水处理与制氢站
- 格式:pptx
- 大小:155.99 KB
- 文档页数:40
水制氢工程案例全文共四篇示例,供读者参考第一篇示例:水制氢工程是一项利用水作为原料生产氢气的先进技术。
随着人们对清洁能源的需求不断增长,水制氢工程成为了当前研究的热点之一。
该技术通过电解水产生氢气,既可以应用于能源领域,也可以用于工业和交通领域,是一种环保、可持续的能源生产方式。
本文将介绍一些关于水制氢工程的案例,探讨其在实际应用中所取得的成就。
一、中国水制氢工程示范项目在中国,水制氢工程也取得了一些重要进展。
山东省烟台市就是一个成功案例。
该市利用水制氢技术建设了一座示范项目,实现了水电解制氢并应用于城市公交车和物流车的加氢站。
通过这个项目,烟台市成功利用了水资源和电力资源,实现了氢气的生产和利用,为城市交通提供了清洁、环保的能源,为全国水制氢技术的研究和推广做出了贡献。
二、国外水制氢工程案例除了中国,国外也有许多水制氢工程案例。
法国是欧洲水制氢技术应用最为广泛的国家之一。
法国政府大力支持水制氢技术的发展,通过政策扶持和资金支持,推动了水制氢工程的发展。
在法国,有很多用水制氢技术建设的氢能加氢站,用于供应城市公交车和出租车的氢燃料。
这些项目不仅为城市交通提供了清洁能源,也为水制氢技术在工业领域的应用提供了范例。
三、水制氢工程在能源领域的应用水制氢工程不仅可以应用于城市交通,还可以在能源领域发挥重要作用。
利用水制氢技术生产的氢气可以与天然气、生物气等混合,形成混合气体燃料,用于发电、供暖等领域。
这种混合气体燃料可以减少对传统石油能源的依赖,降低污染排放,是一种环保、可持续的能源生产方式。
四、水制氢工程的未来展望随着清洁能源的需求不断增加,水制氢技术有望成为未来能源开发的主要方向之一。
水制氢工程在城市交通和能源领域的应用已经取得一些成功的案例,但仍面临着一些挑战,如成本高、技术不够成熟等。
未来,需要进一步加大对水制氢技术的研究和开发力度,降低生产成本,提高产氢效率,推动水制氢工程的广泛应用。
第二篇示例:水制氢工程是一种利用水来制取氢气的技术。
制氢站的安全评价范本制氢站安全评价报告引言:制氢站是将水通过电解技术分解为氢气和氧气的设备,该设备可以广泛应用于多个领域,如能源生产、化工工业和交通运输等。
然而,制氢站的运营过程中存在一定的安全风险,因此需要进行全面的安全评价。
本报告将对制氢站的安全性进行评估,并提出相应的控制措施和建议,以确保制氢站的正常运营和安全性。
一、制氢站的工艺过程描述及相关安全风险1.工艺过程描述:制氢站的主要工艺过程包括水电解、气体处理和气体储存。
水电解是将水分解为氢气和氧气的过程,该过程需要电力供应。
气体处理是指对分解出的氢气和氧气进行过滤和干燥处理,以确保气体纯度符合要求。
气体储存是将处理后的氢气和氧气储存起来,以备后续使用。
2.相关安全风险:制氢站的运营过程中存在以下安全风险:-电解过程中可能发生意外爆炸事故,导致人员伤亡和设备损坏。
-氢气具有易燃易爆特性,在储存和使用过程中可能发生泄漏、爆炸等事故。
-氧气具有强氧化性,可能导致火灾和爆炸事故。
-气体处理过程中可能存在燃烧、破裂等风险。
二、制氢站的安全评价方法及结果1.安全评价方法:本次安全评价采用了定性与定量相结合的方法,通过对制氢站的工艺流程、设备状况、环境因素等进行评估,综合考虑相关安全风险因素。
2.安全评价结果:根据评价分析,制氢站的安全问题主要包括:-电解过程中的意外爆炸风险。
