当前位置:文档之家› 非线性非自治系统零解的稳定性及部分稳定性研究

非线性非自治系统零解的稳定性及部分稳定性研究

非线性非自治系统零解的稳定性及部分稳定性研究
非线性非自治系统零解的稳定性及部分稳定性研究

毕设论文几种典型非线性系统的稳定性研究与仿真

****大学 毕业设计(论文) 题目:几种典型非线性系统的稳定性 研究与仿真 专业:电气工程及其自动化 学生姓名: ********* 班级学号: ************* 指导教师: *********** 指导单位:自动化学院电气信息工程系 日期:*************************

摘要 论文对MATLAB软件进行了简单的介绍,详细介绍了非线性系统的特点,并且对它的稳定性进行了简要的分析。另外,论文对非线性系统的非线性环节的特性进行了介绍。接下来,论文详细讲解了描述函数的定义和求法,而且给出了两种非线性环节的描述函数。在第四章里面,论文对继电器型非线性系统和滞环非线性系统进行了仿真分析,并且运用nyquist定理对系统的稳定性进行了判定。关键词:非线性系统;稳定性;描述函数;非线性环节;

ABSTRACT The article simple introduced MATLAB software and the characteristics of non-linear system, also the article analysis its stability in detail. In addition, the article introduced the characteristics of the nonlinear system links. the article explained in detail the definition and solution of the Description function and also the article gave the Description function of two nonlinear links. In the fourth chapter there, the article simulated the relay nonlinear system and hysteresis nonlinear systemand use nyquist theorem finding the stability of the system. Key words: nonlinear systems, stability, Description function, nonlinear system link;

关于李雅普诺夫稳定性研究的读书报告

关于李雅普诺夫稳定性研究的读书报告 1、判据概述 对非线性系统和时变系统,状态方程的求解常常是很困难的,因此李雅普诺夫第二方法就显示出很大的优越性。李雅普诺夫第二方法可用于任意阶的系统,运用这一方法可以不必求解系统状态方程而直接判定稳定性。李雅普诺夫第二方法的局限性在于,运用时需要系统的稳定性问题。现在,随着计算机技术的发展,借助数字计算机不仅可以找到所需要的李雅普诺夫函数,而且还能确定系统的稳定区域。但是想要找到一套对于任何系统都普遍使用的方法仍很困难。 李雅普诺夫稳定性主要涉及稳定、渐近稳定、大范围渐近稳定和不稳定四种情况。 (1)稳定 用表示状态空间中以原点为球心以ε为半径的一个球域,表示另一个半径为的球域。如果对于任意选定的每一个域,必然存在相应的一个域,其中,使得在所考虑的整个时间区间内,从域内任一点出发的受扰运动的轨线都不越出域,那么称原点平衡状态是李雅普诺夫意义下稳定的。 (2)渐近稳定 如果原点平衡状态是李雅普诺夫意义下稳定的,而且在时间趋于无穷大时受扰运动收敛到平衡状态,则称系统平衡状态是渐近稳定的。从实用观点看,渐近稳定比稳定重要。在应用中,确定渐近稳定性的最大范围是十分必要的,它能决定受扰运动为渐近稳定前提下初始扰动的最大允许范围。 (3)大范围渐近稳定 又称全局渐近稳定,是指当状态空间中的一切非零点取为初始扰动时,受扰运动都为渐近稳定的一种情况。在控制工程中总是希望系统具

