当前位置:文档之家› 第一轮复习:弹簧连接体及延伸问题专题训练

第一轮复习:弹簧连接体及延伸问题专题训练

第一轮复习:弹簧连接体及延伸问题专题训练
第一轮复习:弹簧连接体及延伸问题专题训练

第一轮复习:弹簧连接体及延伸问题专题训练

教材中并未专题讲述弹簧。主要原因是弹簧的弹力是一个变力。不能应用动力学和运动学的知识来详细研究。但是,在高考中仍然有少量的弹簧问题出现(可能会考到,但不一定会考到)。即使试题中出现弹簧,其目的不是为了考查弹簧,弹簧不是问题的难点所在。而是这道题需要弹簧来形成一定的情景,在这里弹簧起辅助作用。所以我们只需了解一些关于弹簧的基本知识即可。具体地说,要了解下列关于弹簧的基本知识:

1、 认识弹簧弹力的特点。

2、 了解弹簧的三个特殊位置:原长位置、平极端位置。特别要理解“平衡位置”的含义

3、 物体的平衡中的弹簧

4、 牛顿第二定律中的弹簧

5、 用功和能量的观点分析弹簧连接体

6、 弹簧与动量守恒定律

经典习题:

1、如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上,②中弹簧的左端受大小也为F 的拉力作用,③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动,④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动。若认为弹簧的质量都为零,以l 1、l

2、l

3、l 4依次表示四个弹簧的伸长量,则有 ( )

A .l 2>l 1

B .l 4>l 3

C .l 1>l 3

D .l 2=l 4

2、(双选)用一根轻质弹簧竖直悬挂一小球,小球和弹簧的受力如右图所示,下列说法正确的是( )

A .F 1的施力者是弹簧

B .F 2的反作用力是F 3

C .F 3的施力者是小球

D .F 4的反作用力是F 1

3、如图,两个小球A 、B ,中间用弹簧连接,并用细绳悬于天花板下,下面四对力中,属于平衡力的是( )

A 、绳对A 的拉力和弹簧对A 的拉力

B 、弹簧对A 的拉力和弹簧对B 的拉力

C 、弹簧对B 的拉力和B 对弹簧的拉力

D 、B 的重力和弹簧对B 的拉力

4、如图所示,质量为1m 的木块一端被一轻质弹簧系着,木块放在质量为2m 的木板上,地面光滑,木块与木板之间的动摩擦因素为μ,弹簧的劲度系数为k ,现在用力F 将木板拉出来,木块始终保持静止,则弹

簧的伸长量为( )

A .k g

m 1μ B .k g

m 2μ C . k F D .k

g m F 1μ-

5、如图所示,劲度系数为k 的轻质弹簧两端连接着质量分别为1m 和2m 的两木块,

开始时整个系统处于静止状态。现缓慢向上拉木块2m ,直到木块1m 将要离开地面,

6、如图所示,U 型槽放在水平桌面上,M=0.5kg 的物体放在槽内,弹簧撑于物体和槽壁

之间并对物体施加压力为3N , 物体与槽底之间无摩擦力。

当槽与物体M 一起以6 m/s 2的加速度向左运动时,槽壁对物体M 的压力为_____N.

当槽与物体M 一起以4m/s 2的加速度向左水平运动时,槽壁对物体M 的压力为_____N.

7、A 、B 球质量均为m ,AB 间用轻弹簧连接,将A 球用细绳悬挂于O 点,如图示,

剪断细绳的瞬间,A 球加速度大小等于____,方向____。B 球加速度大小等于_____。

8、如图所示,一小球自空中自由落下,与正下方的直立轻质弹簧接触,直至速度为零的过程中,

关于小球运动状态的下列几种描述中,正确的是 ( )

A .接触后,小球作减速运动,加速度的绝对值越来越大,速度越来越小,最后等于零

B .接触后,小球先做加速运动,后做减速运动,其速度先增加后减小直到为零

C .接触后,速度为零的地方就是弹簧被压缩最大之处,加速度为零的地方也是弹簧

被压缩最大之处

D .接触后,小球速度最大的地方就是加速度等于零的地方

9、图为蹦极运动的示意图。弹性绳的一端固定在O 点,另一端和运动员相连。运动员从O 点自由下落,至B

点弹性绳自然伸直,经过合力为零的C 点到达最低点D ,然后弹起。整个过程中忽略空气阻力。

分析这一过程,下列表述正确的是 ( )

①经过B 点时,运动员的速率最大 ②经过C 点时,运动员的速率最大

③从C 点到D 点,运动员的加速度增大 ④从C 点到D 点,运动员的加速度不变

A .①③

B .②③

C .①④

D .②④

10、如图所示,小球在竖直力F 作用下将竖直弹簧压缩(小球与弹簧不栓连),若将力F 撤去,小球将向上弹

起并离开弹簧,直到速度变为零为止,在小球上升的过程中,下列说法中正确的是( )

A.小球的动能先增大后减小

B.小球在离开弹簧时动能最大

C.小球的动能最大时弹性势能为零

D.从撤去外力F 到小球上升到最高点的过程中,弹簧一直与小球一起运动

11、如图(甲)所示,质量不计的弹簧竖直固定在水平面上,t=0时刻,将一金属小球从弹簧正上方某一高度

处由静止释放,小球落到弹簧上压缩弹簧到最低点,然后又被弹起离开弹簧,上升到一定高度后再下落,如此反复。通过安装在弹簧下端的压力传感器,测出这一过程弹簧弹力F 随时间t 变化的图像如图(乙)所示,则( )

A .1t 时刻小球动能最大

B .2t 时刻小球动能最大

C .2t ~3t 这段时间内,小球的动能先增加后减少

D .2t ~3t 这段时间内,小球增加的动能等于弹簧减少的弹性势能

12、如图所示,固定在水平面上的竖直轻弹簧,上端连接质量为M 的物块A 位于P 处,另有一质量为m 的物块

B ,从A 的正上方Q 处自由下落,与A 发生碰撞,立即具有相同的速度,然后AB 一起向下运动,

将弹簧继续压缩后,物块AB 被反弹,下面是有关的几个结论,正确的是( )

①AB 反弹过程中,在P 处物块B 与A 分离 ②AB 反弹过程中,在P 处物块B 与A 仍未分离

③B 可能回到Q 处 ④B 不可能回到Q 处

A.①②

B. ①③

C. ③④

D. ②④

13、如图所示,一根用绝缘材料制成的轻弹簧,劲度系数为k ,一端固定,另一端与质量为m 、带电量为+q

的小球相连,静止在光滑绝缘水平面上。当施加水平向右的匀强电场E 后,从小球开始运动到小球运动到右端速度为零的过程中,下列说法中正确的是………………………………( )

B.小球的加速度先减小后增加

C.运动过程中,小球的机械能守恒

D.运动过程中,小球动能、弹性势能、电势能之和保持不变

14、倾角为θ的光滑斜面上,一根轻弹簧两端连接着物块A与B,弹簧劲度系数为k,物块A与挡板C接触,

原来A、B都处于静止状态,现开始用沿斜面方向的恒力F拉B,使之沿斜面向上运动,求:当A刚要

离开C时,B的加速度多大?从B开始运动到此时,B的位移多大?

15、如图所示,足够长且倾角为θ的光滑斜面上端系有一劲度系数为k的轻质弹簧,弹簧下端连接一个质量为

m的小球,小球被一垂直于斜面的挡板A挡住,此时弹簧没有形变,若挡板A以加速度a(a<gsinθ)沿斜面向下做匀加速运动,求:

(1)刚开始运动时小球对挡板的压力大小。

(2)小球沿斜面向下运动多少距离时速度最大。

(3)从开始运动到小球与挡板分离时所经历的时间t为多少。

(4)从开始运动到小球与挡板分离时外力对小球做的功为多少。

16、一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m的物体,有一水平板将物体托住,并使

弹簧处于自然长度。如图所示。现让木板由静止开始以加速度a(a<g=匀加速向下移动。求经过多长时间木板开始与物体分离。

17、如图所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P处于静止,P的质量m=12kg,

弹簧的劲度系数k=300N/m。现在给P施加一个竖直向上的力F,使P从静止开始向上做匀加速直线运动,已知在t=0.2s内F是变力,在0.2s以后F是恒力,g=10m/s2,则F的最小值是,F的最大值是。

18、如图所示,轻弹簧的一端固定在地面上,另一端与木块B相连,木块A放在木块B上,两木块质量均为

m,在木块A上施有竖直向下的力F,整个装置处于静止状态.