-氢气和氧气储存过程中的泄漏和爆炸风险。
-气体处理过程中的燃烧和破裂风险。
三、制氢站安全控制措施和建议1.电解过程控制措施:-按照相关标准要求选择合适的电解设备,确保设备可靠性和安全性。
-定期进行设备检查和维护,确保电解过程的正常运行。
-配备适当的防爆设备和防火设施,减少意外爆炸事故的风险。
2.气体储存过程控制措施:-建立完善的气体泄漏检测系统,确保及时发现气体泄漏,并采取相应的控制措施。
-选择合适的气体储存设备,确保设备的安全性和可靠性。
-加强气体储存区域的防火、防爆措施,减少爆炸风险。
6制氢站系统6.1制氢站系统概述:当一对电极浸没在电解液中,中间隔以防止气体渗透的隔膜而构成的水电解池,当通以一定的直流电时,在阴极和阳极分别发生如下化学反应,将水电解为氢气和氧气。
阴极:2H2O + 2e → H2↑+ 2OH -阳极:2OH - - 2e → H2O + 1/2 O2↑总反应:2H2O → 2H2↑+ O2↑我厂制氢设备选用中国船舶工业总公司第七研究院第七一八研究所生产的CNDQ-10/3.2型一体化中压水电解制氢设备。
设备选用两套制氢装置公用一套循环冷却水系统的制氢形式。
由包括主体电解槽在内的三个框架、整流柜、控制柜、自动仪表、补水箱、补水泵、碱液箱及闭式循环冷却水装置等组成。
电解槽的电源经过硅整流装置,以KOH做电解质,五氧化二钒做添加剂,电解除盐水来制得高纯度的氢气。
整个制氢系统采用微机监控,全自动操作,以保证发电机氢冷却系统的安全稳定运行。
6.2 制氢站的工艺流程:6.2.1氢气系统流程:电解槽→氢分离器→气体洗涤器→气水分离器→冷却器→干燥器→└→排空└→排空框架二→储氢罐6.2.2氧气系统流程:电解槽→氧分离器→排空6.2.3循环冷却水系统流程:工业水来水↓机房来除盐水→循环水箱→循环水泵→换热器→氢、氧分离器内部蛇管→循环水箱└→气体冷却器内部蛇管6.2.4补充水流程:机房来除盐水→蒸馏水箱→补水泵→氢洗涤器→氢气分离器→电解槽6.2.5碱液循环系统流程:碱循环泵→电解槽→氢分离器与氧分离器→直角过滤器→碱循环泵6.2.6排污系统流程:汽水分离器→氢气水封→排污、放空框架三排污口→排水槽6.3 制氢站的主要设备规范:6.3.1框架一:6.3.2框架二: 2套,减压后压力:0.8-1.0MPa6.5 制氢站的控制标准与发电机的运行监督:6.5.2氢冷发电机的运行监督:6.5.2.1氢冷发电机气体标准:氢气纯度不小于98%,含氧量不大于2%,露点小于-5℃。
6.5.2.2每天早班对氢冷发电机内的氢气纯度和湿度各分析一次(特殊情况增加分析次数),并记录氢气纯度分析仪、湿度检测仪指示值,发现异常情况,应及时汇报班长和值长。
选择题1.阳床失效后,最先穿透树脂层的阳离子是()。
(A)Fe3+;(B)Ca2+;(C)Na+;(D)Mg2+。
2.氯的杀菌能力受水的()影响较大。
(A)PH值;(B)碱度;(C)温度;(D)含盐量。
3.循环式冷却水中,二氧化碳含量的减少将使()析出。
(A)CaCO3;(B)CaSO4;(C)CaCL2;(D)Ca(OH)2。
4.电厂减少散热损失主要是减少设备外表面与空气间的换热系数,通常利用增加()厚度的方法来增大热阻。
(A)保温层;(B)绝缘层;(C)钢管壁;(D)厂房墙壁。
5.热力机械工作票中的工作许可人一般由()担任。