有大范围渐近稳定的特性。系统为全局渐近稳定的必要条件是它在状态空间中只有一个平衡状态。 (4)不稳定 如果存在一个选定的球域,不管把域的半径取得多么小,在内总存在至少一个点,使由这一状态出发的受扰运动轨线脱离域则称系统原点平衡状态是不稳定的。 2、理论应用研究现状 (1)估计非自治系统的吸引域 对于非自治系统,设是R中包含原点的一个开发区域,对所有和任意给定的总能找到一个,使当时,有成立,则称是系统零解的一个吸引域。当零解渐进稳定时,它有一个邻域作为吸引域,希望能估计出一个范围较大的吸引域。 定理:若上述系统的右端函数关于连续,,且在,中有界。若有一个正定函数满足:时关于连续,且有,则零解渐进稳定的。 (2)判断非线性系统的中心或焦点 对于非线性系统,与之相应的线性系统为或,其中,显然当且仅当时,系统有唯一的奇点,因为系统(1)与系统可通过拓扑变换相互转化,即二者是拓扑同胚,二者具有相同的拓扑结构稳定性。 判断中心焦点的V函数法:设原点O是系统的一个奇点,并且是对应线性系统的中心,在原点的领域U内存在一个连续可微的正定函数,有以下几种情形:若沿着系统轨线的全导数,则0是系统的中心。其中全导数满足若沿着系统的轨线全导数负定,则0是系统的稳定焦点。若沿着系统的轨线全导数正定,则0是系统的不稳定焦点。 3、实际应用情况 (1)对大学生体育素质稳定性的评估 大学生体育素质的综合评估具有重要的理论意义和应用价值,尤其

Lyapunov稳定性理论概述

Lyapunov Lyapunov稳定性理论概述稳定性理论概述稳定性理论概述 稳定性理论是19 世纪80 年代由俄国数学家Lyapunov创建的,它在自动控制、航空技术、生态生物、生化反应等自然科学和工程技术等方面有着广泛的应用,其概念和理念也发展得十分迅速。通过本学期“力学中的数学方法”课程的学习,我对此理论的概况有了一些认识和体会,总结于本文中。 一, 稳定性的概念稳定性的概念 初始值的微分变化对不同系统的影响不同,例如初始值问题 ax dt dx = , x(0)=x 0 , t≥0,x 0≥0 (1) 的解为e x at t x 0 )(= ,而x=0 是(1)式的一个解。当a f 0时,无论|x 0|多小,只要 |x 0| ≠ 0 ,在t→+∞时,总有x(t)→ ∞,即初始值的微小变化会导致解的误差任意大,而当a ?0时,e x at t x 0 )(= 。与零解的误差不会超过初始误差x 0,且随 着t 值的增加很快就会消失,所以,当|x 0|很小时,x(t)与零解的误差也很小。 这个例子表明a f 0时的零解是“稳定”的。下面,我们就给出微分方程零解稳定的严格定义。 设微分方程 ),(x t f dt dx =, x(t 0)=x 0 , x ∈R n (2) 满足解存在唯一定理的条件,其解x(t)=x(t,t 0,x 0)的存在区间是),(+∞?∞,f(t,x)还满足条件: f (t ,0)=0 (3) (3)式保证了x(t) = 0 是(2)式的解,我们称它为零解。 这里给出定义1:若对任意给定的ε > 0,都能找到δ=δ(ε,t 0),使得当||x 0||<δ时的解满足x ( t,x 0 , x 0 ) || x ( t, t 0 , x 0 ) || <ε, t ≥ t 0 , 则称(2)式的零解是稳定的,否则称(2)式的零解是不稳定的。

非线性动力学之一瞥_Lorenz系统

非线性动力学 非线性系统之一瞥——Lorenz系统 2013-01-30

0 前言 0.1非线性系统动力学 线性系统是状态变量和输出变量对于所有可能的输入变量和初始状态都满足叠加原理的系统;非线性系统就是这些量不满足叠加原理的系统。非线性系统在日常生活和自然界中不胜枚举,也远远多于线性系统。 非线性动力学是研究非线性系统的各种运动状态的定性和定量变化规律,尤其是系统的长时期行为。研究的对象主要有分叉、混沌和孤立子等。 0.2洛伦兹方程 洛伦兹方程是美国气象学家洛伦兹在模拟天气这一非周期性现象时确定,这个方程的三个变量分别模拟温度、湿度和压力。可以得出结论,初期微小的差别随着时间推移差别会越来越大,洛伦兹基于此提出长期的天气预报是不可能的。这也被视为研究非线性混沌理论的开始,所以洛伦兹系统在研究非线性系统中具有举足轻重的地位。本文借助洛伦兹系统对非线性进行简单的介绍。洛伦兹方程如下。 方程中,、和都为实参数。实参不同,系统的奇点及数目也是不同的。