(1)突然将力F撤去,若运动中A、B不分离,则A、B共同运动到最高点时,B对A的弹力有多大?

(2)要使A、B不分离,力F应满足什么条件?

19、一根轻弹簧左端固定在竖直墙壁上,自然伸长时右端在O点。一个质量为m的物块静止在A点,在水平

不计摩擦与空气阻力。则物块运动到O 点时的动能为______,速度为______。弹簧被压缩到P 点时的弹性势能为__________。

20、轻弹簧一端固定在斜面底端,另一端自然伸长。一个物体从粗糙斜面上某点由静止开始自由滑下,直到将

弹簧压缩到最低点的过程中,下列说法中错误的是( )

A.物体的重力势能转化为弹性势能

B.物体的重力势能转化弹性势能和内能

C.重力所做的功等于克服摩擦做的功与克服弹力所做的功之和

D. 克服摩擦做的功等于摩擦生热

21、如图所示,轻质弹簧原长为L ,竖直固定在地面上,质量为m 的小球

从距地面H 高处由静止开始下落,正好落在弹簧上,使弹簧的最大

压缩量为x ,在下落过程中,空气阻力恒为f ,则弹簧在最短时具有

的弹性势能为E p =________.

22、一根轻弹簧左端与墙壁相连,右端与一质量为m 的木块A 相连,另一质量也为m 的木块B 紧靠着A 但不与A 粘连。开始时,弹簧处于压缩状态,释放弹簧,A 、B 分离后,刚好能上升到与水平面相切的4/1圆弧顶端,圆弧半径为R ,不计一切摩擦阻力。求:

(1) 刚开始释放弹簧时,弹簧的弹性势能为多大?

(2) A 、B 分离后,弹簧伸长量最大时的弹性势能?

23、如图所示,固定的光滑水平金属导轨,间距为L ,左端接有阻值为R 的电阻,处在方向竖直、磁感应强

度为B 的匀强磁场中,质量为m 的导体棒与固定弹簧相连,放在导轨上,导轨与导体棒的电阻均可忽略,初始时刻,弹簧恰处于自然长度,导体棒具有水平向右的初速度0 ,在沿导轨往复运动的过程中,导体棒始终与导轨垂直并保持良好接触。

(1)求初始时刻导体棒受到的安培力;

(2)若导体棒从初始时刻到速度第一次为零时,弹簧的弹性势能为P E ,则这一过程中安培力所做的功1

W 和电阻上产生的焦耳热1Q 分别为多少?

(3)导体棒往复运动,最终将静止于何处?从导体棒开始运动直到最终静止的过程中,电阻R 上产生的

焦耳热Q 为多少?

匀强电场中。一劲度系数为k 的绝缘轻质弹簧的一端固定在斜面底端,整根弹簧处于自然状态。一质量为m 、带电量为q (q>0)的滑块从距离弹簧上端为s 0处静止释放,滑块在运动过程中电量保持不变,设滑块与弹簧接触过程没有机械能损失,弹簧始终处在弹性限度内,重力加速度大小为g 。

(1)求滑块从静止释放到与弹簧上端接触瞬间所经历的时间t 1

(2)若滑块在沿斜面向下运动的整个过程中最大速度大小为m υ,求滑块从静止释放到速度大小为m υ 过

程中弹簧的弹力所做的功W ;

(3)从滑块静止释放瞬间开始计时,请在乙图中画出滑块在沿斜面向下运动的整个过程中速度与时间关

系υ-t 图象。图中横坐标轴上的t 1、t 2及t 3分别表示滑块第一次与弹簧上端接触、第一次速度达到最大值及第一次速度减为零的时刻,纵坐标轴上的1υ为滑块在t 1时刻的速度大小,m υ是题中所指的

物理量。(本小题不要求写出计算过程............

25、如图所示,一劲度系数为k =800N/m 的轻弹簧两端各焊接着两个质量均为m =12kg 的物体A 、B 。物体A 、

B 和轻弹簧竖立静止在水平地面上,现要加一竖直向上的力F 在上面物体A 上,使物体A 开始向上做匀加速运动,经0.4s 物体B 刚要离开地面,设整个过程中弹簧都处于弹性限度内,取g =10m/s 2 ,求:

(1)此过程中所加外力F 的最大值和最小值。

(2)此过程中外力F 所做的功。

26、如图所示,在倾角为 30°的光滑斜面上,有一劲度系数为 k 的轻质弹簧,其一端固定在固定挡板C 上,

另一端连接一质量为 m 的物体 A 。有一细绳通过定滑轮,细绳的一端系在物体 A 上(细绳与斜面平行),另一端系有一细绳套。图示中物体 A 处于静止状态,当在细绳套上轻轻挂上一个质量为m 的物体 B 后,物体A 将沿斜面向上运动,试求:

(1)未挂物体B 时,弹簧的形变量;

(2)物体A 的最大速度值。

27、如图所示,A 、B 两小球由绕过轻质定滑轮的细线相连,A 放在固定的光滑斜面上,B 、C 两小球在竖直方向上通过劲度系数为k 的轻质弹簧相连,C 球固定在放在地面的力传感器上(图中未画出)。现用手控制住A ,并使细线刚刚拉直但无拉力作用,并保证滑轮左侧细线竖直、右侧细线与斜面平行。已知A 质量为4m ,B 、C 的质量均为m,重力加速度为g ,细线与滑轮之间的摩擦不计。开始时整个系统处于静止状态;释放A 后,A 在斜面上运动。当A 球速度最大时,传感器示数为零。求:

(1) 斜面的倾角а;

(2) A 球运动的最大速度。

28、如图所示,在固定的足够长的光滑斜面上,一小物块用细绳通过光滑滑轮与轻质弹簧的一端相连,弹簧另一端固定在水平地面上,细绳与斜面平行,小物块在A 点时弹簧无形变,细绳刚好伸直但无拉力。把质量为m

的该小物块从A 点由静止释放,它下滑2L 的距离时经过B 点速度最大,继续下滑2

L 距离到达C 点速度恰好为零,弹簧处于弹性限度内。已知斜面的倾角为θ,重力加速度为g 。求:

(1)小物块刚被释放时的加速度a A 的大小和方向;

(2)小物块经过B 点时弹簧弹力F 的大小,以及到达C 点时

弹簧的弹性势能E P ;

(3)若小物块的质量为2m ,仍从A 点由静止释放,求该物块运动的最大速度v m 的大小(弹簧仍处于弹性限度内)。

29、如图所示装置,水平传送带PQ 间距m L 31=,传送带匀速运动的速度s m /10=υ,倾角θ=37°斜面底端固定一轻弹簧,轻弹簧处于原长时上端位于C 点,Q 点与斜面平滑连接,Q 到C 点的的距离m L 75.02=。质量m=5kg 的物体(可视为质点)无初速地轻放在传送带左端的P 点,当物体被传送到右端Q 点后沿斜面向下滑动,将弹簧压缩到最短位置D 点后恰能弹回C 点。不计物体经过Q 点时机械能的损失,物体与传送带、斜面间的动摩擦因数均为μ=0.5。(g 取2/10s m ,sin37°=0.6,cos37°=0.8)。求:

(1) 物体从p 点运动到Q 点的时间;

(2) 物体压缩弹簧过程中弹簧的最大弹性势能;

(3) 若已知弹簧的弹性势能与弹簧的劲度系数k 和形变量的关系是22

1kx E P =

,物体被弹簧弹回何处时速度最大。

30、如图所示,挡板P 固定在足够高的水平桌面上,物块A 和B 的大小可忽略,它们分别带有A Q +和B

Q +电荷

量,质量分别为A m 和B

m ,两物块由绝缘的轻弹簧相连,一不可伸长的轻绳绕过一光滑的定滑轮,一端与B 连接,另一端连接一轻质小钩,整个装置处于方向水平向左的匀强电场中,电场强度为E ,开始时A 、B 静止,已知弹簧的劲度系数为k ,不计一切摩擦及A 、B 间的库仑力,A 、B 所带电荷量保持不变,B 一直在水平面上运动且不会碰到定滑轮,试求:

(1) A 、B 静止时,挡板P 对物块的作用力大小

(2) 若在小钩上挂一质量为M 的物块C 并由静止释放,当物块C 下落到最大距离时物块A 对挡板P 的压

力刚好为零,试求物块C 下落的最大距离

(3)若C 的质量改为2M ,则当A 刚离开挡板P 时,B 的速度多大?