(A)运行副主任;(B)运行专职工程师;(C)运行正副班长;(D)检修正副班长。
6.在除盐设备前设置预脱盐设备,除盐设备的酸、碱耗()。
(A)降低;(B)增加;(C)不变;(D)酸耗降低,碱耗不变。
7.在水流经过滤池过程中,对水流均匀性影响最大的是()。
(A)滤层高度;(B)配水装置;(C)人口装置;(D)滤料的配比8.混床的中间配水装置位于()。
(A)混床罐体的中间;(B)分层后阳离子交换树脂侧;(C)分层后阴离子交换树脂侧;(D)分层后阴阳离子交换树脂交界处。
9.提高再生液温度能增加再生程度,主要是因为加快了()的速度。
(A)离子反应;(B)内扩散和膜扩散;(C)再生液流速;(D)反离子的溶解。
10.鼓风式除碳器一般可将水中的游离CO2含量降至()以下。
(A)50mg/L;(B)5mg/L;(C)10mg/L;(D)15mg/L。
11.离子交换器失效后再生,再生液流速一般为()。
(A)1~3m/h;(B)8~10m/h;(C)4~8m/h;(D)8~15m/h。
12.机械搅拌加速澄清池的加药位置一般在()。
(A)进水管道中;(B)第一反应室;(C)第二反应室;(D)混合区。
13.除盐设备使用的石英砂在投产前常需要()。
(A)大量水冲洗;(B)用5%碱浸泡;(C)用除盐水浸泡24小时;(D)用15%的盐酸浸泡。
附件:中国大唐集团公司火电机组能耗指标分析指导意见第一章总则第一条为进一步规范节能降耗工作管理,落实以热效率为核心的能耗管理思路,指导基层企业的能耗指标分析工作,提高能耗分析水平,制定本指导意见。
第二条能耗指标分析是指通过对能耗指标的实际值与设计值或目标值的对比,分析能耗指标偏差,发现设备运行中经济性方面存在的问题,从而为运行优化调整、设备治理和节能改造提供依据和方向。
第三条能耗指标分析应坚持实时分析与定期分析相结合,定性分析和定量分析相结合,单项指标分析与综合指标分析相结合的原则。
第四条系统各单位要建立健全能耗指标分析体系,完善能耗指标分析制度,建立能耗指标分析诊断的常态机制,及时发现问题、消除偏差,不断提高机组的经济性。
第五条能耗指标分析是机组能耗分析的基础工作,各单位要在日常能耗指标分析的基础上,根据机组实际情况,定期开展专业诊断分析工作,全面、系统的对机组的能耗状况进行诊-1-断,不断挖掘节能潜力。
第六条本指导意见适用于各上市公司、分公司、省公司、基层火力发电企业。
第二章能耗指标体系第七条火电机组能耗指标体系主要由锅炉、汽轮发电机组以及附属设备及其系统的各类能耗指标等组成。
第八条锅炉能耗指标主要是指锅炉效率,影响锅炉效率的有排烟热损失(q2)、化学不完全燃烧热损失(q3)、机械不完全燃烧热损失(q4)、散热损失(q5)、灰渣物理热损失(q6)。
其主要影响指标有排烟温度、飞灰含碳量、漏风率、氧量等。
第九条汽轮发电机组的能耗指标主要指汽轮机效率(热耗率),影响汽轮机效率的主要是热端效率、冷端效率、通流效率、回热效率等。
主要影响指标有主汽参数、再热汽参数、缸效率、真空度、回热加热系统参数等。
第十条机组厂用电指标主要是指厂用电率,影响厂用电率的主要辅机指标有吸风机、送风机、一次风机、排粉机、磨煤机、脱硫增压风机、脱硫循环泵、脱硫磨机、二次风机、流化风机、冷渣风机、循环水泵、(空冷机组)冷却风机、给水泵、凝结水泵、凝结水升压泵等的耗电率。
