3 分形理论及其应用
- 格式:ppt
- 大小:3.48 MB
- 文档页数:73
分形理论及其在混凝土材料研究中的应用摘要:改革后,我国的科学技术水平不断进步。
其中,混凝土在其形成和服役过程中表现出了一系列分形的特征。
因而,研究人员将分形理论科学地引入混凝土研究之中。
介绍了分形理论,综合评述了分形理论评价混凝土材料的胶凝材料颗粒特征、集料的表面特征、混凝土孔隙的分形特征、混凝土断裂韧性和断裂能的分形效应、分形理论在混凝土材料声发射中的应用,并提出分形理论在混凝土研究中的应用前景。
关键词:混凝土结构;裂缝;分形理论引言随着对混凝土结构方面技术和认识的进步与提高,人们对裂缝所造成的损伤也更加重视。
由于混凝土塑性收缩及沉降、荷载、钢筋腐蚀等原因,混凝土构件很容易产生裂缝,裂缝的出现不仅使混凝土刚度、强度降低,还会影响其美观性和耐久性。
混凝土是多相复合材料,具有不规则性、非线性等特征,导致混凝土裂缝扩展具有随机性,利用传统损伤力学知识并不能恰当地解决这个问题。
而研究表明混凝土材料各相分布以及裂纹演化均具有自相似性,这是分形理论应用于混凝土结构的基础。
运用分形理论,计算混凝土表面裂纹演化的分形维数,分析分形维数与分级荷载、挠度、最大裂缝宽度、损伤变量、断裂能等之间的关系,可以将其作为一种工程应用的参考依据。
1分形理论简介什么是分形呢?事实上,目前对分形还没有严格的数学定义,只能给出描述性的定义。
粗略地说,分形是对没有特征长度(所谓特征长度,是指所考虑的集合对象所含有的各种长度的代表者,例如一个球,可用它的半径作为它的特征长度。
)但具有一定意义下的自相似图形和结构的总称。
曼德尔布罗特最先引入分形(fractal)一词,意为破碎的,不规则的,并且曾建议将分形定义为整体与局部在某种意义下的对称性的集合,或者具有某种意义下的自相似集合;他也曾给出一个尝试性的定量刻画,说分形是豪斯道夫维数严格大于其拓扑维数的集合。
但是所有这些定义都不够精确、不够全面。
英国数学家Falconer在其著作《分形几何的数学基础及应用》一书中认为,分形的定义应该以生物学家给出的“生命”的定义的类似方法给出,即不寻求分形的确切简明的定义,而是寻求分形的特性,将分形看作是具有如下所列性质的集合F:1)F具有精细结构,即在任意小的比例尺度内包含整体;2)F是不规则的,以至于不能用传统的几何语言来描述;3)F常具有某种自相似性,或许是近似的或许是统计意义下的;4)F在某种方式下定义的“分维数”通常大于F的拓扑维数;5)F的定义常常是非常简单的或许是递归的。
收稿日期:2005-07-04;修订日期:2006-02-22作者简介:刘 莹(1957-),女,江西南昌人,博士生导师,教授,主要从事微机械与微摩擦学研究。
基金项目:国家自然科学基金资助项目(50275071);南昌大学科研基金项目(z02879)。
第24卷 第2期2006年4月江 西 科 学JI A NGX I SC I ENCEVo.l 24N o .2Apr .2006文章编号:1001-3679(2006)02-0205-05分形理论及其应用刘 莹,胡 敏,余桂英,李小兵,刘晓林(南昌大学机电工程学院,江西南昌 330029)摘要:分形理论是现代非线性科学中的一个重要的分支,是科学研究中一种重要的数学工具和手段。
介绍了分形理论的基本概念,给出了分形理论的重要参数分形维数的几种常见定义和计算方法。
重点介绍了分形理论在从自然科学到社会科学的各个领域,如工程技术、物理、化学、生物医学、材料科学、天文地理、经济管理、计算机图形学等学科领域的应用及其最新的进展情况。
最后,展望了分形理论的应用前景及其发展方向,提出分形理论将面临和有待解决的问题。