31、如图所示的装置中,木块B 与水平桌面间的接触是光滑的,子弹A 沿水平方向射入木块后留在木块内,将弹簧压缩到最短.现将子弹、木块和弹簧合在一起作为研究对象(系统),则此系统在从子弹开始射入木块到弹簧压缩至最短的整个过程中

A.动量守恒,机械能守恒

B.动量不守恒,机械能不守恒

C.动量守恒,机械能不守恒

D.动量不守恒,机械能守恒

32、如图所示,质量分别为m 和2m 的A 、B 两个木块间用轻弹簧相连,放在光滑水平面上,A 靠紧竖直墙.用水平力F 将B 向左压,使弹簧被压缩一定长度,静止后弹簧储存的弹性势能为E .这时突然撤去F ,关于A 、B 和弹簧组成的系统,下列说法中正确的是( )

A .撤去F 后,系统动量守恒,机械能守恒

B .撤去F 后,A 离开竖直墙前,系统动量不守恒,机械能守恒

C .撤去F 后,A 离开竖直墙后,弹簧的弹性势能最大值为E

D .撤去F 后,A 离开竖直墙后,弹簧的弹性势能最大值为

E /3

33、光滑的水平地面上,质量均为m 的物体A 、B 用一根轻弹簧相连。开始时整个系统处于静止状态,某时刻物体A 突然获得水平向右的初速度0υ,0υ的方向与弹簧的轴线方向相同。此后弹簧被压缩到最短时的弹性势能等于________。

常见弹簧类问题分析

常见弹簧类问题分析 高考要求 轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见.应引起足够重视. 弹簧类命题突破要点 1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化. 2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变. 3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再 用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k =-(21kx 22-2 1 kx 12),弹力的功等于弹性势能增量的负值.弹性势能的公式E p = 2 1kx 2 ,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解. 下面就按平衡、动力学、能量、振动、应用类等中常见的弹簧问题进行分析。 一、与物体平衡相关的弹簧问题 1.(1999年,全国)如图示,两木块的质量分别为m 1和m 2, 两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( ) A.m 1g/k 1 B.m 2g/k 2 C.m 1g/k 2 D.m 2g/k 2 此题若求m l 移动的距离又当如何求解? 参考答案:C

连接体问题专题详细讲解

连接体问题一、连接体与隔离体 两个或两个以上物体相连接组成的物体系统,称为连接体。如果把其中某个物体隔离出来,该物体即为隔离体。 二、外力和内力如果以物体系为研究对象,受到系统之外的作用力,这些力是系统受到的外力,而系统内各物体间的相互作用力为内力。应用牛顿第二定律列方程不考虑内力。如果把物体隔离出来作为研究对象,则这些内力将转换为隔离体的外力。 三、连接体问题的分析方法 1.整体法连接体中的各物体如果加速度相同,求加速度时可以把连接体作为一个整体。运用牛顿第二定律列方程求解。 2.隔离法如果要求连接体间的相互作用力,必须隔离其中一个物体,对该物体应用牛顿第二定律求解,此法称为隔离法。 3.整体法与隔离法是相对统一,相辅相成的。本来单用隔离法就可以解决的连接体问题,但如果这两种方法交叉使用,则处理问题就更加方便。如当系统中各物体有相同的加速度,求系统中某两物体间的相互作用力时,往往是先用整体法法求出加速度,再用隔离法法求物体受力。 简单连接体问题的分析方法 1.连接体:两个(或两个以上)有相互作用的物体组成的具有相同大小加速度的整体。 2.“整体法”:把整个系统作为一个研究对象来分析(即当做一个质点来考虑)。 注意:此方法适用于系统中各部分物体的加速度大小方向相同情况。 3.“隔离法”:把系统中各个部分(或某一部分)隔离作为一个单独的研究对象来分析。 注意:此方法对于系统中各部分物体的加速度大小、方向相同或不相同情况均适用。 4.“整体法”和“隔离法”的选择 求各部分加速度相同的连结体的加速度或合外力时,优选考虑“整体法”;如果还要求物体之间的作用力,再用“隔离法”,且一定是从要求作用力的那个作用面将物体进行隔离;如果连结体中各部分加速度不同,一般都是选用“隔离法”。 5.若题中给出的物体运动状态(或过程)有多个,应对不同状态(或过程)用“整体法”或“隔离法”进行受力分析,再列方程求解。 针对训练 1.如图用轻质杆连接的物体AB沿斜面下滑,试分析在下列条件下,杆受到的力是拉力还是压力。 (1)斜面光滑; (2)斜面粗糙。 〖解析〗解决这个问题的最好方法是假设法。即假定A、B间的杆不存在,此时同时释放A、B,若斜面光滑,A、B运动的加速度均为a=g sinθ,则以后的运动中A、B间的距离始终不变,此时若将杆再搭上,显然杆既不受拉力,也不受压力。若斜面粗糙,A、B单独运动时的加速度都可表示为:a=g sinθ-μg cosθ,显然,若a、b两物体与斜面间的动摩擦因数μA=μB,则有a A=a B,杆仍然不受力,若μA>μB,则a A<a B,A、B间的距离会缩短,搭上杆后,杆会受到压力,若μA<μB,则a A>a B杆便受到拉力。 〖答案〗 (1)斜面光滑杆既不受拉力,也不受压力 (2)斜面粗糙μA>μB杆不受拉力,受压力 斜面粗糙μA<μB杆受拉力,不受压力 类型二、“假设法”分析物体受力 【例题2】在一正方形的小盒内装一圆球,盒与球一起沿倾角为θ的斜面下滑,如图所示,若不存在摩擦,当θ角增大时,下滑过程中圆球对方盒前壁压力T及对方盒底面的压力N将如何变化?(提示:令T不为零,用整体法和隔离法分析)()

高中物理弹簧牛二连接体专题练习

弹簧牛二连接体专题练习 一、计算题 1、一弹簧一端固定在倾角为37°光滑斜面的底端,另一端拴住的质量m1=4kg的物块P,Q为一重物,已知Q的质量m2=8kg,弹簧的质量不计,劲度系数k=600N/m,系统处于静止,如右图所示.现给Q施加一个方向沿斜面向上的力F,使它从静止开始斜向上做匀加速运动,已知在前0.2s时间内,F为变力,0.2s以后,F为恒力.求力F的最大值与最小值.(g=10m/s2) 2、物体P放在粗糙水平地面上,劲度系数k=300N/m的轻弹簧左端固定在竖直墙壁上,右端固定在质量为m=1kg的物体P上,弹簧水平,如图所示。开始t=0时弹簧为原长,P从此刻开始受到与地面成θ=37°的拉力F作用而向右做加速度a=1m/s2的匀加速运动,某时刻t=t0时F=10N,弹簧弹力F T=6N,取sin37°=0.6、cos37°=0.8,重力加速度g=10 m/s2。求: (1)t=t0时P的速度; (2)物体与地面间的动摩擦因数μ。 3、质量为m的物块用压缩的轻质弹簧卡在竖直放置在矩形匣子中,如图所示,在匣子的顶部和底部都装有压力传感器,当匣子随升降机以a=2.0m/s2的加速度竖直向上做匀减速运动时,匣子顶部的压力传感器显示的压力为6.0N,底部的压力传感器显示的压力为10.0N(g=10m/s2) (1)当匣子顶部压力传感器的示数是底部传感器示数的一半时,试确定升降机的运动情况。 (2)要使匣子顶部压力传感器的示数为零,升降机 沿竖直方向的运动情况可能是怎么样的? 4、如图所示,质量为2kg的物体放在水平地板上,用一原长为8cm的轻质弹簧水平拉该物体,当其刚开始运动时,弹簧的长度为11cm,当弹簧拉着物体匀速前进时,弹簧的长度为10.5cm,已知弹簧的劲度系数k=200N/m。求:

连接体问题

【典型例题】 【针对训练】 例1.两个物体A 和B ,质量分别为 m 1和m 2,互相接触放在光滑水平面上,如图所示, A B 对物体A 施以水平的推力 F ,则物体A 对物体 B 的作用力等于( m 1 F ---- ? m 1 m 2 A. —F m 1 m 2 m 2 B. —F m 1 m 2 D.巴F m 2 2.如图A 、B 、C 为三个完全相同的物体,当水平力 于B 上,三物体可一起匀速运动。撤去力 F 后, F 作用 三物体仍 用力为f 2,贝U f l 和f 2的大小为( A.f i = f 2 = 0 B.f i = 0, f 2= F F C.f1 =— 3 3.如图所示,在前进的车厢的竖直后壁上放一个物体,物体与壁间 的静摩擦因数卩=0.8,要使物体不致下滑,车厢至少应以多大的 加速度前进? ( g = 10m/s 2 ) 4.如图所示,箱子的质量 M = 5.0kg ,与水平地面的动摩擦因 数卩=0.22。在箱子顶板处系一细线,悬挂一个质量 m = 1.0kg 的小球,箱子受到水平恒力 F 的作用,使小球的悬线偏离竖直 方向0= 30°角,贝U F 应为多少? ( g = 10m/s 2 ) 【能力训练】 1.如图所示,质量分别为 M 、m 的滑块A 、B 叠放在固定的、 倾角为0的斜面上, A 与斜面间、A 与B 之间的动摩擦因数 分别为卩1,卩2,当A 、B 从静止开始以相同的加速度下滑时, B 受到摩擦力( A.等于零 B.方向平行于斜面向上 C.大小为卩1mgcos 0 D.大小为卩2mgcos0 ^TTTTTTTTTTTJTTl C.F TTTTTTTTTTiil

连接体问题专题详细讲解20912

连接体问题 一、连接体与隔离体 两个或两个以上物体相连接组成的物体系统,称为连接体。如果把其中某个物体隔离出来,该物体即为隔离体。 二、外力和力如果以物体系为研究对象,受到系统之外的作用力,这些力是系统受到的外力,而系统各 物体间的相互作用力为力。应用牛顿第二定律列方程不考虑力。如果把物体隔离出来作为研究对象,则这些力将转换为隔离体的外力。 三、连接体问题的分析方法 1.整体法连接体中的各物体如果加速度相同,求加速度时可以把连接体作为一个整体。运用牛顿第二定律列方程求解。 2.隔离法如果要求连接体间的相互作用力,必须隔离其中一个物体,对该物体应用牛顿第二定律求解,此法称为隔离法。 3.整体法与隔离法是相对统一,相辅相成的。本来单用隔离法就可以解决的连接体问题,但如果这两种方法交叉使用,则处理问题就更加方便。如当系统中各物体有相同的加速度,求系统中某两物体间的相互作用力时,往往是先用整体法法求出加速度,再用隔离法法求物体受力。 简单连接体问题的分析方法 1.连接体:两个(或两个以上)有相互作用的物体组成的具有相同大小加速度的整体。 2.“整体法”:把整个系统作为一个研究对象来分析(即当做一个质点来考虑)。 注意:此方法适用于系统中各部分物体的加速度大小方向相同情况。 3.“隔离法”:把系统中各个部分(或某一部分)隔离作为一个单独的研究对象来分析。 注意:此方法对于系统中各部分物体的加速度大小、方向相同或不相同情况均适用。 4.“整体法”和“隔离法”的选择 求各部分加速度相同的连结体的加速度或合外力时,优选考虑“整体法”;如果还要求物体之间的作用力,再用“隔离法”,且一定是从要求作用力的那个作用面将物体进行隔离;如果连结体中各部分加速度不同,一般都是选用“隔离法”。 5.若题中给出的物体运动状态(或过程)有多个,应对不同状态(或过程)用“整体法”或“隔离法”进行受力分析,再列方程求解。

弹簧问题专项复习及练习题(含详细解答)

高三物理第二轮专题复习(一)弹簧类问题 轻弹簧是一理想模型,涉及它的知识点有①形变和弹力,胡克定律②弹性势能弹簧振子等。问题类型: 1、弹簧的瞬时问题 弹簧的两端若有其他物体或力的约束,使其发生形变时,弹力不能由某一值突变为零或由零突变为某一值。弹簧的弹力不能突变是由弹簧形变的改变要逐渐进行决定的。 2、弹簧的平衡问题 这类题常以单一的问题出现,通常用胡克定律F=Kx和平衡条件来求解,列方程时注意研究对象的选取,注意整体法和隔离法的运用。 3、弹簧的非平衡问题 这类题主要指弹簧在相对位置发生变化时,所引起的合外力加速度速度动能和其它物理量发生变化的情况。弹簧的弹力与形变量成正比例变化,而它引起的物体的加速度速度动量动能等变化不是简单的单调关系,往往有临界值或极值。有些问题要结合简谐运动的特点求解。 4、弹力做功与动量能量的综合问题 弹力是变力,求弹力的冲量和弹力做的功时,不能直接用冲量和功的定义式,一般要用动量定理和动能定理计算。如果弹簧被作为系统内的一个物体时,弹簧的弹力对系统内物体做不做功都不影响系统的机械能。 在弹力做功的过程中弹力是个变力,并与动量能量联系,一般以综合题出现。它有机地将动量守恒机械能守恒功能关系和能量转化结合在一起,以考察综合应用能力。分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理动量定理和功能关系等知识解题。 规律:在弹簧-物体系统中,当弹簧处于自然长度时,系统具有最大动能;系统运动中弹簧从自然长度开始到再次恢复自然长度的过程相当于弹性碰撞过程。当弹簧具有最大形变量时,两端物体具有相同的速度,系统具有最大的弹性势能。系统运动中,从任意状态到弹簧形变量最大的状态的过程相当于完全非弹性碰撞的过程。(实际上应为机械能守恒) 典型试题 1、如图所示,轻弹簧下端固定在水平地面上,弹簧位于竖直方向,另一端静止于B点。在B点正上方A点处,有一质量为m的物块,物块从静止开始自由下落。物块落在弹 簧上,压缩弹簧,到达C点时,物块的速度为零。如果弹簧的形变始终未超过 弹性限度,不计空气阻力,下列判断正确的是( B ) A、物块在B点时动能最大 B、从A经B到C,再由C经B到A的全过程中,物块的加速度的最大值大于g C、从A经B到C,再由C经B到A的全过程中,物块做简谐运动 D、如果将物块从B点由静止释放,物块仍能到达C点 2、如图所示,弹簧上端固定在天花板上,下端系一铜球,铜球下端放有通电线圈。 今把铜球拉离平衡位置后释放,此后关于小球的运动情况(不计空气阻力)是() A.做等幅振动B.做阻尼振动 C.振幅不断增大 D.无法判断 3、如图所示,质量相同的木块AB用轻弹簧相连,静止在光滑水平面上。弹簧处 于自然状态。现用水平恒力F向右推A,则从开始推A到弹簧第一次被压缩到最短的过程中,下列

连接体问题含答案

牛顿第二定律的应用――― 连接体问题 【自主学习】 一、连接体与隔离体 两个或两个以上物体相连接组成的物体系统,称为 。如果把其中某个物体隔离出来,该物体即为 。 二、外力和内力 如果以物体系为研究对象,受到系统之外的作用力,这些力是系统受到的 力,而系统内各物体间的相互作用力为 。 应用牛顿第二定律列方程不考虑 力。如果把物体隔离出来作为研究对象,则这些内力将转换为隔离体的 力。 三、连接体问题的分析方法 1.整体法:连接体中的各物体如果 ,求加速度时可以把连接体作为 一个整体。运用 列方程求解。 2.隔离法:如果要求连接体间的相互作用力,必须隔离其中一个物体,对该物体应用 求解,此法称为隔离法。 3.整体法与隔离法是相对统一,相辅相成的。本来单用隔离法就可以解决的连接体问 题,但如果这两种方法交叉使用,则处理问题就更加方便。如当系统中各物体有相同的加速度,求系统中某两物体间的相互作用力时,往往是先用 法求出 ,再用 法求 。 【典型例题】 例1.两个物体A 和B ,质量分别为m 1和m 2,互相接触放在光滑水平面上,如图所示, 对物体A 施以水平的推力F ,则物体A 对物体 B 的作用力等于( ) A. F m m m 211+ B.F m m m 2 12 + C.F D. F m 2 1 扩展:1.若m 1与m 2与水平面间有摩擦力且摩擦因数均为μ则对B 作用力等于 。 2.如图所示,倾角为α的斜面上放两物体m 1和m 2,用与斜面 平行的力F 推m 1,使两物加速上滑,不管斜面是否光滑,两物体 之间的作用力总为 。 例2.如图所示,质量为M 的木板可沿倾角为θ的光滑斜面下滑, 木板上站着一个质量为m 的人,问(1)为了保持木板与斜面相 班级 姓名

