使用定积分巧妙证明一类和式不等式
- 格式:doc
- 大小:243.00 KB
- 文档页数:4
利用定积分证明数列和型不等式我们把形如(为常数)或的不等式称之为数列和型不等式,这类不等式常见于高中数学竞赛和高考压轴题中,由于证明难度较大往往令人望而生畏.其中有些不等式若利用定积分的几何意证明,则可达到以简驭繁、以形助数的解题效果.下面举例说明供参考.一、(为常数)型For personal use only in study and research; not for commercial use例1(2007年全国高中数学联赛江苏赛区第二试第二题)已知正整数,求证.For personal use only in study and research; not for commercial use分析这是一边为常数另一边与自然数有关的不等式,标准答案是用数学归纳法证明比这个不等式更强的不等式,这个不等式是怎么来的令人费解.若由所证式子联想到在用定积分求曲边梯形面积的过程中“分割求和”这一步,则可考虑用定积分的几何意义求解.证明构造函数并作图象如图1所示.因函数在上是凹函数,由函数图象可知,在区间上的个矩形的面积之和小于曲边梯形的面积,For personal use only in study and research; not for commercial use图1即,因为,所以.所以.例2 求证.证明构造函数,又,而函数在上是凹函数,由图象知,在区间上的个矩形的面积之和小于曲边梯形的面积,图2即,所以.例3证明。
证明构造函数,因,又其函数是凹函数,由图3可知,在区间上个矩形的面积之和小于曲边梯形的面积,图3即.所以.二、型例4若,求证:.证明不等式链的左边是通项为的数列的前项之和,右边通项为的数列的前项之和,中间的可当作是某数列的前项之和.故只要证当时这三个数列的通项不等式成立即可.构造函数,因为,作的图象,由图4知,在区间上曲边梯形的面积大小在以区间长度1为一边长,以左右端点对应的函数值为另一边长的两个矩形面积之间,即,而,故不等式成立,从而所证不等式成立.图4例5(2010年高考湖北卷理科第21题)已知函数的图象在点处的切线方程为.(Ⅰ)用表示出;(Ⅱ)若在内恒成立,求的取值范围;(Ⅲ)证明:.本题第三问不等式的证明是本大题也是本卷的压轴戏,具有综合性强、难度大、思维含金量高、区分度大等特点.这个不等式的证明既可用第二问的结论证明也可用定积分来证明.证明(Ⅲ)不等式左边是通项为的数列的前项之和,我们也可把右边当作是通项为的数列的前项之和,则当时,,此式适合,故只要证当时,即,也就是要证.由此构造函数,并作其图象如图5所示.由图知,直角梯形的面积大于曲边梯形的面积,即.图5而,所以,故原不等式成立.仅供个人用于学习、研究;不得用于商业用途。
热点追踪Җ㊀广东㊀李文东㊀㊀不等式的证明是高考的重要内容,证明的方法多㊁难度大,特别是一些数列和型的不等式.这类不等式常见于高中数学竞赛题和高考压轴题中,由于证明难度较大,往往令人望而生畏.其中有些不等式若利用定积分的几何意义证明,则可达到以简驭繁㊁以形助数的解题效果.1㊀利用定积分证明数列和型不等式数列和型不等式的一般模式为ðni =1a i <g (n )(或ðni =1a i >g (n )),g (n )可以为常数.不失一般性,设数列a n =f (n )>0,此类问题可以考虑如下的定积分证明模式.(1)若f (x )单调递减.因为f (i )<ʏii -1f (x )d x ,从而ðni =1a i =ðn i =1f (i )<ðni =1ʏii-1f (x )d x =ʏn0f (x )d x .㊀㊀又因为ʏi i -1f (x )d x <f (i -1),从而ʏn +11f (x )d x =ðn +1i =2ʏi i-1f (x )d x <ðn +1i =2f (i -1)=ðni =1a i.㊀㊀(2)若f (x )单调递增.因为f (i )>ʏi i -1f (x )d x ,从而ðni =1a i=ðni =1f (i )>ðni =1ʏii-1f (x )d x =ʏn0f (x )d x .