半导体器件模拟仿真(精)
- 格式:doc
- 大小:4.03 MB
- 文档页数:25
1 引言近几年,由于中美两国技术对抗和贸易摩擦,国内对微电子技术发展及人才需求都与日俱增,微电子、物理电子、集成电路等相关专业的本科、研究生毕业生都供不应求。
当下,从半导体材料制备生长到半导体器件加工各个环节都急需优秀人才。
作为微电子等专业的核心专业课程,《半导体物理与器件》相关课程主要介绍半导体器件的特性、工作原理及其局限性的基础知识。
要想更好地理解这些基础知识,就必须对半导体材料物理知识进行全面了解,同时半导体相关课程又以量子力学、固体物理、半导体材料物理以及半导体器件物理等知识相互支撑、交错在一起的。
不难看出,《半导体物理与器件》相关课程虽然具有相当的学习难度,但是其在过去以及未来全球信息产业中的重要性处于无法取代的地位[1]。
半导体相关仿真主要包括工艺仿真、器件仿真和电路仿真:工艺仿真包括离子注入、刻蚀、光刻等工艺的模拟,推动设计新工艺流程,改进旧工艺流程;器件仿真可以实现特性仿真、性能参数的提取,可用于设计新型器件,改良传统器件结构;电路仿真可以对电路的时序、工作性能等进行仿真,用于验证电路设计[2]。
2 Silvaco TCAD软件介绍Silvaco TCAD计算机辅助设计仿真软件现在已在半导体工业界处于领导地位,其软件包被遍布全球的半导体厂家用于半导体器件和集成电路的研究开发和测试生产中。
Silvaco还是Spice参数提取软件和模拟电路仿真软件SmartSpice的主要提供商。
Silvaco与国际上先进的高科技厂商合作,为半导体市场提供最新的技术和工艺。
此外,Silvaco公司还积极与全球各个大学达成多个合作计划,其大学计划的目的在于使教育和研究机构通过简便的渠道,使用Silvaco提供的TCAD、ICCAD和模拟/混合信号仿真软件,为大学提供全套EDA和TCAD软件,用于半导体相关课程研究和教学。
Silvaco TCAD软件是由Silvaco公司出品的一款辅助设计工具,它主要包含了工艺仿真模块Athena和器件仿真模块Atlas。
功率器件仿真基本方法对于微波大功率有源器件来说,其输入输出阻抗是一个关键的参数,且不易测量。
而在设计中,没有这些参数,设计将无从下手。
目前微波大功率的有源器件大多采用金属氧化物半导体场效应晶体管(LDMOSFET-Lateral Diffused metallic oxide semiconductor field effect transistor),因此本文以LDMOS功率管的仿真为例探讨微波有源器件仿真。
由于大家所公认的大功率器件仿真的难度,特别是在器件模型建立方面的难度,使得这一工作较其他电路如小信号电路仿真做的晚,且精度也较小信号电路低。
目前公司内部在这方面所作的工作也相对较少。
随着技术的发展,目前的很多仿真软件已经做的很完善,如ADS,它可以提供各种数字和模拟系统及电路的仿真平台,用户的主要任务就是给目标器件建模和搭建电路。
而目前我们使用的主流LDMOS器件即Motorola的大部分器件均提供ADS仿真的模型,我们只要直接使用,这给我们的仿真工作带来了极大的方便,极大的减小了工作量,并提高了准确度。
本文主要探讨使用ADS2002仿真计算大功率LDMOS器件的工作点、输入输出阻抗及其对应的线性指标、电流、增益等电参数。
1LDMOS器件模型首先我们了解一下Motorola的LDMOS器件库的情况。
图1.1是其在原理图中的符号。
图1.1 Motorola LDMOS器件模型它的器件分为两类:单管(MRF_MET_MODEL & MRF_ROOT_MODEL)和对管(MRF_MET_PP_MODEL & MRF_ROOT_PP_MODEL)。
从上面的名称我们可以看出,每一个管子有两个模型,即MET模型和ROOT模型。
MET LDMOS 模型(Moto Electro Thermal Model)是一个经验大信号模型,它可以精确的描述在任意的偏置点和环境温度下的电流电压特性。
其大信号和小信号模型分别如图1.2和图1.3所示[1]。
CMOS模拟集成电路设计与仿真CMOS(互补金属-氧化物半导体)模拟集成电路设计与仿真在当前半导体行业中具有重要的地位。