浅谈弹簧类问题的处理方法

浅谈弹簧类问题的处理方法 高中阶段与弹簧有关的问题特别多,是学生学习过程中难以突破的难点,也是高三复习过程中学生难以掌握的内容之一。笔者在教学过程中发现:学生对与弹簧接触的物体的运动这一大类问题无法与物体的受力联系起来,导致思维混乱不堪,无法进行问题的正确分析处理。那么,该如何处理这类问题呢?根据物体的运动状态不同,把此类问题分为三类。 类型一:动态平衡类问题 例1:质量分别为m1、m2的物块A、B与劲度系数分别为k1、k2的轻弹簧拴接,如图1所示,A、B两物块均处于静止状态,弹簧始终在弹性限度内。现用竖直向上的力缓慢的提升A物块,当k2刚好离地时,A、B两物体上升的高度hA=?、hB=? 解:设A、B静止时,弹簧k2被压缩的量为x2,弹簧k1被压缩的量为x1,对A、B整体分析,由平衡条件可得:k2m2=(m1+m2)g …………① 对A分析,由平衡条件有:k1x1=m1g ……………② 假设k1不伸长,A将随B一起上升x2的高度,但实际上A要再上升直至弹簧k1由压缩变为伸长产生对B的拉力平衡B的重力,设弹簧k1最终的伸长量为x’1,当k2即将离地时对B分析,有:k1x1=m2g ……………③ 由①式可得B物体上升的高度为: 由①②③式可得A物体上升的高度为: 方法总结:首先让学生明白两弹簧的初始状态,然后分析满足条件的末态,弹簧形变量的变化即为相应物体高度的变化。 类型二:动力学中的弹簧问题 例2:如图2所示,一弹簧秤放在水平地面上,Q为与轻弹簧上端连在一起的秤盘,P为一重物,已知P的质量M=10.5 kg,Q的质量m=1.5 kg,弹簧的质量不计,劲度系数k=800 N/m,系统处于静止,如图2所示,现给P施加一个方向竖直向上的力F,使它从静止开始向上做匀加速运动,已知在前0.2s时间内,F为变力,0.2s以后,F为恒力。求力F的最大值与最小值。(g取10 m/s2) 解:经分析可知:力F作用瞬时有最小值,P、Q分离时力F有最大值。设开始时弹簧压缩量为x1,t=0.2s时弹簧的压缩量为x2,物体P的加速度为a,则有:

二轮专题复习-----弹簧类综合问题训练

二轮专题复习:弹簧类综合问题训练 一、考点分析 轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力、胡克定律、物体的平衡、牛顿定律的应用及能的转化与守恒。从近几年高考题,可以看出弹簧类综合问题是高考的热点和重点。 二、与弹簧有关的综合问题基本知识概述 1、弹簧的瞬时问题 弹簧的两端都有其他物体或力的约束时,使其发生形变时,弹力不能由某一值突变为零或由零突变为某一值。及轻弹簧的弹力不能突变,其弹力与瞬间前相同。 2、弹簧与平衡问题 这类题涉及到的知识是胡克定律,一般用F=kx同时结合物体的平衡条件知识求解。3、弹簧与非平衡问题 这类题主要指弹簧在相对位置发生变化时,所引起的力、加速度、速度、功能和合外力等其它物理量发生变化的情况。需综合分析物体的位置变化与弹簧的长度、形变量有怎样的关系。 4、弹簧与能量的综合问题 在弹力做功的过程中弹力是个变力,并与能量的转化与守恒相联系,分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理和功能关系等知识解题。 三、处理弹簧问题的一般思路与方法 1、弹簧的弹力是一种由形变而决定大小和方向的力。当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应. 在题目中一般应从弹簧的形变分析入手,先确定弹簧原来的长位置,现在的长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化. 2、因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变. 3、在求弹簧的弹力做功时,往往结合动能定理和功能关系以及能量转化和守恒定律求解。典型示例迁移 1、弹簧弹力瞬时问题 例1、如图所示,木块A与B用一轻弹簧相连,竖直放在木块C上,三 者静置于地面,A、B、C的质量之比是1∶2∶3.设所有接触面都光滑, 当沿水平方向迅速抽出木块C的瞬时,木块A和B的加速度分别是 a A=____ ,a B=____ 解析;由题意可设A、B、C的质量分别为m、2m、3m 以木块A为研究对象,抽出木块C前,木块A受到重力和弹力一对平 衡力,抽出木块C的瞬时,木块A受到重力和弹力的大小和方向均没变,故木块A的瞬时加速度为0 以木块AB为研究对象,由平衡条件可知,木块C对木块B的作用力F cB=3mg 以木块B为研究对象,木块B受到重力、弹力和F cB三力平衡,抽出木块C的瞬时,木块B 受到重力和弹力的大小和方向均没变,F cB瞬时变为0,故木块C的瞬时合外力为竖直向下的3mg。瞬时加速度为1.5g 变式训练1、如图(A)所示,一质量为m的物体系于长度分别为l1、l2的两根细线上,l1

专题六 弹簧连接体模型

动量守恒的十种模型精选训练6 动量守恒定律是自然界中最普遍、最基本的规律之一,它不仅适用于宏观、低速领域,而且适用于微观、高速领域。通过对最新高考题和模拟题研究,可归纳出命题的十种模型。 六.弹簧连接体模型 【模型解读】两个物体在相对运动过程中通过弹簧发生相互作用,系统动量守恒,机械能守恒。 例6. .如图所示,A、B两物体的中间用一段细绳相连并有一压缩的弹簧,放在平板小车C上后,A、B、C均处于静止状态。若地面光滑,则在细绳被剪断后,A、B从C上未滑离之前,A、B在C上向相反方向滑动的过程中 A.若A、B与C之间的摩擦力大小相同,则A、B组成的系统动量守恒,A、B、C组成的系统动量守恒B.若A、B与C之间的摩擦力大小相同,则A、B组成的系统动量不守恒,A、B、C组成的系统动量守恒 C.若A、B与C之间的摩擦力大小不相同,则A、B组成的系统动量不守恒,A、B、C组成的系统动量不守恒 D.若A、B与C之间的摩擦力大小不相同,则A、B组成的系统动量不守恒,A、B、C组成的系统动量守恒 针对训练题 1.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A、B、C,三球的质量分别为m A=1kg、m B=2kg、m C=6kg,初状态BC球之间连着一根轻质弹簧并处于 静止,B、C连线与杆垂直并且弹簧刚好处于原长状态,A球以v0=9m/s的速度 向左运动,与同一杆上的B球发生完全非弹性碰撞(碰撞时间极短),求: (1)A球与B球碰撞中损耗的机械能; (2)在以后的运动过程中弹簧的最大弹性势能; (3)在以后的运动过程中B球的最小速度。 2.如图甲所示,物块A、B的质量分别是m A=4.0kg和m B= 3.0kg. 用轻弹簧栓接,放在光滑的水平地面上,物块B右侧与竖直墙相接触. 另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不再分开,物块C的v-t图象如图乙所示.求: ①物块C的质量m C; ②墙壁对物块B的弹力在4 s到12s的时间内对对B的冲量I的大小和方向; ③B离开墙后的过程中弹簧具有的最大弹性势能E p。