㊀㊀又因为ʏii -1f (x )d x >f (i -1),从而ʏn +11f (x )d x =ðn +1i =2ʏii-1f (x )d x >ðn +1i =2f (i -1)=ðni =1a i .例1㊀(2013年广东卷理19,节选)证明:1+122+132+ +1n2<74(n ɪN ∗).分析㊀本题证法大多采用裂项放缩来证明,为了得到更一般的结论,我们这里采用定积分来证明.证明㊀因为函数y =1xα(α>0且αʂ1)在(0,+ɕ)上单调递减,故ʏii -11x αd x >1iα(i ȡ3),从而当αʂ1时,ðni =11i α<1+12α+ðni =3ʏii -11x αd x =1+12α+ʏn21x αd x =1+12α-1(α-1)x α-1n 2=1+12α+1(α-1)2α-1-1(α-1)nα-1.㊀㊀利用这个不等式可以得到一些常见的不等式.若α=12,则ðn i =11i<1-32+2n =2n -1+(2-32)<2n -1.㊀㊀当α>1时,ðni =11iα<1+12α+1(α-1)2α-1=1+α+1α-1 12α.特别地,若α=2,则ðni =11i 2<1+2+12-1 122=74;若α=3,则ðni =11i3<1+3+13-1 123=54;若α=32,则ðni =11ii<1+32+132-1 1232=1+524<3;若α=1,则1n<ʏnn -11x d x =l n x nn -1=l n n -l n (n -1),从而可以得到12+13+ +1n +1<ʏn +111xd x =l n (n +1),1n +1+1n +2+ +12n<ʏ2nn1xd x =l n2.㊀㊀另一方面,1n -1>ʏnn -11xd x =l n x n n -1=l n n -l n (n -1),则1+12+13+ +1n -1>ʏn11x d x =l n n .㊀㊀当α=1时,借助定积分的几何意义上述不等式42热点追踪还可以进一步加强.图1是函数y =1x的部分图象,显然S 曲边梯形A B C F <S 梯形A B C F ,于是ʏn +1n1x d x <12(1n +1n +1),得l n (1+1n )<12(1n +1n +1),令n =1,2, ,n ,并采用累加法可得1+12+13+ +1n>l n (n +1)+n2(n+1)(n ȡ1).图1例2㊀证明:l n 42n +1<ðni =1i4i 2-1(n ɪN ∗).分析㊀由于i 4i 2-1=14(12i -1+12i +1),l n 42n +1=14l n (2n +1),故证明l n (2n +1)<ðni =1(12i -1+12i +1).构造函数f (x )=12x +1,显然f (x )单调递减,考虑到ðni =1(12i -1+12i +1)的结构,对函数f (x )采用类似图1中的梯形面积放缩.证明㊀由分析得ʏii -112x +1d x <12(12i -1+12i +1),故12l n (2n +1)=ʏn012x +1d x =ðni =1ʏii -112x +1d x <12ðni =1(12i -1+12i +1),不等式两边除以12即为所证.例3㊀证明13+15+17+ +12n +1<12l n (n +1)(n ɪN ∗).分析㊀若考虑函数y =12x +1,则有12i +1<ʏii -112x +1d x ,则ðni =112i +1<ðni =1ʏii -112x +1d x =ʏn012x +1d x =12l n (2x +1)n0=12l n (2n +1),达不到所证的精度,必须改变定积分放缩的精度.证明㊀结合不等式的右边,考虑函数f (x )=1x.如图2所示,在区间[i ,i +1]上,取区间的中点i +12,并以1i +12为高作矩形A E F B ,则S 矩形A E F B <ʏi +1i 1x d x .于是有22i +1=1i +12<ʏi +1i1xd x ,则ðni =122i +1<ðni =1ʏi +1i1xd x =ʏn +111xd x =l n (n +1),即ðn i =112i +1<12ln (n +1).图2例4㊀设n 是正整数,r 为正有理数.