1 奇点和稳定性 1.1 奇点 洛伦兹系统含有三个实参数,当参数变化,奇点的数目可能不同。首先,一定是系统的奇点。时,当时,系统仅有一个奇点;当时,系统还有另外两个奇点。 下面仅解时的两个非原点奇点。令 方程第一式得,第三式可得,将两式代入第二式得 即,。 1.2 奇点稳定性判别 下面根据Liapunov稳定性判别方法,找出系统在原点处大围渐进稳定的条件,取Liapunov函数。考虑,的情况。则有 将洛伦兹方程 代入上式,可得 变换为二次型,系数矩阵为

已知,,则系数矩阵负定的条件是。所以该系统是大围渐进稳定的条件是,前提是,。 Liapunov函数V总是存在的,只要构造出合适的Liapunov函数,就可以通过Liapunov稳定性定理直接判断奇点的稳定性,而不需要求解非线性方程组。有的Liapunov函数不易构造,则可以通过奇点处导算子的特征值来判断:若所有的特征值实部都小于0,则方程组在该奇点是局部渐进稳定的;若特征值实部至少有一个为正,该奇点是不稳定的。仍以洛伦兹系统为例,求出导算子的特征值。 特征矩阵的行列式(特征方程)为 特征值 显然,当,时,,,要使方程在原点处渐进稳定,必须小于0,因此 两边同时平方可得 因此

常微分方程平衡点及稳定性研究38112

摘要 本文给出了微分方程稳定性的概念,并举了一些例子来说明不同稳定性定义之间的区别和联系。这些例子都是通过求出方程解析解的方法来讨论零解是否稳定。在实际问题中提出的微分方程往往是很复杂的,无法求出其解析解,这就需要我们从方程本身来判断零解的稳定性。所以我们讨论了通过Liapunov稳定性定理来判断自治系统零解的稳定性,并用类似的方法讨论了非自治系统零解的稳定性。在此基础上,讨论了一阶和二阶微分方程的平衡点及其稳定性,这对其研究数学建模的稳定性模型起到很大的作用,并且利用相关的差分方程的全局吸引性研究了具时滞的单种群模型 ()()()() () .1 1N t N t r t N t cN t ττ -- = -- 的平衡点1 x=的全局吸引性,所获结果改进了文献中相关的结论。关键词:自治系统平衡点稳定性全局吸引性

Abstract In this paper,we gived the conceptions of differential equation stability. Simultaneously a number of examples to illustrate the difference between the definition of different stability and contact. These examples are obtained by analytical solution equation method to discuss the stability of zero solution. Practical issues raised in the often very complicated differential equations, analytical solution can not be obtained, which requires us to determine from the equation itself, the stability of zero solution. So we discussed the stability theorem to determine through the stability of zero solution of autonomous systems, and use similar methods to discuss the non-zero solution of autonomous system stability. On this basis,we discuss a step and the second-step and the stability, which plays the major role to its stability of the model, and the global attractivity of the positive equilibrium 1 x=of the following delay single population model ()()()() () .1 1N t N t r t N t cN t ττ -- = -- is investigated by using the corresponding result related to a difference equation.The obtained results improve some known results in the literature. Key Words:autonomous system;equilibrium point;stability;delay;globally asymptotic stability;global attractivity

微分方程零解的稳定性

微分方程零解的稳定性 中文摘要 本文利用线性近似稳定性方法及李雅普诺夫第二方法,分别讨论了几类微分方程(组)的零解的稳定性。由于构造合适的李雅普诺夫第二函数,即V函数是李雅普诺夫第二方法的关键,因此我们介绍了一类构造V函数的特殊方法,即微分矩法,并将所得的结果应用于具体实例。 关键词:微分方程;稳定性;线性近似稳定性方法;李雅普诺夫第二方法;微分矩法