(补课专用)专题--连接体问题与弹簧

【例1】 在粗糙水平面上有一个三角形木块a ,在它的两个粗糙斜面上分别放有质量为m1和m2的两个木块b 和c ,如图所示,已知m1>m2,三木块均处于静止,则粗糙地面对于三角形木块( ) A .有摩擦力作用,摩擦力的方向水平向右 B .有摩擦力作用,摩擦力的方向水平向左 C .有摩擦力作用,但摩擦力的方向不能确定 D .没有摩擦力的作用 【解析】故选D . 【例2】有一个直角支架 AOB ,AO 水平放置,表面粗糙,OB 竖直向下,表面光滑,AO 上套有小环P ,OB 上套有小环 Q ,两环质量均为m ,两环间由一根质量可忽略、不可伸展的细绳相连,并在某一位置平衡,如图。现将P 环向左移一小段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO 杆对P 环的支持力N 和细绳上的拉力T 的变化情况是( ) 【解析】答案为B A .N 不变,T 变大 B .N 不变,T 变小 C .N 变大,T 变大 D .N 变大,T 变小 【例3】如图所示,设A 重10N ,B 重20N ,A 、B 间的动摩擦因数为0.1,B 与地面的摩擦因数为0.2.问:(1)至少对B 向左施多大的力,才能使A 、B 发生相对滑动?(2)若A 、B 间μ1=0.4,B 与地间μ2=0.l ,则F 多大才能产生相对滑动?【解析】(1)F=8N 。(2)同理F=11N 。 【例4】将长方形均匀木块锯成如图所示的三部分,其中B 、C 两部分完全对称,现将三部分拼在一起放在粗糙水平面上,当用与木块左侧垂直的水平向右力F 作用时,木块恰能向右匀速运动,且A 与B 、A 与C 均无相对滑动,图中的θ角及F 为已知,求A 与B 之间的压力为多少?【解析】即:F 1=Fsinθ/4 【例5】如图所示,在两块相同的竖直木板间,有质量均为m 的四块相同的砖,用两个大小均为F 的水平力压木板,使砖静止不动,则左边木板对第一块砖,第二块砖对第三块砖的摩擦力分别为:【解析】故B 正确。 A .4mg 、2mg B .2mg 、0 C .2mg 、mg D .4mg 、mg 【例7】如图所示,重为8N 的球静止在与水平面成370角的光滑斜面上,并通过定滑轮与重4N 的物体A 相连,光滑挡板与水平而垂直,不计滑轮的摩擦,绳子的质量,求斜面和挡板所受的压力(sin370=0.6)。 【解析】得 N 1=1N N 2=7N 。 【例13】如图,质量M=10kg 的木楔ABC 静置于粗糙水平地面上,与地面动摩擦因数μ=0.02.在木楔的倾角θ为300的斜面上,有一质量为m=1.0kg 的物块由静止开始沿斜面下滑。当滑行路程s=1.4m 时,其速度v=1.4m/s 。在这个过程中木楔没有动。求地面对木楔的摩擦力的大小和方向。(重力加速度g=10m/s 2) 【解析】61.0cos -=-=θma f 竖直方向:θsin )(ma F g m M =-+ 【例15】如图所示,五个木块并排放在水平地面上,它们的质量相同,与地面的摩擦不计。当用力F 推第一块使它们共同加速运动时,第2块对第3块的推力为___。 【解析】 53)3(23F a m F == A O B P Q

弹簧问题专题训练讲解学习

弹簧问题专题训练 类型一静力学问题中的弹簧 如图所示,四处完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相同:①中的弹簧的左端固定在墙上②中的弹簧的左端也受到大小也为F 的拉力的作用③中的弹簧的左端拴一小物块,物块在光滑的桌面上滑动④中的弹簧的左端拴一个小物块,物块在有摩擦的桌面上滑动.若认为弹簧的质量为零,以L 1、L 2、L 3、L 4依次表示四个弹簧的伸长量,则有:( ) D A .L 2>L 1 B .L 4>L 3 C .L 1>L 3 D .L 2=L 4 类型二在弹簧弹力作用下瞬时加速度的求解 如图所示,竖直放置在水平面上的轻弹簧上叠放着两物块P 、Q,它们的质量 均为2kg ,均处于静止状态.若突然将一个大小为10N 、方向竖直向下的力施 加在物块P 上,则此瞬间,P 对Q 压力的大小为(g 取10m/s 2):( ) C A.5N B.15N C.25N D.35N. 类型三物体在弹簧弹力作用下的动态分析 如图所示,一劲度系数为k =800N/m 的轻弹簧两端各焊接着两个质量均 为m =12kg 的物体A 、B 。物体A 、B 和轻弹簧竖立静止在水平地面上, 现要加一竖直向上的力F 在上面物体A 上,使物体A 开始向上做匀加 速运动,经0.4s 物体B 刚要离开地面,设整个过程中弹簧都处于弹性 限度内,取g =10m/s 2 ,求: (1)此过程中所加外力F 的最大值和最小值。(F 1=45N ,F 2=285N ) (2)此过程中外力F 所做的功。(49.5J ) 类型四物体在弹簧弹力作用下的运动分析 A 、 B 两木块叠放在竖直轻弹簧上,如图所示,已知木块A 、B 质量 分别为0.42 kg 和0.40 kg ,弹簧的劲度系数k=100 N/m ,若在木块A 上作用一个竖直向上的力F ,使A 由静止开始以0.5 m/s 2的加速度竖 直向上做匀加速运动(g=10 m/s 2). (1)使木块A 竖直做匀加速运动的过程中,力F 的最大值; (2)若木块由静止开始做匀加速运动,直到A 、B 分离的过程中,弹簧的弹性势能减少了0.248 J ,求这一过程F 对木块做的功. 类型五传感器问题 两个质量不计的弹簧将一金属块支在箱子的上顶板与下底板之间,箱子 只能沿竖直方向运动,如图所示,两弹簧原长均为0.80m,劲度系数均为 60N/m.当箱以a=2.0m/s 2的加速度匀减速上升时,上、下弹簧的长度分别 为0.70m 和0.60m(g=10m/s 2).若上顶板压力是下底板压力的四分之一, 试判断箱的运动情况。 类型六连接体弹簧中的动力学问题 如图所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A 、 B ,它们的质量分别为m A 、m B ,弹簧的劲度系数为k , C 为一固定挡板。 ○3 ○4 ○2 ○ 1 F F F F F 图一

高中物理弹簧类问题专题练习总结附详细答案

- v 甲 高 中物理弹簧类问题专题练习 1.图中a 、b 为两带正电的小球,带电量都是q ,质量分别为M 和m ;用一绝缘弹簧联结,弹簧的自然长度很小,可忽略不计,达到平衡时,弹簧的长度为d 0。现把一匀强电场作用于两小球,场强的方向由a 指向b ,在两小球的加速度相等的时刻,弹簧的长度为d 。( ) A .若M = m ,则d = d 0 B .若M >m ,则d >d 0 C .若M <m ,则d <d 0 D .d = d 0,与M 、m 无关 2. 如图a 所示,水平面上质量相等的两木块A 、B 态.现用一竖直向上的力F 拉动木块A ,使木块A 向上做匀加速直线运动,如图b 所示.研究从力F 刚作用在木块A 的瞬间到木块B 刚离开地面的瞬 间这个过程,并且选定这个过程中木块A 列图象中可以表示力F 和木块A 的位移x 之间关系的是( 3.如图甲所示,一轻弹簧的两端分别与质量为m 1和m 2的两物块相连接,并且静止在光滑的水平面上.现使m 1瞬时获得水平向右的速度3m/s ,以此刻为时间零点,两物块的速度随时间变化的规律如图乙所示,从图象信息可得( ) A .在t 1、t 3时刻两物块达到共同速度1m/s 且弹簧都是处于压缩状态 B .从t 3到t 4时刻弹簧由伸长状态逐渐恢复原长 C .两物体的质量之比为m 1∶m 2 = 1∶2 D .在t 2时刻两物体的动量之比为P 1∶P 2 =1∶2 4.如图所示,绝缘弹簧的下端固定在斜面底端,弹簧与斜面平行,带电小球Q (可视为质点)固定在光滑绝缘斜面上的M 点,且在通过弹簧中心的直线ab 上。现把与Q 大小相同,带电性也相同的小球P ,从直线ab 上的N 点由静止释放,在小球P 与弹簧接触到速度变为零的过程中( ) A.小球P 的速度是先增大后减小 B.小球P 和弹簧的机械能守恒,且P 速度最大时 所受弹力与库仑力的合力最大 C.小球P 的动能、重力势能、电势能与弹簧的弹 性势能的总和不变 D.小球P 合力的冲量为零 A B C D

