第二章 机车牵引特性及基本参数分析
- 格式:ppt
- 大小:2.29 MB
- 文档页数:23
机车牵引计算总结1. 引言机车牵引力是机车运行的关键参数之一,对于确保列车正常运行和保证运输效率具有重要意义。
机车牵引力的计算是评估机车性能和选取合适机车的重要依据。
本文将对机车牵引力的计算方法进行总结和分析,并探讨其在实际运输中的应用。
2. 机车牵引力的定义机车牵引力是指机车能够提供给列车的拉力,通过牵引力的传递,机车能够实现列车的加速和运动。
牵引力的计算需要考虑列车重量、运行速度、坡度、弯道等多个因素的影响。
3. 牵引力的计算方法3.1 牵引力和列车重量的关系机车牵引力与列车重量成正比,牵引力可以用下面的公式计算:F = m * a其中,F代表牵引力,m代表列车总重量,a代表牵引加速度。
在实际计算中,还需要考虑列车的摩擦系数等因素。
3.2 牵引力与速度的关系随着列车速度的增加,牵引力逐渐减小。
这是因为随着速度的增加,列车的空气阻力也会增大。
牵引力和速度的关系可以通过下面的公式计算:F = F0 - c * v其中,F0代表静态牵引力,c代表速度相关的系数,v代表列车的速度。
3.3 牵引力与坡度的关系坡度对牵引力的影响也很大。
在上坡行驶时,列车需要克服重力的阻力,牵引力要大于阻力,才能保证列车正常运行。
牵引力和坡度的关系可以通过下面的公式计算:F = m * g * sin(θ)其中,m代表列车总重量,g代表重力加速度,θ代表坡度角度。
3.4 牵引力与弯道的关系在行驶过程中,列车经过弯道时,牵引力的方向还需要克服向心力的阻力。
牵引力和弯道的关系可以通过下面的公式计算:F = m * v^2 / r其中,m代表列车总重量,v代表列车速度,r代表弯道的半径。
4. 计算方法的应用机车牵引力的计算方法对于实际运输中的机车选择和运行控制都具有重要意义。
通过准确计算牵引力,可以评估机车的性能,选择合适的机车类型;可以为列车调度和运行提供科学依据,确保列车安全运行和提高运输效率。
5. 结论本文对机车牵引力的计算方法进行了总结和分析,并探讨了其在实际运输中的应用。
CRH2型动车组牵引/制动特性CRH2型动车组采用动力分散交流传动模式,适应在铁路既有线上以160km/h速度正常运行,在新建的客运专线以及既有指定区段上以200~250km/h速度级正常运行。
7.2.1牵引特性计算的依据牵引特性(含动力制动特性)是列车最重要的特性,用列车轮缘牵引力/制动力与轮缘线速度的关系曲线表示,是计算列车牵引与制动性能最重要的原始数据。
列车要求恒牵引力起动、恒功率运行,牵引特性如图7.5所示。
列车的牵引/制动功率决定列车的牵引特性,列车的牵引力与功率的关系如式(7.1)所示。
式中F——牵引力(kN);P——列车牵引功率(kw);v——列车运行速度(km/h)。
(1)牵引功率的计算列车牵引功率主要与列车运行最高速度、列车质量、最高速度时的列车运行阻力和剩余加速度、齿轮传动效率、牵引电动机效率有关。
其计算公式如式(7.2)所示。
式中M——列车质量(t);w0——运行阻力(N/t);1.06——惯性系数;△a——剩余加速度(m/s2);△v——逆风速度(km/h);v max——列车运行最大速度(km/h);ηGear——齿轮传动效率;ηmm——牵引电动机效率。
牵引电动机的功率为总功率除以列车电动机的总台数N,即P m=P k/N。
《欧洲高速铁路联网高速列车技术条件》对剩余加速度、起动加速度等有如下规定:①平直道最高速度运行时,应有剩余加速度O.05m/s2。
②起动过程平均加速度:0~40km/hO.48m/s2;O~120km/hO.32m/s2;O~160km/hO.17m/s2。
③考虑15km/h的逆风。
为保障列车安全运行必须满足上述技术条件的要求。
在确定牵引功率时还必须考虑传动效率、最大坡道上的最低运行速度、故障运行时的要求等多种因素的综合影响,在确定牵引功率时一般要略高于上述技术条件的规定。
(2)牵引特性的计算牵引特性的计算是设计列车牵引/制动性能的基础,是进行列车设计必须进行的最基础的工作,是进行列车运输组织、确定列车运输时间间隔和运输时刻表的重要基础数据,也是列车运用部门和列车乘务员操纵列车的指导依据。