Abstract Utilizing methods of linearization and Lyapunov second method, the stabilities of solutions for some kinds of ordinary differential equations are analyzed in this paper. Because constructing V functions is the key of Lyapunov second method, we introduce a special method, that is differential moment method, to deal with this problem, and we take it as an approach to solve the stabilities of solutions for some differential equations. Key words:Differential equations; Stability; Methods of linearization; Lyapunov second method; Differential moment method.

分析非线性系统的方法

非线性系统稳定性问题的判定方法和发展趋势 任何一个实际系统总是在各种偶然和持续的干扰下运动或工作的。所以,当系统承受干扰之后,能否稳妥地保持预订的运动轨迹或者工作状态,即系统的稳定性是首要考虑的。一个系统的稳定性,包括平衡态的稳定性问题和任一运动的稳定性问题。而对于给定运动的稳定性可以变换成关于平衡点的稳定性问题。 对平衡点的稳定性进行分析可将平衡点的稳定性定义为李雅普诺夫稳定、一致稳定、渐进稳定、一致渐近稳定、按指数渐进稳定和全局渐进稳定,除了全局渐进稳定,其他都是局部的概念。 非线性系统的数学模型不满足叠加原理或其中包含非线性环节。包括非本质非线性(能够用小偏差线性化方法进行线性化处理的非线性)和本质非线性(用小偏差线性化方法不能解决的非线性)。它与线性系统有以下主要区别: 1.线性控制系统只能有一个平衡点或无穷多的平衡点。但非线性系统可以有一个、二个、多个、以至无穷多个平衡点。非线性系统与线性定常系统明显不同,其稳定性是针对各个平衡点而言的。通常不能说系统的稳定性如何,而应说那个平衡点是稳定的或不稳定的。2.在线性系统中,系统的稳定性只与系统的结构和参数有关,而与外作用及初始条件无关。非线性系统的稳定性除了与系统的结构和参数有关外,还与外作用及初始条件有关。 由于非线性控制系统与线性控制系统有很大的差异,因此,不能直接用线性理论去分析它,否则会导致错误的结论。对非线性控制系统的分析,还没有一种象线性控制系统那么普遍的分析、设计方法。 现代广泛应用于非线性系统上的分析方法有基于频率域分析的描述函数法和波波夫超稳定性,还有基于时间域分析的相平面法和李雅普诺夫稳定性理论等。这些方法分别在一定的假设条件下,能提供关于系统稳定性或过渡过程的信息。而计算机技术的迅速发展为分析和设计复杂的非线性系统提供了有利的条件。另外,在工程上还经常遇到一类弱非线性系统,即特性和运动模式与线性系统相差很小的系统。对于这类系统通常以线性系统模型作为一阶近似,得出结果后再根据系统的弱非线性加以修正,以便得到较精确的结果。摄动方法是处理这类系统的常用工具。而对于本质非线性系统,则需要用分段线性化法等非线性理论和方法来处理。目前分析非线性控制系统的常用方法如下: 1、线性化方法 采用线性化模型来近似分析非线性系统。 这种近似一般只限于在工作点附近的小信号情况下才是正确的。这种线性化近似,只是对具有弱非线性(或称非本质非线性)的系统。 常用线性化方法,有正切近似法和最小二乘法。 此外,对一些物理系统的非线性特性比较显著,甚至在工作点附件的小范围内也是非线性的,并且不能用一条简单的直线来代表整个非线性系统特性的系统,可采用分段线性化方法。2、相平面法 相平面法是一种基于时域的分析方法,一种用图解法求解一、二阶非线性常微分方程的方法。 该方法通过图解法将一阶和二阶系统的运动过程转化为位置和速度平面上的相轨迹,从而比较直观、准确地反映系统的稳定性、平衡状态和稳态精度以及初始条件及参数对系统运动的影响。相轨迹的绘制方法步骤简单、计算量小,特别适用于分析常见非线性特性和一阶、二阶线性环节组合而成的非线性系统 对于分段线性的非线性系统来说,相平面分析法的步骤为: (1)用n条分界线(开关线,转换线)将相平面分成n个线性区域;(2)分别写出各个线性区域的微分方程;(3)求出各线性区的奇点位置并画出相平面图;