连接体问题

连接体问题 本节目标: 1、知道什么是连接体 2、明确连接体问题的处理方法 3、掌握研究对象的选取原则 典型例题: 例1.两个物体A 和B ,质量分别为m 1和m 2,互相接触放在光滑水平面上,如图所示,对物体A 施以水平的推力F ,则物体A 对物体B 的作用力等于( ) A. F m m m 211+ B. F m m m 2 12 + C. F D. F m m 21 练习: 1.若m 1与m 2与水平面间有摩擦力且摩擦因数均为μ则对B 作用力等于 。 2.如图所示,倾角为α的斜面上放两物体m 1和m 2,用与斜面平行的力F 推m 1,使两物加速上滑,不管斜面是否光滑,两物体之间的作用力总为 。 例 2. 如图所示,在前进的车厢的竖直后壁上放一个物体,物体与壁间的静摩擦因数μ=0.8,要使物体不致下滑,车厢至少应以多大的加速度前进?(g =10m/s 2 ) 练习: 3、如图所示,箱子的质量M =5.0kg ,与水平地面的动摩擦因数μ=0.22。在箱子顶板处系一细线,悬挂一个质量m =1.0kg 的小球,箱子受到水平恒力F 的作用,使小球的悬线偏离竖直方向θ=30°角,则F 应为多少?(g =10m/s 2 ) 4、如图3所示的三个物体质量分别为m 1、m 2和m 3,带有滑轮的物体放在光滑水平面上,滑轮和所有接触面的摩擦以及绳子的质量均不计,为使三个物体无相对运动,水平推力F 等于多少? 例3:如图所示:把质量为M 的的物体放在光滑的水平高台上,用一条可以忽略质量而且不变形的细绳绕过定滑轮把它与质量为m 的物体连接起来,求:物体M 和物体m 的运动加速度各是多大? 细绳的拉力是多大? 练习: 5、若装置变为如图所示。则物体M 和物体m 的运动加速度各是多大? 细绳的拉力是多大? 例4、如图所示,质量为M 的木板可沿倾角为θ的光滑斜面下滑,木板上站着一个质量为m 的人,问(1)为了保持木板与斜面相对静止,计算人运动的加速度? (2)为了保持人与斜面相对静止,木板运动的加速度是多少? 练习: 6、如图所示,质量为M 的框架放在水平地面上,一轻弹簧上端固定在框架上,下端固定一个质量为m 的小球。小球上下振动时,框架始终没有跳起,当框架对地面压力为零瞬间,小球的加速度大小为( ) A.g B. g m m M - C.0 D.g m m M + 7、如图所示为杂技“顶竿”表演,一人站在地上,肩上扛一质量为M 的竖直竹竿,当竿上一质量为m 的人以加速度a 加速下滑时,竿对“底人”的压力大小为 A.(M+m )g B.(M+m )g -ma C.(M+m )g+ma D.(M -m )g

有关弹簧问题的专题复习

有关弹簧问题的专题复习 纵观历年高考试题,和弹簧有关的物理试题占有相当的比重,高考命题者常以弹簧为载体设计出各类试题,这类试题涉及到静力学问题、动力学问题、动量守恒和能量守恒问题、振动问题、功能关系问题,几乎贯穿于整个力学知识体系,为了帮助同学们掌握这类试题的分析方法,同时也想借助于弹簧问题,将整个力学知识有机地结合起来,让同学们对整个力学知识体系有完整的认识,特将有关弹簧问题分类研究如下. 一、弹簧中的静力学问题 在含有弹簧的静力学问题中,当弹簧所处的状态没有明确给出时,必须考虑到弹簧既可以处于拉伸状态,也可以处于压缩状态,必须全面分析各种可能性,以防以偏概全. 【例1】(2002年广东省高考题)如图所示,a、b、c为三个物块,M、N 为两个轻质弹簧,R为跨过光滑定滑轮的轻绳,它们均处于平衡状 态.则:() A.有可能N处于拉伸状态而M处于压缩状态 B.有可能N处于压缩状态而M处于拉伸状态 C.有可能N处于不伸不缩状态而M处于拉伸状态 D.有可能N处于拉伸状态而M处于不伸不缩状态 【解析】研究a、N、c系统由于处于平衡状态,N可能处于拉伸 状态,而M可能处于不伸不缩状态或压缩状态;研究a、M、b系 统由于处于平衡状态,M可能处于压缩状态(或处于不伸不缩状态),而N可能处于不伸不缩状态或拉伸状态.综合分析,本题只有A、D正确. 【例2】.如图所示,重力为G的质点M与三根相同的轻质 弹簧相连,静止时,相邻两弹簧间的夹角均为120 ,已知弹 簧A、B对质点的作用力均为2G,则弹簧C对质点的作用 力大小可能为() A.2G B.G C.0 D.3G 【解析】弹簧A、B对M的作用力有两种情况:一是拉伸时对M的拉力,二是压缩时对M的弹力. 若A、B两弹簧都被拉伸,两弹簧拉力与质点M重力的合力方向一定竖直向下,大小为3G,此时弹簧C必被拉伸,对M有竖直向上的大小为3G的拉力,才能使M 处于平衡状态. 若A、B两弹簧都被压缩,同理可知弹簧C对M有竖直向下的大小为G的弹力.A、B两弹簧不可能一个被拉伸,一个被压缩,否则在题设条件下M不可能平衡.故本题选B、D. 【例3】(1999年全国高考题)如图所示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为()

高中物理常见连接体问题总结

(一)“死结”“活结” 1.如图甲所示,轻绳AD跨过固定在水平横梁BC右端的定滑轮挂住一个质量为10 kg 的物体,∠ACB=30°;图乙中轻杆HG一端用铰链固定在竖直墙上,另一端G通过细绳EG拉住,EG与水平方向也成30°,轻杆的G点用细绳GF拉住一个质量也为10 kg的物体.g取10 m/s2,求 (1)细绳AC段的张力FAC与细绳EG的张力FEG之比; (2)轻杆BC对C端的支持力; (3)轻杆HG对G端的支持力. (二)突变问题 2。在动摩擦因数μ=的水平 质量为m=1kg的小球,小球与水平轻弹簧及与竖直方向成θ=45°角的不可伸长的轻绳一端相连,如图所示,此时小球处于静止 平衡状态,且水平面对小球的弹力恰好为零,当剪断轻绳的瞬间,取g=10m/s2,求: (1)此时轻弹簧的弹力大小 (2)小球的加速度大小和方向.(三)力的合成与分解 3.如图所示,用一根细线系住重力为、半径 为的球,其与倾角为的光滑斜面劈接触, 处于静止状态,球与斜面的接触面非常小, 当细线悬点固定不动,斜面劈缓慢水平向左 移动直至绳子与斜面平行的过程中,下述正确的是( ). A.细绳对球的拉力先减小后增大 B.细绳对球的拉力先增大后减小 C.细绳对球的拉力一直减小 D.细绳对球的拉力最小值等于G (四)整体法 4.如图所示,质量分别为m1、m2的两个物体通过轻弹簧连接。在力F的作用下一起沿水平方向做匀速直线运动(m1在地面,m2在空中),力F与水平方向成θ角,则m1所受支持力N 和摩擦力f正确的是() A.N=m1g+m2g-Fsinθ B.N=m1g+m2g-Fcosθ C.f=Fcosθ D.f=Fsinθ (五)隔离法 5.如图所示,水平放置的木板上面放置木块,

动量守恒 二 弹簧连接体模型

动量守恒(二)——弹簧连接体模型 1、在如图所示的装置中,木块B与水平面间的接触面是光滑的,子弹A沿水平方向向射入木块后并留在木块内,将弹簧压缩到最短。现将木块、弹簧、子弹合在一起作为研究对象,则此系统在从子弹开始射入到弹簧压缩到最短的过程中[??] A.动量守恒,机械能守恒? B.动量不守恒,机械能不守恒? C.动量守恒,机械能不守恒? D.动量不守恒,机械能守恒 2、如图所示放在光滑水平桌面上的A、B木块中部夹一被压缩的弹簧,当弹簧被放开时,它们 各自在桌面上滑行一段距离后,飞离桌面落在地上.A的落地点与桌边水平距离0.5米,B的落 点距桌边1米,那么 A.A、B离开弹簧时速度比为1 :2??????? B.A、B质量比为2 :1 C.未离弹簧时,A、B所受冲量比为1 :2? D.未离弹簧时,A、B加速度之比为1 :2