(1)求函数f (x )=(1+x )r +1-(r +1)x -1(x >-1)的最小值;(2)证明:n r +1-(n -1)r +1r +1<n r<(n +1)r +1-nr +1r +1;(3)设x ɪR ,记[x ]为不小于x 的最小整数,例如[2]=2,[π]=4,[-32]=-1.令S =381+382+383+ +3125,求[S ]的值.(参考数据:8043ʈ344 7,8143ʈ350 5,12543ʈ625 0,12643ʈ631 7.)分析㊀出题者的本意是利用第(1)问中的伯努利不等式来证明后两问,但这里我们利用积分来证明.证明㊀(1)f m i n (x )=0(求解过程略).(2)因为r 为正有理数,函数y =x r 在(0,+ɕ)上单调递增,故ʏnn -1x r d x <nr,而52热点追踪ʏnn -1x rd x =x r +1r +1n n -1=n r +1-(n -1)r +1r +1,故n r +1-(n -1)r +1r +1<n r.同理可得n r<ʏn +1n x rd x =x r +1r +1n +1n =(n +1)r +1-n r +1r +1,从而n r +1-(n -1)r +1r +1<n r<(n +1)r +1-n r +1r +1.(3)由于i 13<ʏi +1i x 13d x <(i +1)13,故S =ð125i =81i13<ð125i =81ʏi +1ix 13dx =ʏ12681x 13dx =34x 4312681=34(12643-8143),34(12543-8043)=34x 4312580=ʏ12580x 13d x =ð124i =80ʏi +1ix 13d x <ð124i =80(i +1)13=S .34(12543-8043)<S <34(12643-8043).代入数据,可得34(12543-8043)ʈ210.2,34(12643-8143)ʈ210.9.由[S ]的定义,得[S ]=211.2㊀利用积分证明函数不等式我们知道ʏx 2x 1fᶄ(x )d x =f (x 2)-f (x 1),因此,对于与f (x 2)-f (x 1)有关的问题,可以从定积分的角度去思考.若f (x )的导数f ᶄ(x )在区间(a ,b )上单㊀图3调递减且f ᶄ(x )为凹函数,如图3所示.设A C 的中点为B ,过点B 作B G ʅx 轴与f (x )交于点G ,过点G 作f (x )的切线与直线AH 和C D 分别交于点F 和I .设A (x 1,0),C (x 2,0),则f (x 2)-f (x 1)=ʏx 2x 1fᶄ(x )d x =S 曲边梯形A C J H ,S 矩形A C D E =f ᶄ(x 2+x 12)(x 2-x 1).因为S 曲边三角形E G H >S әE F G =S әD I G >S 曲边三角形J D G ,S 曲边梯形A C J H -S 矩形A C D E =S 曲边三角形E G H -S 曲边三角形J D G >0,于是有f (x 2)-f (x 1)x 2-x 1>f ᶄ(x 2+x 12).借助上述几何意义,一般地我们有如下结论.(1)若函数f (x )的导数f ᶄ(x )在区间(a ,b )上为凹函数,则对于任意的a <x 1<x 2<b ,有f (x 2)-f (x 1)x 2-x 1>f ᶄ(x 2+x 12);(2)若函数f (x )的导数f ᶄ(x )在区间(a ,b )上为凸函数,则对于任意的a <x 1<x 2<b ,有f (x 2)-f (x 1)x 2-x 1<f ᶄ(x 2+x12).例5㊀(1)函数f (x )=l n x ,因为f ᶄ(x )=1x在(0,+ɕ)上为凹函数,则对任意0<x 1<x 2,有l n x 2-l n x 1x 2-x 1>1x 2+x 12,即x 2-x 1l n x 2-l n x 1<x 1+x 22,此为对数均值不等式.(2)函数f (x )=x l n x ,因为f ᶄ(x )=1+l n x 在(0,+ɕ)上为凸函数,则对任意0<x 1<x 2,有x 2l n x 2-x 1l n x 1x 2-x 1<1+l n x 2+x 12.许多考题都是以此为背景命题,比如,如下高三模拟考试的压轴题.