非线性系统稳定性问题的判定方法和发展趋势

非线性系统的概念及稳定性问题的判定方法和发展趋势 姓名:查晓锐 学号:121306060006 线性系统理论自20世纪50年代以来不仅已在理论上逐步完善,也已成功的应用于各种国防和工业控制问题。随着现代工业对控制系统性能的要求不断提高,传统的线性反馈控制已很难满足各种实际需要。这是因为大多数实际控制系统往往是非线性的,采用近似的线性模型虽然可以使我们更全面和容易的分析系统的各种特性,但是却很难刻画出系统的非线性本质,线性系统的动态特性已不足以解释许多常见的实际非线性现象。另一方面,计算机及传感器技术的飞速发展,也为我们实现各种复杂非线性控制算法奠定了硬件基础。因此自20世纪80年代以来,非线性系统的控制问题受到了国内外控制界的普遍关注。 非线性科学是当今世界科学的前沿与热点,涉及自然科学和人文社会科学的众多领域,具有重大的科学价值和深刻的哲学方法论意义。但迄今为止,对非线性的概念、非线性的性质,并没有清晰的、完整的认识,对其哲学意义也没有充分地开掘。 一、 非线性的概念 非线性是相对于线性而言的,对线性的否定,线性是非线性的特例。所以要弄清非线性的概念,明确什么是非线性,首先必须明确什么是线性;其次对非线性的界定必须从数学表述和物理意义两个方面阐述,才能较完整地理解非线性的概念。 对线性的界定,一般是从相互关联的两个角度来进行的。其一:叠加原理成立“ 如果1Φ,2Φ 是两个那么21Φ+Φβα也是它的一个解,换言之,两个态的叠加仍然是一个态。”原理成立意味着所考查系统的子系统间没有非线性相互作用。其二,物理变量间的函数关系是直线,变量间的变化率是恒量,这意味着函数的斜率在其定义域内处处存在且相等,量间的比例关系在变量的整个定义域内是对称的。 在明确了线性的含义后,相应地非线性概念就易于界定。其一 :“定义非线性算符()ΦN 为对一些 a ,b 或Φ,ψ不满足)()()(ψ+Φ=ψ+ΦbL aL b a L 的算符 即叠加原理不成立。”这意味着Φ与ψ之间存在藕合,对ψ+Φb a 的操作,等于分别对Φ,ψ操作外,再加上对Φ与ψ的交叉项(耦合项)操作,或者Φ、ψ是不连续有突变或断裂、不可微有折点的。其二:作为等价的另一种表述,我们可以从另一个角度来理解非线性在用于描述一个系统的一套确定的物理变量中,一个系统的一个变量最初的变化所造成的此变量或其它变量的相应变化是不成比例的。换言之:变量间的变化率不是恒量,函数的斜率在其定义域中有不存在或不相等的地方。概括地说:物理变量间的一级增量关系在变量的定义域内是不