关键词:分形理论;分形维数;应用状况中图分类号:TB11;TH3;N 32 文献标识码:ATheory of Fractal and its ApplicationsL I U Y i n g ,HU M i n ,YU Gu-i y i n g ,LI X iao -bing ,L I U X iao -lin(M echan ical and E lectron i c Eng i neering Schoo,l N anchang U n i versity ,Ji angx i N anchang 330029PRC)Abst ract :Fracta l theor y is a branch of non li n ear science and an i m portant m eans for sc ience re -search.This paper introduces t h e basic concept and several calculati n g m ethods of fracta l d i m ension as a m ain para m eter of fractal theory .Pri m aril y ,it is summ arized that fractal t h eory have been used i nvarious fie l d s fr o m nat u re science to soc i a l science such as eng i n eer i n g ,physics ,che m istr y ,b i o m ed-i cine ,m aterial sc i e nce ,astrono m y and geography ,econo m y and m anage m en,t co m puter g raphics ,etc .In the end ,the foreg round and deve l o pm enta l orientation of fractal theory is prospected ,and proble m s i n face of fracta l theory is advanced.K ey w ords :Fractal theory ,Fracta l di m ension ,Applicati o n 分形理论作为一种新的概念和方法,正在许多领域开展应用探索。
对分形理论的综述一、分行理论产生的背景二、分形理论的概念三、分形理论的应用一、分型理论产生的背景长期以来,自然科学工作者,尤其是物理学家和数学家,由于受欧几里得几何学及纯数学方法的影响,习惯于对复杂的研究对象进行简化和抽象,建立起各种理想模型,把问题纳入可以解决的范畴。
线性近似方法在许多学科得到广泛的应用,解决了许多理论问题和实际问题,推动了各学科的发展。
但是,在复杂的动力学系统中,简单的线性近似方法不可能认识与非线性有关的特性,如流体中的湍流、对流等等。
而分形则是直接从非线性复杂系统的本身入手,从未简化和抽象的研究对象本身去认识其内在的规律性,这是分形理论与线形近似处理本质上的区别。
从理论上讲,它是数学思想的新发展,是人类对于维数、点集等概念的理解的深化与推广,所以人们把它称为是一种新的几何学—分形几何学。
然而,它又与现实的物理世界紧密相连,成为研究混沌(chaos)现象的重要工具。
众所周知,对混沌现象的研究正是现代理论物理学的前沿和热点之一。
除了理论上的意义之外,在实际应用中,分形也显示了巨大的潜力。
从气象、生态,直到图形压缩、城市规划,在许多相距甚远的领域里,都发现了分形的概念与方法的用武之地。
人们惊奇地发现,分形现象在自然界是普遍地、大量地存在着。
分形概念的产生与发展,进一步拓宽了我们的视野,使人类的科学思想登上了一个新的台阶。
二、分形理论的概念分形是一个新的概念,不同的专家有不同的定义方法。
当然,不同的说法所描述的还是同一件事物,只是强调其不同的侧面,不同的属性而已。
从直观上来看,所谓分形是指一些无法用常规的、传统的几何方法描述的图形。
例如天空的云彩、曲折的江河和海岸线、树叶、山峰等。
它们不同于正方形、圆、直线等规则的几何图形,表现出某种混乱和不规则。
通常的度量概念,如长度、面积等,对它们来说,不仅很难计算,而且有时根本是无法计算的。
例如,曾有科学家提出了这样一个似乎荒谬的命题:“英国的海岸线的长度是无穷大。