例6㊀已知函数f (x )=l n x -a x 22+(a -1)x -32a(a >0),在函数f (x )的图象上是否存在不同两点A (x 1,y 1),B (x 2,y 2),线段A B 中点的横坐标为x 0,直线A B 的斜率为k ,使得k >f ᶄ(x 0).简证㊀由于f ᶄ(x )=1x-a x +a -1(a >0)在(0,+ɕ)上为凹函数,可见结论成立!例7㊀设函数f (x )=xex ,若x 1ʂx 2,且f (x 1)=f (x 2),证明:x 1+x 2>2.分析㊀本题的本质是极值点偏移问题,常见证法是利用对称性构造函数,这里采用定积分来证明.证明㊀不妨设x 1<x 2,由f ᶄ(x )=1-x ex ,可知f (x )在(-ɕ,1]上单调递增,在[1,+ɕ)上单调递减,且f (0)=0.当x >0时,f (x )>0,可知0<x 1<1<x 2.设x 1e x 1=x 2e x 2=t ,则x 1+x 2=t (e x 1+e x 2),x 2-x 1=t (e x 2-e x 1),考虑函数y =e x ,则根据定积分的梯形面积放缩有e x 2-e x 1=ʏx 2x 1e xd x <(e x 1+e x2)(x 2-x 1)2,则x 2-x 1t <12 x 2+x 1t(x 2-x 1),故x 1+x 2>2.(作者单位:广东省中山市中山纪念中学)62。
定积分的计算和积分不等式摘要:本文首先介绍了定积分的几种计算方法:牛顿—莱布尼兹公式,分部积分法,换元积分法,积分值的估计。
其次再介绍了积分不等式的几种证明:用微分学的方法证明积分不等式,利用被积函数的不等式证明积分不等式,在不等式两端取变限积分证明新的不等式,利用积分性质证明不等式,利用积分中值定理证明不等式。
关键字:定积分;牛顿—莱布尼兹公式;分部积分法;换元积分法The Definite Integral Compute and Integral InequalityAbstract: In this paper, firstly, mainly introduced a few kinds computational method of definite integral: Newton-Leibniz, definite integration by parts, integration by substitution, definite integral by estimate value. Secondly, this paper also introduced a few kinds of integral invariant: using the method of differential calculus to prove integral invariant; making use of integrand invariant to prove integral invariant; using transfinite integrate to prove integral invariant; using integral characteristic to prove integral invariant; making use of integral mean value theorem to prove integral invariant.Key word:Definite integral; Newton-Leibniz; definite integration by parts; integration by substitution.引言数学分析是数学专业中一门重要的基础课,定积分的计算和积分不等式无疑是数学分析中一个重要的方面。
利用定积分证明不等式作者:王小林来源:《学周刊·C》2013年第06期摘要:在中学和大学的教学中,关于不等式的证明方法,已有较多的人做了研究,较详细地介绍了证明不等式的若干种常用的方法,笔者在教学中发现,结合利用定积分的几何意义和平面图形的面积大小关系,来证明某些不等式,学生更容易理解,证明过程也更简单。
关键词:定积分;证明;不等式利用定积分证明不等式,主要是利用定积分的几何意义和平面图形的面积大小关系建立不等关系,进而证明不等式。