常微分方程平衡点及稳定性研究

本文给出了微分方程稳定性的概念,并举了一些例子来说明不同稳定性定义之间的区别和联系。这些例子都是通过求出方程解析解的方法来讨论零解是否稳定。在实际问题中提出的微分方程往往是很复杂的,无法求出其解析解,这就需要我们从方程本身来判断零解的稳定性。所以我们讨论了通过Liapunov稳定性定理来判断自治系统零解的稳定性,并用类似的方法讨论了非自治系统零解的稳定性。在此基础上,讨论了一阶和二阶微分方程的平衡点及其稳定性,这对其研究数学建模的稳定性模型起到很大的作用,并且利用相关的差分方程的全局吸引性研究了具时滞的单种群模型 ()()()() () .1 1N t N t r t N t cN t ττ -- = -- 的平衡点1 x=的全局吸引性,所获结果改进了文献中相关的结论。 关键词:自治系统平衡点稳定性全局吸引性 Abstract In this paper,we gived the conceptions of differential equation stability. Simultaneously a number of examples to illustrate the difference between the definition of different stability and contact. These examples are obtained by analytical solution equation method to discuss the stability of zero solution. Practical issues raised in the often very complicated differential equations, analytical solution can not be obtained, which requires us to determine from the equation itself, the stability of zero solution. So we discussed the stability theorem to determine through the stability of zero solution of autonomous systems, and use similar methods to discuss the non-zero solution of autonomous system stability. On this basis,we discuss a step and the second-step and the stability, which plays the major role to its stability of the model, and the global attractivity of the positive equilibrium 1 x=of the following delay single population model ()()()() () .1 1N t N t r t N t cN t ττ -- = -- is investigated by using the corresponding result related to a difference equation.The obtained results improve some known results in the literature. Key Words:autonomous system;equilibrium point;stability;delay;globally asymptotic stability;global attractivity

最新常微分方程平衡点及稳定性研究52488

常微分方程平衡点及稳定性研究52488

本文给出了微分方程稳定性的概念,并举了一些例子来说明不同稳定性定义之间的区别和联系。这些例子都是通过求出方程解析解的方法来讨论零解是否稳定。在实际问题中提出的微分方程往往是很复杂的,无法求出其解析解,这就需要我们从方程本身来判断零解的稳定性。所以我们讨论了通过?Skip Record If...?稳定性定理来判断自治系统零解的稳定性,并用类似的方法讨论了非自治系统零解的稳定性。在此基础上,讨论了一阶和二阶微分方程的平衡点及其稳定性,这对其研究数学建模的稳定性模型起到很大的作用,并且利用相关的差分方程的全局吸引性研究了具时滞的单种群模型 ?Skip Record If...? 的平衡点?Skip Record If...?的全局吸引性,所获结果改进了文献中相关的结论。 关键词:自治系统平衡点稳定性全局吸引性 Abstract In this paper,we gived the conceptions of differential equation stability. Simultaneously a number of examples to illustrate the difference between the definition of different stability and contact. These examples are obtained by analytical solution equation method to discuss the stability of zero solution. Practical issues raised in the often very complicated differential equations, analytical solution can not be obtained, which requires us to determine from the equation itself, the stability of zero solution. So we discussed the stability theorem to determine through the stability of zero solution of autonomous systems, and use similar methods to discuss the non-zero solution of autonomous system stability. On this basis,we discuss a step and the second-step and the stability, which plays the major role to its stability of the model, and the global attractivity of the positive equilibrium ?Skip Record If...? of the following delay single population model ?Skip Record If...? is investigated by using the corresponding result related to a difference equation.The obtained results improve some known results in the literature. Key Words:autonomous system;equilibrium point;stability;delay;globally asymptotic stability;global attractivity