3、如图所示,一轻质弹簧两端连着物体A和B,放在光滑的水平面上,物体A被水平速度为v0的子弹射中并且嵌入其中。已知物体B的质量为m,物体A的质量是物体B的质量的3/4,子弹的质量是物体B的质量的1/4 ①A物体获得的最大速度 ②求弹簧压缩到最短时B的速度。 ③弹簧的最大弹性势能。 4、如图所示,质量为m2和m3的物体静止在光滑的水平面上,两者之间有压缩着的弹簧,一个质量为m1的物体以速度v0向右冲来,为了防止冲撞,m2物体将m3物体以一定速度弹射出去,设m1与m3碰撞后粘合在一起,则m3的弹射速度至少为多大,才能使以后m3和m2不发生碰撞? 5、如图所示,在光滑的水平面上,物体A跟物体B用一根不计质量的弹簧相连,另一物体C跟物体B靠在一起,但不与B相连,它们的质量分别为m A=0.2 kg,m B=m C=0.1 kg。现用力将C、B和A压在一起,使弹簧缩短,在这过程中,外力对弹簧做功7.2 J.然后, 由静止释放三物体.求: (1)弹簧伸长最大时,弹簧的弹性势能. (2)弹簧从伸长最大回复到原长时,A、B的速度.(设弹簧在弹性限度内) 6、质量为M的小车置于水平面上,小车的上表面由光滑的1/4圆弧和光滑平面组成,圆弧半径为R,车的右端固定有一不计质量的弹簧。现有一质量为m的滑块从圆弧最高处无

高中物理常见连接体问题总结

常见连接体问题 (一)“死结”“活结” 1.如图甲所示,轻绳AD跨过固定在水 平横梁BC右端的定滑轮挂住一个质量为10 kg 的物体,∠ACB=30°;图乙中轻杆HG一端用 铰链固定在竖直墙上,另一端G通过细绳EG 拉住,EG与水平方向也成30°,轻杆的G点 用细绳GF拉住一个质量也为10 kg的物体.g 取10 m/s2,求 (1)细绳AC段的张力FAC与细绳EG的张力FEG 之比; (2)轻杆BC对C端的支持力; (3)轻杆HG对G端的支持力. (二)突变问题 2。在动摩擦因数μ=0.2的水平 质量为m=1kg的小球,小球与水平轻弹簧及与竖直方向成θ=45°角的不可伸长的轻绳一端相连,如图所示,此时小球处于静止平衡状态,且水平面对小球的弹力恰好为 零,当剪断轻绳的瞬间,取g=10m/s2,求: (1)此时轻弹簧的弹力大小 (2)小球的加速度大小和方向. (三)力的合成与分解 3.如图所示,用一根细线系住重力为、半径 为的球,其与倾角为的光滑斜面劈接触, 处于静止状态,球与斜面的接触面非常小, 当细线悬点固定不动,斜面劈缓慢水平向左 移动直至绳子与斜面平行的过程中,下述正确 的是(). A.细绳对球的拉力先减小后增大 B.细绳对球的拉力先增大后减小 C.细绳对球的拉力一直减小 D.细绳对球的拉力最小值等于G (四)整体法 4.如图所示,质量分别为m1、m2的两个物体通过轻弹簧连接。在力F的作用下一起沿水平方

向做匀速直线运动(m1在地面,m2在空中),力F与水平方向成θ角,则m1所受支持力N 和摩擦力f正确的是() A.N=m1g+m2g-Fsinθ B.N=m1g+m2g-Fcosθ C.f=Fcosθ D.f=Fsinθ (五)隔离法 5.如图所示,水平放置的木板上面放置木块,木板与木块、木板与地面间的摩擦因数分别为μ1和μ2。已知木块质量为m,木板的质量为M,用定滑轮连接如图所示,现用力F匀速拉动木块在木板上向右滑行,求力F的大小? 6.跨过定滑轮的绳的一端挂一吊板,另一端被吊板上的人拉住,已知人的质量为70 kg, 吊板的质量为10 kg,绳及定滑轮的质量,滑 轮的摩擦均可不计,取重力加速度g=10 m/s2 ,当人以440 N的力拉绳时,人与吊板的加 速度a和人对吊板的压力F分别为()A.a=1 m/s2,FN=260 N B.a=1 m/s2,FN=330 N C.a=3 m/s2,FN=110 N D.a=3 m/s2,FN=50 N 7.如图所示,静止在水平面上的三角架的质量为M,它中间用两根质量不计的轻质弹簧连着一质量为m的小球,当小球上下振动,三角架对水平面的压力为零的时刻,小球加速度的方向与大小是() A.向下,m Mg B.向上,g C.向下,g D.向下,m g m M) ( (六)综合 8. 如图所示,一夹子夹住木块,在力F作用下向上提升,夹子和木块的质量分别为m、M,夹子与木块两侧间的最大静摩擦均为f,若木块不滑动,力F的最大值是()

高中物理弹簧类问题专题练习经典总结附详细答案

高中物理弹簧类问题专题练习 、;用一绝缘弹簧联结,和mq,质量分别为a1.图中Mb为两带正电的小球,带电量都是。现把一匀强电场作用弹簧的自然长度很小,可忽略不计,达到平衡时,弹簧的长度为d0),在两小球的加速度相等的时刻,弹簧的长度为d。(于两小球,场强的方向由a指向b >dm,则d B.若M>A.若M = m,则d = d 00a b 、M无关m D.d = d,与C.若M<m,则d<d 00 m M 整个系统处于平衡状B用一轻弹簧相连接,、2. 如图a所示,水平面上质量相等的两木块A向 上做匀加速直线运动,使木块A.现用一竖直向上的力F拉动木块A,态 F 刚离开地面的瞬B研究从力F刚作用在木块A的瞬间到木块b如图所示. 的起始位置为坐标原点,则下A间这个过程,并且选定这个过程中木块A A )列图象中可以表示力F和木块A的位移x之间关系的是( B B F F F F a b x x x x O O O O D C B A 的两物块相连接,并且静止在光滑的m和3.如图甲所示,一轻弹簧的两端分别与质量为m21两物块的速度随时间以此刻为时间零点,水平面上.现使m瞬时获得水平向右的速度3m/s,1) 变化的规律如图乙所示,从图象信息可得( A.在t、t时刻两物块达到共同速度1m/s且弹簧都是处于压缩状态31时刻弹簧由伸长状态

逐渐恢复原长t.从t到B43 /m/s v2 m = 1∶C .两物体的质量之比为m∶213 m1 2 ∶∶t时刻两物体的动量之比为PP =1 D.在m2 2212 1 v0 /s tttttmm4 3 1 2 2 1 1 -乙甲(可视为质.如图所示,绝缘弹簧的下端固定在斜面底端,弹簧与斜面平行,带电小球Q4大小相同,Q上。现把与点)固定在光滑绝缘斜面上的M点,且在通过弹簧中心的直线ab与弹簧接触到速度变为N带电性也相同的小球P,从直线ab上的点由静止释放,在小球P 零 的过程中()a 的速度是先增大后减小A.小球PQ 和弹簧的机械能守恒,且PP速度最大时 B.小球P M 所受弹力与库仑力的合力最大N 的动能、重力势能、电势能与弹簧的弹 C.小球P 性势能的总和不变b 合力的冲量为零PD.小球 、B两木块叠放在竖直轻弹簧上,如图所示,已知木块A、B如图所示,5、A质量分别为0.42 kg和0.40 kg,弹簧的劲度系数k=100 N/m ,若在木块A上作用一个竖直向上的力F,使A 22. )=10 m/sg的加速度竖直向上做匀加速运动(0.5 m/s由静止开始以. (1)使木块A竖直做匀加速运动的过程中,力F的最大值; B分离的过)若木块由静止开始做匀加速运动,直到A、(2 ,求这一过程F对程中,弹簧的弹性势能减少了0.248 J. 木块做的功 弹簧相连,m的物体B如图,质量为m的物体A经一轻质弹簧与下方地面上的质量为6、21

相关主题
文本预览
相关文档 最新文档