CMOS模拟集成电路是指利用CMOS工艺制作的电路,它融合了模拟电路和数字电路的特点,可以实现复杂的模拟信号处理和调制解调等功能。
在本文中,我们将介绍CMOS模拟集成电路的设计流程、仿真方法以及相关应用。
CMOS模拟集成电路设计的流程包括需求分析、电路拓扑设计、器件选型和尺寸确定、偏置电流源设计、电路级仿真与优化等几个步骤。
首先,需求分析是确定电路的性能指标和功能要求,包括增益、带宽、功耗等。
然后,根据需求分析,设计电路的拓扑结构,确定电路中各个电子器件的连接关系和整体布局。
接下来,从器件库中选择合适的器件,并确定器件的尺寸,以满足性能指标。
偏置电流源设计是保证电路工作的稳定性和线性度的关键,其中包括长尾对偏置、电流镜等方式。
最后,进行电路级仿真与优化,通过仿真分析电路的静态和动态性能,并对电路参数进行优化。
CMOS模拟集成电路的仿真方法有很多种,常见的包括电路级仿真和系统级仿真。
电路级仿真主要是使用电路仿真工具(如Cadence、SPICE 等)对电路进行详细的分析和验证,包括直流工作点分析、交流增益分析、噪声分析、失调分析等。
系统级仿真则是利用系统仿真工具(如MATLAB、Simulink等)对整个模拟集成电路进行性能评估和验证,包括输入输出特性、信噪比、动态范围等。
仿真结果可以帮助设计人员理解电路的工作原理、验证电路的性能指标,同时可以指导设计改进和优化。
CMOS模拟集成电路的应用非常广泛,包括通信、媒体、医疗和电力等领域。
以通信领域为例,CMOS模拟集成电路可以用于信号调制和解调、频率合成、射频前端等。
在媒体领域,它可以用于音频放大器、视频处理、图像传感器等。
在医疗领域,CMOS模拟集成电路可以实现心电图放大器、血压测量设备等。
在电力领域,它可以用于电力传输和转换、能量管理等。
总第494期Vol.4942020年12月Dec.2020大学(教学与教育)University(Teaching&Education)虚拟仿真实验在半导体器件物理实验中的应用探究段小玲,王树龙,许晟瑞(西安电子科技大学微电子学院,陕西西安710071)摘要:半导体器件物理实验是微电子与集成电路专业的核心专业实验,具有实践性强及技术更新快的特点,而真实实验环节存在实验设备昂贵、安全风险和器件内部特征与参数信息难以获得等问题。
西安电子科技大学微电子学院实验中心把虚拟仿真实验应用到半导体器件物理实验当中,作为真实实验的有效补充,通过虚实结合的实验模式探索,解决了经费有限、安全风险和教学内容前沿创新不足等问题,积极促进了高水平、高素质、强能力的集成电路人才培养。
关键词:虚拟仿真;半导体器件物理实验;虚实结合中图分类号:G642.0文献标识码:A文章编号:1673-7164(2020)48-0075-03半导体器件是集成电路芯片的核心部分,其性能高低主导着芯片的整体性能。
半导体器件物理实验是微电子与集成电路专业的一门基础实验课,其涉及的实验设备相对昂贵,受到经费预算、场地空间、安全风险、试错成本、实验课时以及半导体器件本身结构特点等条件的限制,真实实验很难实现学生人手一台设备实验,使其在有限的实践环节中充分理解实验原理、进行实验操作并对实验结果进行全面深刻地分析。
为了解决实验课中普遍存在的问题,各大高校致力于实验室建设、团队建设、实验教学内容和教学模式改革探索和实践研究2〕。
西安电子科技大学微电子学院微电子与集成电路实验中心通过专业基础实验室重构和虚拟仿真实验室建设的多年探索,取得了一些教学改革经验叫进行了系列虚拟仿真实验建设和探索。
例如,把虚拟仿真实验应用到半导体器件物理实验当中,借助虚拟仿真技术“层层”剖析半导体器件,宜观、形象地展现出半导体器件内部不同方向上结构和参数的变化规律,增强学生对半导体器件结构、特性和原理的把握,弥补了传统实验教学存在的不足,使半导体器件物理实验教学更加高效。
第1章 半导体器件数值仿真软件MEDICI1.1 MEDICI 功能简介Medici TM[1]是先驱(A V ANT !)公司的一个用于二维器件模拟的软件,它对势能场和载流子的二维分布建模,通过解泊松方程和电子、空穴的电流连续性等方程来获取特定偏置下的电学特性。
通过求解二极管和双极型三极管以及与双载流子有关的电流效应(诸如闩锁效应)的电流连续性方程和泊松方程来分析器件。
