+a2b2+……+a n b n式中t1,t2,……,t n是1,2,……,n的任意一个排列,当且仅当a1=a2=……=a n或b1=b2=……=b n时成立。
一般为了便于记忆,常记为:反序和≤乱序和≤同序和.琴生不等式:对于任意的凹函数f(x)以及其定义域上n个数x1,x2,...,x n,那么都有(f(x1)+f(x2)+...+f(x n))/n≥f((x1+x2+...+x n)/n)对于任意的凸函数f(x)以及其定义域上n个数x1,x2,...,x n,那么都有(f(x1)+f(x2)+...+f(x n))/n≤f((x1+x2+...+x n)/n)切比雪夫不等式(基本排序):a1b n+a2b n-1+……+a n b1≤(a1+a2+……a n)(b1+b2+……b n)≤a1b1+a2b2+……+a n b n。