一、用定积分证明代数不等式例1.证明x>0时,■原高等数学教材中通常利用拉格朗日中值定理来证明这个不等式,方法如下:证明:首先取函数f(x)=1n(1+x),并取闭区间[0,x]显然f(x)在[0,x]上满足拉格朗日中值定理的条件于是有f(x)-f(0)=f′(ξ)(x-0)(0因为f(0)=0,f′(x)=■故上式即为1n(1+x)=■(0由于0x>0时,■对上述证明过程,部分数学基础较差的学生总是觉得难于理解,为什么要取函数f(x)=1n(1+x),并取闭区间[0,x],使用拉格朗日中值定理得出的结论还要作替换才能找到不等关系。
二、用定积分证明数列不等式例2.求证1+■+■+…+■证明:函数y=■(x>0)是单调递减的函数,其图形如图1所示,在曲线y=■上取两点C (k,■)和Dk+1,■,再分别过这两点引x轴的垂线,观察图形,矩形ABDE的面积■上面各式两边相加得到■+■+■+…+■所以■+■+■+…+■故1+■+■+■+…+■事实上,对函数y=■(x>0,P>0,且P≠1)来说,具有与图1类似的图形,矩形ABDE的面积于是有不等式■以上各式两边相加,并记1+■+■+…+■=Sn,得到,Sn-1Sn当p=2时,就证明了例题2当p=■时得不等式2■-12■+■-1■,由于n>1,■+■-1■>0于是得不等式1+■+■+…+■>■(n>1)三、利用函数y=xp-1(x>0,p>1)的定积分,来证明著名的Young不等式例3.设a≥0,b≥0,■+■=1即(q=■),则有ab≤■+■(p>1)证明:函数y=xp-1(p>1)在x>0时是单调递增的(如图2所示)取x轴上点A(a,0),y轴上点B(0,b),过点A引x轴的垂线,交曲线于y=xp-1于E,过点B引y轴的垂线,交曲线于y=xp-1于D,交线段AE于C,则矩形OACB的面积≤曲边梯形OAE的面积+曲边梯形ODB的面积,又由y=xp-1得x=y■于是ab≤■xp-1dx+■y■dy积分得,ab≤■+■b■,而q=■所以ab≤■+■特别地,取p=q=2,得到a2+b2≥2ab。
利用微积分证明不等式的方法摘要微积分学是高等数学课程中的主要组成部分,本文通过具体实例阐述了应用微积分学理论证明不等式的4种方法。
关键词微积分;不等式;证明1 利用可导函数的单调性证明不等式法1.1依据此类方法根据可导函数的一阶导数的符号与函数单调性关系的定理来解决问题。
定理1,设函数在[a,b]连续,在(a,b)内可导,如果在(a,b)内(或),那么函数在[a,b]上单调增加(或单调减少)。
此定理反映了可导函数一阶导数的符号与函数单调性之间的关系,因此可以利用一阶导数研究函数在所讨论区间上的单调性,利用导数来判断函数的增减性往往比用定义判断函数的增减性方便。
1.2证明方法1)构造辅助函数,取定闭区间[a,b];2)研究在[a,b]上的单调性,从而证明不等式。
1.3实例例1 ,证明不等式:。
证明令,易知在上连续,且有,由定理知在上单调增加,所以由单调性定义可知,即。
因此。
2 利用拉格朗日中值定理证明不等式法2.1依据此类方法根据拉格朗日中值定理。
定理2,(拉格朗日中值定理) 若函数满足下列条件:(i)在闭区间[a,b]上连续;(ⅱ)在开区间(a,b)内可导,则在(a,b)内至少存在一点,使得。
拉格朗日中值定理反映了函数或函数增量与可导函数的一阶导数符号之间的关系。
2.2证明方法1)构造辅助函数,并确定施用拉格朗日中值定理的区间[a,b];2)对在[a,b]上施用拉格朗日中值定理;3)利用与a,b的关系,对拉格朗日公式进行加强不等式。
2.3实例例2 ,证明:当。
证明构造函数,因在上连续,(1,1+x)在上可导,f(t)在[1,1+x](x>0)上满足拉格朗日条件,于是存在,使,因,所以,即。
3 用定积分理论来证明不等式法3.1依据此类方法根据积分的性质和变上限的定积分理论。
性质1 ,设与为定义[a,b]在上的两个可积函数,若,则。
定理3,(微积分学基本定理)若函数在[a,b]上连续,则由变动上限积分,定义的函数在[a,b]上可导,而且。
利用定积分证明数列和型不等式数列和型不等式是数列中项的和与数列项的不等关系之间的一种定理。
利用定积分可以证明数列和型不等式。
首先我们先回顾一下数列和的定义。
对于n个实数a1, a2, ..., an,我们定义它们的和为S = a1 + a2 + ... + an。