Medici 也能分析单载流子起主要作用的器件,例如:MOSFET ,JFET ,MESFET 。
另外,MEDICI 还可以被用来分析器件在瞬态情况下的变化。
在亚微米器件模拟中,MEDICI 通过联解电子和空穴的能量平衡和其他的器件方程,可以对深亚微米的器件进行模拟。
像热载流子和速度过冲等效应在MEDICI 的模型中已经考虑,并能分析它们的影响。
1.2 MEDICI 的基本物理描述1.2.1 基本方程MEDICI 的主要功能就是分别对静电势Ψ、电子浓度n 和空穴浓度p 求解三大类自连续的微分方程,包括泊松方程、连续性方程和波尔兹曼输运理论(即电流密度方程)。
1、泊松方程:半导体器件的电学行为由泊松方程控制。
2q()D A s p n N N ερ+-∇ψ=--+-- (1-1)s A D N N ρε、、、-+分别代表介电系数、电离施主杂质浓度、电离受主杂质浓度和界面电荷体密度2、连续性方程:电子和空穴的连续性方程也控制着电学行为。
1()(,,)n n n n n J U G F n p t q →→∂=∇⋅--=ψ∂ (1-2)1()(,,)p p p p p J U G F n p t q →→∂-=∇⋅--=ψ∂ (1-3)n J →和p J →分别代表电子电流密度和空穴电流密度。
U n 和U p 分别代表电子和空穴的复合率,其为正值时,表示载流子复合,为负值时则表示载流子产生。
3、波尔兹曼输运理论:在波尔兹曼输运理论中,公式(1-2)中的n J →和公式(1-3)中的p J →可以被描述成关于载流子浓度和电子及空穴的准费米势n φ→∇和p φ→∇的两个方程。
学生实验报告院别课程名称器件仿真与工艺综合设计实验班级实验三MOSFET工艺器件仿真姓名实验时间学号指导教师成绩批改时间报告内容一、实验目的和任务1.理解半导体器件仿真的原理,掌握Silvaco TCAD 工具器件结构描述流程及特性仿真流程;2.理解器件结构参数和工艺参数变化对主要电学特性的影响。
二、实验原理1. MOSEET基本工作原理(以增强型NMOSFET为例):以N沟道MOSEET为例,如图1所示,是MOSFET基木结构图。
在P型半导体衬底上制作两个N+区,其中一个作为源区,另一个作为漏区。
源、漏区之间存在着沟道区,该横向距离就是沟道长度。
在沟道区的表面上作为介质的绝缘栅是由热氧化匸艺生长的二氧化硅层。
在源区、漏区和绝缘栅上的电极是由一层铝淀积,用于引出电极,引出的三个电极分别为源极S、漏极D和栅极G。
并且从MOSEET衬底上引出一个电极B极。
加在四个电极上的电压分别为源极电压Vs、漏极电压V D、栅极电压V G和衬底偏压V B。
图1 MOSFET结构示意图MOSFET在工作时的状态如图2所示。
Vs V D和V B的极性和大小应确保源区与衬底之间的PN结及漏区与衬底之间的PN结处与反偏位置。
可以把源极与衬底连接在一起,并且接地,即Vs=0,电位参考点为源极,则V G、V D可以分别写为(栅源电压)V GS、(漏源电压)V DS。
从MOSFET的漏极流入的电流称为漏极电流ID。
(1)在N沟道MOSFET中,当栅极电压为零时,N+源区和N+漏区被两个背靠背的二极管所隔离。
这时如果在漏极与源极之间加上电压V DS,只会产生PN 结反向电流且电流极其微弱,其余电流均为零。
(2)当栅极电压V GS不为零时,栅极下面会产生一个指向半导体体内的电场。
(3)当V GS增大到等于阈值电压V T的值时,在半导体内的电场作用下,栅极下的P型半导体表面开始发生强反型,因此形成连通N+源区和N+漏区的N型沟道,如图2所示。
实验2 PN结二极管特性仿真1、实验内容(1)PN结穿通二极管正向I-V特性、反向击穿特性、反向恢复特性等仿真。
(2)结构和参数:PN结穿通二极管的结构如图1所示,两端高掺杂,n-为耐压层,低掺杂,具体参数:器件宽度4μm,器件长度20μm,耐压层厚度16μm,p+区厚度2μm,n+区厚度2μm。
掺杂浓度:p+区浓度为1×1019cm-3,n+区浓度为1×1019cm-3,耐压层参考浓度为5×1015 cm-3。
图1 普通耐压层功率二极管结构2、实验要求(1)掌握器件工艺仿真和电气性能仿真程序的设计(2)掌握普通耐压层击穿电压与耐压层厚度、浓度的关系。