水电解制氢加氢一体站地方标准摘要:一、背景介绍二、水电解制氢技术简介三、制氢加氢一体站地方标准概述四、影响产气量的因素五、实际应用案例六、结论与展望正文:一、背景介绍随着全球能源危机和环境污染问题日益严重,氢能作为一种清洁、高效的能源逐渐受到关注。
我国政府也积极推动氢能的发展,将氢能纳入新能源汽车产业发展规划。
制氢加氢一体站作为氢能产业链的重要环节,其安全技术规范的制定具有重要意义。
近日,广东省应急管理厅发布了《制氢加氢一体站安全技术规范(报批稿)》地方标准,旨在规范和提高制氢加氢一体站的安全性能。
二、水电解制氢技术简介水电解制氢技术是一种利用电解水方法生产氢气的技术。
在这个过程中,通过电解槽将水分解为氢气和氧气。
目前,市场上已有多种水电解制氢技术,如ALKEL系列水电解制氢技术,由亚联氢能与北京化工大学团队合作研发。
该技术有效降低电解电压,减少电解过程的整体能耗,提升电解效率。
三、制氢加氢一体站地方标准概述《制氢加氢一体站安全技术规范(报批稿)》地方标准按照GB/T 1.1-2020《标准化工作导则第1部分:标准化文件的结构和起草规则》的规定起草。
本文件由广东省应急管理厅提出并组织实施,广东省安全生产标准化技术委员会(GD/TC 81)归口。
文件内容涵盖了制氢加氢一体站的设计、施工、验收、运行、维护、安全管理等方面,为我国制氢加氢一体站的建设及运营提供了重要参考。
四、影响产气量的因素在水电解制氢过程中,产气量受到多种因素影响,包括电流大小、极板距离、极板表面积、电解液浓度、电解液温度等。
其中,电流大小是影响产气量最大的因素。
此外,为了确保氢气燃烧的安全性,需要安装滤气装置和flashback防止器。
五、实际应用案例近年来,我国水电解制氢加氢一体站项目不断增多,如广东、浙江等地。
这些项目在实际运营中取得了良好的效果,为氢能产业发展提供了有力支持。
六、结论与展望随着氢能技术的不断进步和政策支持的加大,我国水电解制氢加氢一体站的建设将逐步规范化、标准化。
6科技资讯科技资讯S I N &T NOLOGY I NFORM TI O N 2008N O .13SC I ENC E &TEC HN OLO GY I NFO RM ATI O N 工程技术电厂化学水处理系统是电力生产过程中非常重要的外围辅机系统,化学水处理控制系统具有控制设备多、工艺流程复杂、设备分散等特点,环境条件恶劣,传统的强电集中控制方式已不能适应大型火电厂化学水处理系统自动化的要求,目前在国内大型火电厂化学水处理系统中已逐渐取代常规的强电集中控制方式。
新疆天富南热电化学水处理程控系统中,P L C 的优良性能得到充分体现。
1系统概述新疆天富南热电厂2×125M W 新建工程的综合水处理控制系统,包括程控和监控两大部分。
控制系统已经实现了P L C +工控机C R T 操作员站形式进行监视控制。
控制室设在锅炉补给水处理车间,主要控制范围为锅炉补给水处理系统、循环水处理系统及综合水泵房设备,并且实现了与制氢站的联网,使得工作人员能够在化水车间对制氢站进行监控、操作,以实现制氢站在无人值班时正常运行。
系统采用程控、远控及就地操作相结合的控制方式。
2系统组成P L C 控制系统是该程控系统的核心,其采用工控机为上位机、P L C 系统为下位机的两级控制模式,上、下位机均分别采用双机热备形式。
P LC 选用Si e m e ns 公司S 7-400冗余控制器,控制系统采用双机热备冗余方式,通过远程I /O 的方式连接现场需要监测与控制的点,远程I /O 由EM 200通讯处理器和S7300系列I /O 模块组成。