电力机车的起动是机车运行中最先实现的工作状态。
电力机车在其起动牵引力作用下,克服列车静止时所受的阻力并产生加速度,最终运行在机车的自然特性上,这一过程称为机车的起动过程。
机车起动过程实质是调速的一种特殊方式。
因此,前述调速的基本原理对起动都是适用的。
一、对起动的要求对机车起动的基本要求是:起动快和起动平稳。
机车起动快可以减少起动时间,提高平均运行速度,对铁路运输有很大的意义,特别对起动频繁的电动车组来说,意义更为重大。
为了使机车起动得快,就要求机车有较大的起动电流,产生较大的起动牵引力。
机车起动平稳可以使机车内部设备免受电流冲击,机车和列车免受机械冲击,因此希望列车以匀速运动的形式运行。
为此,要求起动时应尽量减少起动电流、起动牵引力的摆动。
起动电流过大时,会使电机安全整流受到破坏,启动牵引力过大时,会超出线路粘着条件,使轮对发生空转,结果反而丧失了牵引力。
不同形式的电力机车,所受限制因素的主次也不同。
对于直流电力机车和整流器电力机车,由于牵引电动机的不断发展和完善,已能保证在粘着条件许可范围内牵引电动机有良好的整流,其主要限制条件就是线路的粘着条件。
采用交流牵引电动机的电力机车,由于电机不存在整流问题,仅受线路粘着条件的限制。
对于单相整流子牵引电动机电力机车,由于这种电机整流困难,由电机安全整流决定的最大许可电流要比粘着条件决定的最大电流小,故主要受机车安全整流的限制。
此外,在机车起动过程中,不应有附加的能量损耗,若有也应尽量减小。
在机车起动操纵时,对于有级调压电力机车,要求司机逐级调压,禁用快速升级,防止牵引电机电流一次性摆动过大造成机车起动失败。
二、起动方式机车在起动时处于静止状态,牵引电机在得到电压时,由于其反电势为零,因此,电机电枢电流仅由电压及电机回路的阻抗来决定,即:(2-57)显然,由于回路阻抗值很小,必然产生很大的电流,以致破坏牵引电机的安全换向,超越线路粘着条件限制,而且这么大的电流必然会产生很大的电流冲击和机械冲击,使机车和列车都受到损伤。
2机车总体2.1概述HX D2B型电力机车是一种6轴、轴式为(Co-Co)的大功率(9600kW)交流传动货运电力机车,集成了当今世界大功率交流传动电力机车的高端和前沿技术,是目前世界上技术最先进、单轴功率最大的铁路牵引动力装备之一。
2.2 HX D2B型机车技术优势2.2.1系统集成的技术特色HX D2B型电力机车是一种全面采用国际先进技术、现代化的重载货运机车。
机车的系统集成全面贯彻铁道部提出的“先进、成熟、经济、实用、可靠”的指导方针和“模块化、系列化、标准化和信息化”的基本原则,机车整车及各子系统的可靠性、可使用性、可维护性以及安全性能力得以大幅提升。
2.2.1.1 模块化设计机车结构设计的最大特点是采用国际上先进的以功能体系为基础的模块化设计方法,即将合同技术规范或标准技术数据表的要求系统定义为机车产品的不同功能分类,再按照功能划分为多个层次的子功能,将各子功能用形式关系加以表达,从而建立对应的产品体系结构。
机车总体结构的模块化设计提高了产品形式的可塑性,拓展了产品种类并加快了新产品的更新速度,有利于提高产品的标准化、系列化、可维护性和可使用性程度,完全符合铁道部对机车车辆装备现代化提出的指导方针和基本原则。
HX D2B机车的模块化结构见图2.1。
图2.1 HX D2B型机车的模块化结构2.2.1.2以维修为导向的设计在HX D2B机车整车通用技术规范和部件产品技术规范中,均对产品的可靠性、可用性、可维护性和安全性和运用综合物流支持作出明确要求并对供应商满足这些要求的能力通过产品的设计和试验进行验证;其次,设计宽787mm维修门,为维修部件和维修设备的取送提供方便;宽700mm的走廊,增加了所有设备的易接近性;变流模块采用易拆卸技术还带有定位针,防止不同模块的错插;第三,基于车体有限元强度计算结果对车内各屏柜安装螺栓强度进行分析计算,以保证安装螺栓的可靠性。
通过以上措施,贯彻以维修为导向的设计理念和全寿命周期管理,设计流程见图2.2所示。