分形理论及其应⽤分形⼏何及其在城市研究中的应⽤⼀、分形概述1975年,著名科学家曼德布罗特(B.B.Mandelbrot)发表了其专著《分形:形态、机遇和维数》,这标志着分形⼏何学的诞⽣。
分形⼏何学是相对于传统欧⽒⼏何学的不⾜⽽建⽴的,由此发展起来的分形理论是现代⾮线性科学研究中的⼀门新兴数学分⽀,在众多学科领域中有着⼴泛的应⽤。
普通的⼏何对象,具有整数维数。
零维的点、⼀维的线、⼆维的⾯、三维的体、四维的时空等。
⽽分形则是具有⾮整数的分维的⼏何对象。
其主要的价值是在极端有序和极端混沌之间提供了⼀种可能性。
其显著的特征是:看来⼗分复杂的事物,事实上⼤多数均可⽤公含很少参数的简单公式来表达。
1、科赫曲线分形⼏何学的研究对象是不光滑的、不规则的,甚⾄⽀离破碎的空间⼏何形态。
分形的典型例⼦,科赫曲线(Koch Curve)便是以初等数学⽅法构造的⼀类处处不可导。
构造过程如下图:取长度为1的直线段,称为初始元(initiator),将该线段的中间1/3⽤⼀个隆起等边三⾓形的另两边替代,得到⼀条由四个等长直线段构成的折线,称为⽣成元(generator)。
再将⽣成元中的四个直线段中的每⼀个,都⽤⼀个缩⼩为1/3的⽣成元代替,从⾯形成了⼀条有次级隆起的折线。
这样⼀直进⾏下去,得到科赫曲线。
显然,科赫曲线的“内部”结构与整体相似。
2.⾃相似性与标度不变性如果⼏何对象的⼀个局部放⼤后与其整体相似,这种性质称为⾃相似性,⽐如树。
地质现象的描述离不开标度,在地质上,对⼀些地质现象拍照时,⼀定要放上⼀个能表⽰尺度⼤⼩的物体,如⼀枚硬币,⼀把锤⼦等。
因为,如果没有这些东西,就很难在确定这些照⽚是反映什么尺度范围内的现象,可能是10⽶还是10公⾥等。
当观测标度变化时,⼏何体的许多性质保持不变,称为标度不变性。
具有⾃相似性或标度不变性的⼏何对象,我们说它们是分形的。
3.分形的定义1.部分以某种形式与整体相似的形状叫做分形。
(B.B.Mandelbrot)2.分形集合是这样⼀种集合,它⽐传统⼏何学研究的所有集合更加的不规则,⽆论是放⼤还是缩⼩,这种集合的不规则性仍然是明显的。
分形理论及其在机械工程中的应用【摘要】分形理论是一种新兴的数学理论,通过研究自相似的结构和规律,揭示了自然界复杂而规律的现象。
在机械工程领域,分形理论为工程师提供了新的视角和方法,可以优化设计、改善材料性能和实现振动控制。
分形几何在机械设计中的应用可以帮助设计出更加紧凑和高效的结构,提高机械设备的性能。
在材料科学中,分形理论可以帮助工程师设计出更加稳定和高效的材料,提高材料的力学性能。
分形模型在振动控制中的应用则可以帮助工程师设计出更加精确和有效的控制系统,减少振动对机械设备的损害。
未来,分形理论在机械工程领域的研究将继续深入,为工程师提供更加丰富和有效的工具,推动机械工程的发展。
分形理论在机械工程领域的重要性日益凸显,将对机械设备的设计、制造和维护产生深远影响。
【关键词】分形理论、机械工程、意义、应用、分形几何、材料科学、振动控制、未来发展方向、重要性1. 引言1.1 分形理论及其在机械工程中的应用分形理论是一种描述复杂自然现象的数学理论,其应用范围涵盖了各个领域,包括机械工程。
分形在机械工程中的应用主要体现在优化设计和振动控制两个方面。
分形理论可以帮助工程师更好地理解和优化机械系统的设计。
通过分析系统的分形特征,可以发现系统中的隐藏规律和优化空间,进而提高系统的效率和性能。
特别是在微机电系统(MEMS)和纳米技术领域,分形理论可以帮助设计出更加紧凑、高效的微型机械系统。
分形理论还可以应用于振动控制领域。
分形几何的不规则性和复杂性可以帮助设计出具有多频率阻尼效应的结构,对振动进行有效控制。
这种分形模型在汽车、航空航天等领域的振动控制中存在巨大的潜力,可以大幅提高系统的稳定性和安全性。
分形理论在机械工程中的应用为工程师提供了新的思路和方法,有助于解决复杂系统设计和振动控制中的难题。
未来随着理论的进一步发展和技术的不断创新,分形在机械工程领域的应用前景将更加广阔,对于推动机械工程领域的发展具有重要意义。