主控制系统热备系统和远程I /O 控制站之间采用高性能的冗余Pr of i bus 工业总线传输网络,实现信息的可靠、安全、稳定的传输。
上位计算机系统安装CP1613通讯卡,与P L C 控制单元之间采用工业以太网传输网络。
以太网属国际标准,工业以太网已达到高传输安全性和可靠性要求,现已广泛用于程序维护、向M I S 和M E S 系统传递工厂数据、监控、连接人机界面、记录事件和告警。
嘉峪关宏晟电热有限责任公司二期工程2X300MW机组锅炉补给水处理系统仪表和控制技术规范书目录1.总则2.技术规范2.1控制对象2.2控制方式2.3控制要求2.3.1 总则2.3.2 锅炉补给水处理系统监控要求2.4技术要求3.设备规范3.1总的要求3.2可编程控制器(程控系统)3.2.1技术要求3.2.2中央处理单元CPU3.2.3输入/输出(I/O)模件3.2.4操作员站3.2.5通讯3.2.6编程3.3控制盘、台、柜及按钮3.4现场仪表3.5设备数据4.供货范围5.工程技术服务6.用户工作7.设计配合与资料交接8.备品备件及专用工具9.质量保证和试验10.附件1.总则:1.1 本规范书的使用范围仅限于嘉峪关宏晟电热有限责任公司二期2×300MW 机组锅炉补给水处理控制系统。
1.2本规范书提出的是最低限度的技术要求,并未对一切技术细节作出规定,也未充分引述有关标准和规定的条文,承包商应提供技术和性能满足本规范书和有关工业标准要求的优质产品。
1.3如承包商没有以书面形式对本规范书的条文提出异议,那么业主可以认为承包商提供的产品完全满足本规范书和有关工业标准的要求。
1.4本规范书作为订货合同的附件,与合同正文具有同等的法律效力。
2.技术规范2.1 控制对象2.1.1补给水处理系统:2.1.1.1本期工程为2×300MW凝汽式轮发电机组,配2X1025t/h自然循环汽包锅炉。
其锅炉补给水处理系统为:工业水→生水池→生水泵→生水加热→机械加速澄清器→加药→机械过滤器→清水池→清水泵→高效过滤器→阳床→中间水箱→中间水泵→阴床→混床→除盐水箱、最后经除盐水泵送至主厂房。
2.1.1.2补给水处理系统主要设备配置(详见10.2:锅炉补给水处理系统图及公用水泵房系统图)A.生水池1座(2格)B.生水泵2台C. 机械加速澄清器2座D. 高效过滤器2台E.清水池1座(2格)F.清水泵2台D. 双室阳离子交换器2台E. 强碱阴离子交换器2台F. 混合离子交换器2台G. 除二氧化碳器、除二氧化碳风机2组H. 阳树脂储存罐1台I. 阴树脂储存罐1台J. 除盐水箱2座K. 除盐水泵2台L. 中间水箱2座M. 中间水泵2台N. 阳床再生专用泵1台O. 阴床再生专用泵1台P. 罗茨风机3台Q. 压缩空气储气罐2座R. 浓酸储存罐2台S. 浓碱储存罐2台T. 酸计量箱2台U. 碱计量箱2台V. 中和水泵2台W. 中和水池1座(2格)X. 助凝剂加药装置1套Y. 凝聚剂加药装置1套Z. 电动门28台(其中两台为调节式)AA. 系统所属的气动78台(其中两台为调节式)2.2 控制方式2.2.1 本工程锅炉水系统控制设一个控制室,主要包括补给水处理程控、凝结水处理程控、制氢站控制等,调试终端、系统的操作员工作站、补给水处理控制站布置于锅炉补给水处理控制室,凝结水处理控制站布置于凝结水处理控制设备间,制氢系统控制站布置于制氢控制室。