3、实验过程#启动Athenago athena#器件结构网格划分;line x loc=0.0 spac= 0.4line x loc=4.0 spac= 0.4line y loc=0.0 spac=0.5line y loc=2.0 spac=0.1line y loc=10 spac=0.5line y loc=18 spac=0.1line y loc=20 spac=0.5#初始化Si衬底;init silicon c.phos=5e15 orientation=100 two.d#沉积铝;deposit alum thick=1.1 div=10#电极设置electrode name=anode x=1electrode name=cathode backside#输出结构图structure outf=cb0.strtonyplot cb0.str#启动Atlasgo atlas#结构描述doping p.type conc=1e20 x.min=0.0 x.max=4.0 y.min=0 y.max=2.0 uniformdoping n.type conc=1e20 x.min=0.0 x.max=4.0 y.min=18 y.max=20.0 uniform#选择模型和参数models cvt srh printmethod carriers=2impact selb#选择求解数值方法method newton#求解solve initlog outf=cb02.logsolve vanode=0.03solve vanode=0.1 vstep=0.1 vfinal=5 name=anode#画出IV特性曲线tonyplot cb02.log#退出quit图2为普通耐压层功率二极管的仿真结构。
TCAD(Technology Computer-Aided Design)是一种半导体制造中常用的工具,它可以通过计算机模拟和仿真来帮助工程师设计和优化半导体器件结构。
GAN(Gallium Nitride)作为一种新型半导体材料,具有很高的电子迁移率和较高的电子饱和漂移速度,被广泛应用在功率电子器件中。
而在GAN半导体器件的制造过程中,TCAD仿真模拟则扮演着非常重要的角色。
一、GAN材料特性1. GAN材料的晶体结构GAN材料是一种III-V族化合物半导体材料,具有锌摩激子结构,由氮原子和镓原子组成。
其晶体结构对于半导体器件的性能有着重要的影响。
2. GAN的优点和应用GAN材料具有较高的电子迁移率和较高的电子饱和漂移速度,适合用于功率器件和高频器件中。
其优点主要体现在高频特性、抗辐射性和高温特性等方面。
二、TCAD仿真在GAN器件制造中的作用1. TCAD仿真的基本原理TCAD仿真是通过建立半导体器件的模型,利用计算机模拟和数值求解来预测器件的性能。
在GAN器件的制造过程中,TCAD仿真可以帮助工程师预测器件的性能和优化器件结构。
2. TCAD仿真在GAN器件制造中的具体应用通过TCAD仿真,可以对GAN器件的电场分布、载流子分布以及器件的电性能进行模拟和分析。
这些数据对于优化器件结构、提高器件性能具有重要的指导意义。
三、GAN的TCAD仿真模拟案例以某公司新研发的GAN功率器件为例,通过TCAD仿真进行电场分布和载流子分布的模拟。
通过对器件结构和材料参数的优化,提高器件的性能并降低功耗。
通过TCAD仿真模拟,可以得到器件的电场分布图和载流子分布图,从而全面了解器件的工作情况。
工程师可以根据仿真结果对器件结构进行优化,提高器件的性能,并加快产品的研发进程。
四、个人观点和总结回顾通过对GAN的TCAD仿真模拟案例的分析,我深刻认识到TCAD仿真在半导体器件制造中的重要作用。
在新材料和新器件的研发过程中,TCAD仿真可以帮助工程师优化器件结构,提高器件的性能,并加快产品的研发进程。
半导体专业实验补充silvac o器件仿真————————————————————————————————作者:————————————————————————————————日期:实验2 PN结二极管特性仿真1、实验内容(1)PN结穿通二极管正向I-V特性、反向击穿特性、反向恢复特性等仿真。