数列和型不等式就是研究这种和与数列项的不等关系。
接下来我们将使用定积分来证明数列和型不等式。
定积分是微积分中一个重要的概念。
给定一个函数f(x),我们可以通过定积分来计算函数在一些区间上的面积。
假设我们有一个数列{an},其中每个项an都是一个非负实数。
我们可以定义一个函数f(x),其在区间[0, n]上的积分值就是数列{an}的和。
我们令S = ∫₀ⁿ f(x)dx。
现在我们来看定积分的性质。
对于一个非负函数f(x),如果在区间[a, b]上有f(x) ≤ g(x),那么∫ₐᵇf(x)dx ≤ ∫ₐᵇ g(x)dx。
也就是说,如果函数f(x)在整个区间上都小于等于另一个函数g(x),那么f(x)的积分值一定小于等于g(x)的积分值。
现在我们可以使用定积分来证明数列和型不等式了。
假设{an}是一个非负数列,且存在一个非负函数f(x),使得在整个区间[0, n]上都有0≤ an ≤ f(x)。
我们令S = ∫₀ⁿ f(x)dx。
根据定积分的性质,对于任意的项an,有0 ≤ an ≤ f(x)。
因此对于数列的和S,我们有0 ≤ S ≤ ∫₀ⁿ f(x)dx。
根据定义,∫₀ⁿ f(x)dx就是数列{an}的和。
因此我们得到了数列和型不等式:0 ≤ S ≤ a₁ + a₂ + ... + an。
数列和型不等式有一个重要的应用就是用来估计数列的和。
当我们能找到一个函数f(x),使得在整个区间[0, n]上都有an ≤ f(x)成立时,我们可以通过计算∫₀ⁿ f(x)dx来得到数列{an}的一个上界。
这个上界就是数列的和的一个估计值。
总结起来,利用定积分可以证明数列和型不等式。
使用黎曼和巧妙证明一类和式不等式
摘要:借助黎曼和几何意义得到一类和式不等式的巧妙证明方法:考虑通过图像看出逼近定积分的过程中产生的一系列黎曼和总是大于或小于定积分值,从而建立黎曼和与定积分的不等关系,而和式又常常就是黎曼和,这样便建立了和式和定积分的不等关系,和式不等式便得以简化。
使用黎曼和精确放缩特性做加强命题:通过取出某些项使其不参与定积分的放缩来加强不等式。
关键词:定积分,黎曼和,和式不等式,证明与加强。
对于和式不等式,由于其变幻较为复杂,构造较为精巧,通常不易证明。
针对一类有特殊特征的和式不等式,除了使用通常的构造、不等式放缩以外,还可以用黎曼和巧妙证明,从而免去繁杂的构造和放缩,使其证明更加简洁优美。
黎曼和:对一个在闭区间[,]a b 有定义的实值函数f ,f 关于取样分割0,
,n x x 、01,,n t t -的黎曼和
定义为以下和式:
直观地说就是以标记点i t 到x 轴的距离为高,以分割的子区间为长的矩形的面积,它是求积分时在过程的中间形态,当n →+∞,矩形宽0→,则黎曼和就接近于定积分值。
例一(2012天津高考理科数学,20,第(3)问)证明12
2ln(21)21
n
i n i =<+-∑
()- *()n N ∈ 分析:本题作为第三小题,原解答使用了第二问的结论,进行构造颇为繁琐,若撇开前两问, 单对此不等式分析,发现12
ln(21)221
n
i n i =⇔<++-∑
原式,左边是分式的累加,右边是对数函数,联想到1ln ||dx x C x =+⎰,因而一个简洁的证明就是取2
21i -的不足黎曼和
证明:1
11
2
222121n n i dx i i ++=>--∑⎰由于 ……① 112222212121
n
n i dx i n x +=∴+<-+-∑
⎰
222
ln(21)2121
n
i n i n =∴+<+-+∑
222ln(21)22121
n
i n i n =∴++2<++-+∑
122ln(21)22121n
i n i n =+<++-+∑即,舍去221n + 即证得12ln(21)221
n
i n i =<++-∑
这样,通过不足近似值逼近时的黎曼和小于相应定积分值,即可轻松证得该和式不等式。
运用黎曼和求证和式不等式时利用的原理是在不足近似逼近中,黎曼和总小于定积分值,而在过剩近似逼近中,又总大于定积分值,利用这一点便可以把和式放大或缩小成一个短小的表达式,从而简化证明过程。
延伸一:由于使用了积分,因而和式不等式左右两边多项式次数差一次时均可考虑使用