火电厂实现废水零排放的改进付丽丽摘㊀要:介绍了某发电公司实施废水零排放,采取的设备系统改造㊁运行调整措施以及建立全厂水量平衡图分析,制订了科学㊁合理的回用水方案,确保全厂废水量合理分配㊁综合利用,实现了全厂废水零排放的目的,达到了国家新形势下环境保护及节能减排综合治理的要求㊂关键词:废水;零排放;调整;改进一㊁引言某发电公司一期工程为2ˑ350MW机组,锅炉为2ˑ1177t/h亚临界㊁自然循环的循环流化床锅炉,汽轮机形式为直接空冷,冬季给城市市区供热,供暖面积达到了800万平方米㊂供暖设备热网换热器采用进口设备,对来水水质有严格要求,硬度小于600ug/l,pH大于8.5,在运行期间热网循环水要不断地进行排污,平均排水50t/h才能够达到水质要求,这样增加了化学水处理系统制水量,废水排放量相应增加,废水排水管道系统设计结构的不合理,产生的废水水量得不到充分利用只能够外排,造成水资源浪费发电成本增加,并且达不到环保要求㊂二㊁厂内供水㊁排水管网流程(一)厂内用水管网流程厂内来水由距离厂区约13公里的水源,厂内设有2个2000m3工业消防蓄水池㊁1个200m3生活蓄水池,用于全厂的工业水㊁辅机冷却水㊁生水㊁消防水系统的供给,工业水系统是由3台工业水泵(167t/h)供给,主要用于全厂工业用冷却水系统的用水,包括热网转机㊁制氢站冷却水㊁气化风机冷却水㊁油区以及其他转机设备冷却;辅机冷却水系统是由3台辅机冷却水泵(2900t/h)供给,用于#1㊁2机开式冷却水;生水系统是由3台生水泵(2台160t/h㊁1台250t/h)供给,用于化学水处理设备制水;消防水系统是由2台电动消防水泵(280t/h)和1台柴油机消防水泵(560t/h)供给,用于全厂消防水系统㊂(二)厂内废水排水管网改造前的流程厂区内废水水质分为两部分:一部分高含盐量的废水排水进入煤水处理清水池用于输煤系统冲洗㊁灰场喷洒㊁除灰㊁除渣和搅拌机加湿用水,主要来源于化学水处理反渗透浓水㊁离子交换器排水的中和水池,辅机冷却水塔排污水㊂生活污水处理系统排水至工业废水处理系统㊂另一部分是高浊度废水进入工业废水处理系统处理后进一步回用,主要回用于辅机冷却水的补充水和灰场,高浊度的废水来源于化学水处理预处理多介质过滤器排水㊁机组排水槽排水㊁油区和气化风机冷却水用水排水㊂冬季期间,热网转机冷却水排至工业废水处理系统,热网循环水排污水排入辅机冷却塔前池,制氢站冷却水排至辅机冷却塔前池㊂图1 改进前的排水流程(三)存在的问题首先,冬季供暖期间,热网转机冷却水是由工业水管网直接提供,热网转机冷却水耗水量较大,冷却水量为50t/h,冷却后的工业水直接进入工业废水系统,造成工业废水系统处理负荷较重,不能处理的工业废水溢流至雨水系统,造成雨水系统废水的经常性外排;其次,热网回水系统因化学监督要求,需要不定期根据水质标准进行排污操作,排污水直接排至工业废水处理系统,作为辅机冷却塔补水,造成辅机冷却塔水池水位不稳定;最后,制氢站循环冷却水也使用工业水作为水源,冬季作为防冻冷措施需要连续性投入,冷却后工业水排至辅机冷却塔前池,加重了辅机冷却塔水池水位及药剂浓度调整的难度㊂冬季热网系统循环水系统排污和制氢站的冷却水的同时连续性排放,也造成辅机冷却塔经常性的溢流,再加上生活污水系统每天150 200t的处理水量,这几类水都进入雨水系统,废水产量比较大,造成我厂每天851技术与检测Һ㊀有废水量2450 