分形理论在生态系统评价中的应用随着现代生态学领域的不断发展,人们对于生态系统的认知逐渐加深。
为了更加准确地评估生态系统的健康和可持续性,人们逐渐将分形理论应用到生态系统评价中。
分形理论是一种描绘自然系统的新兴理论,通过这种理论,人们能够更加准确地描述自然系统的复杂性和多样性。
本文将介绍分形理论在生态系统评价中的应用,并探讨它的重要性和实际价值。
一、什么是分形理论?分形理论是描述和研究复杂系统的一种数学方式。
这种方式能够更好地描绘自然界的形态和变化过程。
分形理论的基本思想是将整体看作若干个局部的复制,即整体的形态由局部的复制所组成。
和传统数学理论不同,分形理论强调复杂系统的整体具有局部特征的复制物所组成,而不是由整体的简单组成单元所组成。
因此,分形理论适用于自然环境等复杂的系统中,它能真正反映这些系统的真实状态。
二、分形理论在生态系统评价中的应用生态系统的评价是指对某个生态系统的功能、结构和组成要素进行定量和定性的描述与分析。
而分形理论的特点,能够更准确地描述生态系统的复杂性和多样性。
因此,分形理论在生态系统评价中的应用逐渐被人们重视。
1. 生态系统结构分析生态系统的结构是指其中物种、地形、地貌等所有有形无形的且可定性描述的组成部分。
分形理论能够结合计算机图像处理技术,对生态系统的结构进行分析,对生态系统的物理结构和空间分布进行深入了解。
生态系统的分形组成结构的层次增加了对生态系统的理解。
例如,通过分析林分的空间分布结构,我们可以了解到不同种类的植物如何相互作用,以及它们在生态系统中的位置和关系。
这种分析能够对生态系统的结构特征和物种分布规律进行研究,并提供了科学依据,以利于生态系统的保护和管理。
2. 生态系统空间模式分析生态系统的空间模式是指在某一时间和某一空间范围内物种、地貌、地形等有机组成件的构成。
分形理论可以在不同空间尺度上,通过分析这些元素的分布模式,获取生态系统状态和演化的深入了解。
例如,在对一片森林中的中空位置进行分析,分形理论可以通过计算中空区域的边界形态和大小,推测该区域能否成为生物发展的空间场所。
2006年4月皖西学院学报Apr.,2006第22卷第2期Journal of West Anhui U niversity Vol.22 NO.2分形理论及其在物理学中的应用3陈 力1,邵 瑞2(1.安庆师范学院物理与电气工程学院,安徽安庆246011;2.巢湖学院物理系,安徽巢湖238000)摘 要:给出了分形的定义、有关概念、分形的描述方法、多重分形理论,以及分形理论在物理学中广泛的应用。
关键词:分形理论;分形维数;多重分形;物理应用中图分类号:O437 文献标识码:A 文章编号:1009-9735(2006)02-0038-031 分形学的创立非线性科学是近几十年在各门以非线性为特征的子学科研究基础上逐渐形成的复杂性科学[1,2]。
它是揭示非线性系统的共同性质、基本特性和运动规律的跨学科的一门综合性基础科学。
分形学[3,4]是非线性的一个活跃分支,它研究的对象是非线性系统中产生的不光滑和不可微的几何形体,对应的参数是分形维数。
分形学的初创形式是分形几何学,它是美籍法国科学家曼德布罗特于1973年在法兰西学院讲学期间首次提出的。
分维数是1977年由曼德布罗特在《分形:形成、机率和维数(Fractals:Form,Chance and Dimension)》一书中创造的一个新的科技英语单词,这里分维数可反映由包含分数在内整个维数所覆盖的空间体系的粗糙程度。
分维数的主要思想可以通过研究一组曲线来说明。
分形是个新概念,分形学是个新的方法论和科学观。
它的问世在科学界产生的影响可以跟牛顿创立微积分学后在科学界产生的重大影响相比拟,可以称作是科学的新里程碑。
物质世界中广泛存在着非线性系统,所以必须寻找适当方法正确处理非线性问题。
原本是非线性问题,若把它按线性系统加以处理,则不能正确解释其基本面貌。
分形学为处理非线性系统问题提出了新思路和新方法。
那么,什么是分形?分形的涵义是什么?分形概念的实质是指那些传统的物理学和几何学排除在外的不规则形体在标度变换下的自相似性。