而不必局限于从1
ln x x
∑到。
例二...2123n n
+++<*()n N ∈ 分析:左边是1
n
i i =()2F n n =1
n i i =n 曼和证明。
证明:1
2n
n i dx i x
=<⎰ ……② 12
2
22n
i n i =∴<- 2
121n
i n i =∴+< 1
2n
i n i
=∴< 注:这一不等式的更常用证法是利用
21
n n n n =<+- 延伸二:处理与有关的和式不等式,即使左右两边次数相差不为1,也可用黎曼和先放
大(或缩小)一步得到一个短小的表达式,再证该表达式比不等式另一边还要大(或小)
例三:证明:21
112n i n
i
-=>∑ *()n N ∈
分析:不等式左边多项式次数为-1次,右边多项式次数为1次,似乎不可以使用上述方法证
明,但考虑21
11
n i i
-=∑很难处理,不易化简,不易放缩,而且调和级
数是发散的,因而考虑用左边的和式的不足黎曼和比
2
n
还要大的思想来证明。
这是除了数学归纳法以外的一种可行的证明方法。
证明:
21
21111
n n i dx i
x -=>∑⎰ …③ 21
11
ln 2,n i n i
-=∴>∑
保留第一
个矩形,其余矩形用黎曼和逼近为定积分
而1
ln 2(ln 2),22
n n n -
=- 2ln 2ln 4ln 1,e =>=
1ln 20,2∴-> 2111ln 22n
i n
n i
-=∴>>∑
可见对于分式和式不等式,即使左右两边多项式系数差值不为1,经过适当变化后得到一个易于处理的中间值,再从中间值证明不等式,效果既快又好,且可以省去归纳法的书写之苦和证明n=k+1时假设成立时需要的放缩,更为方便。
总结:由于黎曼和的极限就是定积分,因而利用黎曼和证得的不等式通常放缩尺度很小,放缩精度很高,不会出现放缩过度的现象。
而且这样证明的不等式经常比实际求证的不
等式更强,比如例一的不等式用黎曼和放大后发现求证不等式左边加上2
21
n +不等式依然成
立,比如例三对不等式左边和式用黎曼和缩小后仍然比不等式右边大了1
ln 22
-,这些都说明
使用黎曼和证明一类和式不等式是一种精确度很高的非常好用的和式不等式放缩技巧,在和式表达式易于积分时可以有效优化解题过程。
有关放缩精度的进一步的思考:使用黎曼和证明和式不等式精度很高,而通过对求和
上下限进行调整,我们可以做到更精确地进行和式不等式放缩,从而可以得到一些加强结论 例一的加强结论:如果在222
ln(21)2121
n
i n i n =+<+-+∑
这一步往后不采用两边同时加2来凑出待证不等式,而是
1
123222121n n i i x ++=<--∑⎰11232222213213n n i i x ++=∴+<+--∑⎰ 1
21
122
ln(21)ln 3213
22ln(21)ln 32ln(21)2
21
3n i n i n i n n i +=+=∴<+-+-∴<+-++<++-∑
∑
1
122ln(21)ln 32213n i n i +=∴<+-++-∑ 是比1
22
ln(21)22121n
i n i n =+<++-+∑
+11
2
ln(21)221
n i n i =<++-∑
即更强的一个不等式。
完全可以考虑221
ln 3ln 333
e -+
<-+=-,
1 1
2215 ln(21)ln32ln(21)2ln(21) 21333
n
i
n n n i
+
=
∴<+-++<+-+=++ -
∑
稍微放大一点以消去题目的构造痕迹,将题目加强为
求证
1
1
25
ln(21) 213
n
i
n
i
+
=
<++ -
∑。
或者像那题天津高考题一样,再把左边缩小一点,就有
求证
1
25
ln(21) 213
n
i
n
i
=
-<+ -
∑,这样构造出来的和式不等式证明起来若不用黎曼和精确放缩的优势怕是难以下手了
通过对求和下限从2变为3,取出2
3
使其不参与放大,从而使放缩精度得到进一步提
高。
依据此理,将下限改为4,取出22
+
35
使其不参与放大,能使放缩精度再提高一步…这样
通过取出某些项使其不参与放缩,便可以完全避免放缩过度的情况,做到凭自己需求对和式不等式自由控制放缩程度,从而得心应手地处理和式不等式。