3200t,无法内部消化,必须外排㊂不仅造成水资源的浪费,也增加我厂运行成本,全厂主要系统废水量情况,如表1所示㊂表1㊀全厂主要系统废水量情况名称热网转机冷却水量热网循环水排水量制氢站转机冷却水量生活污水处理水量化学水处理废水量合计废水量(t/d)12001400600 1000500 600150 200120018002450 3200三㊁改进措施为了实现我厂废水的综合利用,达到废水零排放,我厂主要分为三个步骤进行㊂第一,通过设备改进措施实现废水的综合利用㊂第二,进行运行调整措施的优化㊂第三,实施全厂动态水平衡图的绘制,连续观察全厂水平衡状态,指导运行调整,实现废水合理利用,达到零排放要求㊂(一)设备改进措施经过研究,首先进行分系统对废水取样进行化验,根据水质情况分类回收,用于不同系统进行再次回用㊂1.对于热网首站转机冷却水和制氢站冷却水,经化验水质含盐量变化小,接近工业水水质,将冬季热网转机冷却水由工业废水处理系统回收至#2工业消防蓄水池,重复利用㊂2.工业废水处理站出水,经化验水质含盐量变化小,接近工业水水质,在原有用于灰场用水和辅机冷却水的补充水的基础上,增加一路回收至#2工业消防蓄水池,灰场用水取水改为雨水调节池㊂3.热网回水系统的排水因为加入药剂,回收至工业废水进行处理后,根据用水量情况进行回收循环利用,增加一路回收至#2工业消防蓄水池,另一路排至雨水系统改造的增加缓冲池,经过缓冲池可以将废水存储至煤场雨水调节池,保证煤水清水池水量不足时进行回用㊂4.利用煤场雨水调节池(有效容积为2000m3)来收集厂内废水储存,在#1汽车衡西北角处雨水井处新建缓冲池(5ˑ1.5ˑ2米),安装启闭机,并设置污水泵(Q=50m3/h,H=15m,W=5.5kW),将雨水井地下管网内的废水截留至缓冲池打入雨水调节池,再经过煤水处理系统处理后产生清水,进入煤水处理清水池进行回用㊂(二)运行调整措施的优化通过设备改进后,废水水量减少了2300 3000t/d,剩余废水水量为1700 2000t,全部排入雨水调节池㊂煤水清水池作为全厂最大末端废水消耗系统储水池,用水时间的不确定性经常使煤水清水池出现用水量大时,因水量不足需要另外增加工业水作为补充水,用水量小时,又可能会因水处理的制水需求,出现煤水清水池无法容纳高含盐量排水,导致溢图2㊀设备改进后排水流程流现象,因此采取了运行调整措施的优化㊂1.将#1㊁2工业消防蓄水池分开使用㊂#1工业消防水池为废水回收水,循环作为工业水进行使用㊂#2工业消防水池为水源地来水,作为水处理设备制水使用㊂2.雨水调节池液位作为辅控主值交接班工作的主要内容㊂为了避免水泵频繁起停,节约厂用电,根据工业消防水池和水源地水池液位优化水源地升压泵和深井泵的运行方式,水源地蓄水池液位1.7米,启动深井泵或中水泵3.5米停㊂工业消防水池液位1.5米,启动水源地升压泵3.5米停,保证雨水调节池液位在1.5 3.4米之间,溢流液位为3.6米,根据液位来调整工业废水系统的运行方式㊂3.调整水处理制水时间与输煤清水用水时间的合理性㊂白天灰渣用水量较大,化学值班员只要根据输煤清水池液位,及时将中和水池中高含盐量废水排至煤水清水池,既满足了灰渣喷湿用水,也可以满足水处理制水系统启动的排水要求㊂除盐水箱液位保持在6.0米以上,规定在白天制水,早上7:00启动设备,特殊情况除外㊂4.根据工业废水调节池液位情况,调整工业废水处理系统单套或双套制水,保证工业废水及时处理,实现工业废水清水足量回用㊂以及辅机冷却水塔排污时或者热网回水排污时,要通知输煤值班人员,查看缓冲池液位,并且保持热网回水排水量稳定,维持在25 40t/h之间等一系列措施,都保证全厂水量合理循环㊂5.