(2)结构和参数:PN结穿通二极管的结构如图1所示,两端高掺杂,n-为耐压层,低掺杂,具体参数:器件宽度4μm,器件长度20μm,耐压层厚度16μm,p+区厚度2μm,n+区厚度2μm。
掺杂浓度:p+区浓度为1×1019cm-3,n+区浓度为1×1019cm-3,耐压层参考浓度为5×1015cm-3。
0 Wp n n图1普通耐压层功率二极管结构2、实验要求(1)掌握器件工艺仿真和电气性能仿真程序的设计(2)掌握普通耐压层击穿电压与耐压层厚度、浓度的关系。
3、实验过程#启动Athenago athena#器件结构网格划分;line x loc=0.0 spac=0.4line x loc=4.0 spac= 0.4lineyloc=0.0spac=0.5line y loc=2.0 spac=0.1line y loc=10spac=0.5line y loc=18spac=0.1line y loc=20 spac=0.5#初始化Si衬底;initsilicon c.phos=5e15 orientation=100 two.d#沉积铝;deposit alum thick=1.1div=10#电极设置electrode name=anode x=1electrodename=cathode backside#输出结构图structureoutf=cb0.strtonyplotcb0.str#启动Atlasgo atlas#结构描述doping p.typeconc=1e20 x.min=0.0 x.max=4.0 y.min=0y.max=2.0 uniformdopingn.type conc=1e20x.min=0.0 x.max=4.0y.min=18y.max=20.0 uniform#选择模型和参数models cvt srh printmethod carriers=2impact selb#选择求解数值方法methodnewton#求解solve initlog outf=cb02.logsolve vanode=0.03solve vanode=0.1vstep=0.1 vfinal=5 name=anode#画出IV特性曲线tonyplot cb02.log#退出quit图2为普通耐压层功率二极管的仿真结构。
微电子器件的模拟仿真与设计研究一、引言微电子器件是电子科技领域的重要组成部分,它的研究与应用对当今社会的科技发展及经济建设有着重要的作用。
其中,模拟仿真与设计是微电子器件研究中不可或缺的环节,它能够大大提高器件设计的效率与可靠性,同时还能帮助研究者更深入地理解器件的原理与特性。
因此,本文将探讨微电子器件的模拟仿真与设计研究,分别从理论与实践两个方面进行论述。
二、微电子器件的理论基础微电子器件的理论基础主要包括半导体物理学、电路理论、电子学、微系统技术等方面。
其中,半导体物理学是微电子器件研究的基础,它涉及到了半导体材料的特性、电子、空穴的特性分布,掺杂与扩散等重要知识,对于微电子器件的设计与仿真有着至关重要的影响。
电路理论则与微电子器件的设计及其与其他器件的组成等紧密相关,其中,包括了信号处理、功率放大、滤波、直流电源、控制电源等方面的电路,都与微电子器件的设计有着重要的联系。
电子学则是微电子器件研究的核心,主要涉及电子器件的结构、特性、性能及其工作原理等知识。
它包括了固体电子学、真空电子学、光电半导体等多个分支学科,需要熟练掌握电子学的基本知识,才能更好地进行微电子器件的项目研究与开发。
微系统技术则是将微电子器件与微机械系统相结合的新兴技术。
它是微型化与系统化的产物,能够将传感器、执行器、控制器等微型器件整合到一个系统中,并通过微电子技术实现微型加工与集成。
三、微电子器件模拟仿真微电子器件的模拟仿真是指通过计算机软件的仿真方式,在虚拟环境中模拟器件的工作过程,进行参数调整以及性能评估。
它是微电子器件设计的重要环节,也是验证设计方案及其可行性的关键步骤。
1. 模拟仿真方法微电子器件的模拟仿真通常采用有限元法(FEM)或者有限差分法(FDM)等数值计算方法。
其中,FEM是微电子器件仿真研究中较普遍采用的方法之一,它能够对材料特性、器件结构、工作条件等进行高精度的仿真分析,同时也可以对复杂三维结构进行快速建模。