控制全厂除盐水机组补水率㊂减少除盐水制水带来的废水量,机组补水量控制在400 600t/d㊂6.辅控外围区域运行日志中,重点记录工业废水调节池㊁生活污水调节池液位情况和废水处理系统单套㊁双套制水等情况,重点关注工业废水调节池㊁生活污水调节池液位变化,防止达到溢流液位(2.70米)㊂(三)实施全厂动态水平衡图的绘制951为了更加准确地对全厂各生产系统用水情况进行分析,进而实现对生产运行方式的实时调整和优化,达到废水零排放及节能降耗的目的,绘制了全厂动态水平衡图㊂从厂外供水系统㊁厂内的供水㊁制水系统㊁废水处理系统以及回用系统等处着手,详细掌握各个系统的相互关系与制约因素,模拟创建全厂各个水系统用水量准确的数学关系,在各个水系统的数学关系模型下,对全厂的各个供水㊁用水等多处的用水量进行分析,找出全厂水系统的水量数据采集的关键点,在热控专业的配合下,对水量采集系统进行了完善,使关键点的水量可以采集到准确的数据,最终形成全天水量数值采集日报表,实现了全厂每日水平衡图创建,例如,2016年7月4日水平衡图进行说明,来水水量为3479.36t,损失水量为2958.02t,水池水位增长526.16t,全厂水量达到了平衡㊂图表和截图如下㊂表2㊀水量统计表日㊀期2019-7-4全厂来水量(1)生活水池用量(按生活水泵出口表计)m3415.44(2)生水用量(按综合水泵房水表计)m31575.34(3)工业水用量(工业水泵出口表计)m32041.34(4)热网转机冷却水m30(5)氢站转机冷却水m30(6)工业废水处理水量(工业废水清水泵出口流量)m3367.33水平衡取值来水量m33479.36全厂损失水量(1)喷洒煤场㊁灰渣加湿㊁冲洗栈桥,损失水量m31406.36煤水系统处理水量m397煤水系统清水泵出口水量m31503.36(2)热力公司用水损失m30(3)小热网损失m30(4)脱硝用水损失m358.14(5)吹灰用水损失m3120(6)空冷岛冲洗水m3192(7)风吹蒸发损失m3668(8)厂区绿化损失m349(9)灰库气化风机冷却水损失m34.3(10)消防系统损失m35(11)煤场用水洒水车损失m3130(12)水泥厂损失m3325.22全厂损失m32958.02各个水池的液位表化m3526.16图3四㊁收到的效果通过实施设备改进㊁运行调整以及绘制全厂水量平衡图,效果非常显著,全厂的来水水量和废水损失水量有了准确的计量,废水使用的部位清晰明了,并能够在厂内全部得到利用,实现了废水零排放和节支降耗的目的㊂经统计,平均每天可节约原水用量约2000t,每月即为6万t,每月可节约成本3万元㊂五㊁结语我厂实现废水零排放,主要通过深入分析我厂的用水规律,合理改造用排水系统,再配合后期的运行调整及全厂水平衡数据分析系统㊂通过这一系列的改造优化,不仅达到环保的废水零排放要求,同时,也成为我厂节能降耗的一项有效的措施㊂经过一段时间的运行摸索,我厂已基本实现了全厂用水量合理分解和布置,不仅大幅降低了来水量,减少水源地水量的消耗,而且在此基础上也优化了设备的运行规律,在全面实现废水零排放的国家环保要求下,同时,也为我厂节约了大量的水电成本㊂参考文献:[1]李青,刘学冰,张兴营,何国亮.火电厂节能减排手册[M].北京:中国电力出版社,2014.作者简介:付丽丽,江西宜春京能热电有限责任公司㊂061。