实验五 线性系统的稳定性和稳态误差分析

实验五 自动控制系统的稳定性和稳态误差分析 一、实验目的 1、研究高阶系统的稳定性,验证稳定判据的正确性; 2、了解系统增益变化对系统稳定性的影响; 3、观察系统结构和稳态误差之间的关系。 二、实验任务 1、稳定性分析 欲判断系统的稳定性,只要求出系统的闭环极点即可,而系统的闭环极点就是闭环传递函数的分母多项式的根,可以利用MATLAB 中的tf2zp 函数求出系统的零极点,或者利用root 函数求分母多项式的根来确定系统的闭环极点,从而判断系统的稳定性。 (1)已知单位负反馈控制系统的开环传递函数为 0.2( 2.5) ()(0.5)(0.7)(3) s G s s s s s += +++,用MATLAB 编写程序来判断闭环系统的稳定性, 并绘制闭环系统的零极点图。 在MATLAB 命令窗口写入程序代码如下: z=-2.5 p=[0,-0.5,-0.7,-3] k=0.2 Go=zpk(z,p,k) Gc=feedback(Go,1) Gctf=tf(Gc) dc=Gctf.den dens=poly2str(dc{1},'s') 运行结果如下: dens= s^4 + 4.2 s^3 + 3.95 s^2 + 1.25 s + 0.5 dens 是系统的特征多项式,接着输入如下MATLAB 程序代码: den=[1,4.2,3.95,1.25,0.5]

p=roots(den) 运行结果如下: p = -3.0058 -1.0000 -0.0971 + 0.3961i -0.0971 - 0.3961i p为特征多项式dens的根,即为系统的闭环极点,所有闭环极点都是负的实部,因此闭环系统是稳定的。 下面绘制系统的零极点图,MATLAB程序代码如下: z=-2.5 p=[0,-0.5,-0.7,-3] k=0.2 Go=zpk(z,p,k) Gc=feedback(Go,1) Gctf=tf(Gc) [z,p,k]=zpkdata(Gctf,'v') pzmap(Gctf) grid 运行结果如下: z = -2.5000 p = -3.0058 -1.0000 -0.0971 + 0.3961i -0.0971 - 0.3961i k = 0.2000

最新常微分方程平衡点及稳定性研究

常微分方程平衡点及稳定性研究

摘要 本文给出了微分方程稳定性的概念,并举了一些例子来说明不同稳定性定义之间的区别和联系。这些例子都是通过求出方程解析解的方法来讨论零解是否稳定。在实际问题中提出的微分方程往往是很复杂的,无法求出其解析解,这就需要我们从方程本身来判断零解的稳定性。所以我们讨论了通过Liapunov稳定性定理来判断自治系统零解的稳定性,并用类似的方法讨论了非自治系统零解的稳定性。在此基础上,讨论了一阶和二阶微分方程的平衡点及其稳定性,这对其研究数学建模的稳定性模型起到很大的作用,并且利用相关的差分方程的全局吸引性研究了具时滞的单种群模型 ()()()() () .1 1N t N t r t N t cN t ττ -- = -- 的平衡点1 x=的全局吸引性,所获结果改进了文献中相关的结论。关键词:自治系统平衡点稳定性全局吸引性

Abstract In this paper,we gived the conceptions of differential equation stability. Simultaneously a number of examples to illustrate the difference between the definition of different stability and contact. These examples are obtained by analytical solution equation method to discuss the stability of zero solution. Practical issues raised in the often very complicated differential equations, analytical solution can not be obtained, which requires us to determine from the equation itself, the stability of zero solution. So we discussed the stability theorem to determine through the stability of zero solution of autonomous systems, and use similar methods to discuss the non-zero solution of autonomous system stability. On this basis,we discuss a step and the second-step and the stability, which plays the major role to its stability of the model, and the global attractivity of the positive equilibrium 1 x= of the following delay single population model ()()()() () .1 1N t N t r t N t cN t ττ -- = -- is investigated by using the corresponding result related to a difference equation.The obtained results improve some known results in the literature. Key Words:autonomous system;equilibrium point;stability;delay;globally asymptotic stability;global attractivity

自动控制原理-第8章 非线性控制系统教案

8 非线性控制系统 前面几章讨论的均为线性系统的分析和设计方法,然而,对于非线性程度比较严重的系统,不满足小偏差线性化的条件,则只有用非线性系统理论进行分析。本章主要讨论本质非线性系统,研究其基本特性和一般分析方法。 8.1非线性控制系统概述 在物理世界中,理想的线性系统并不存在。严格来讲,所有的控制系统都是非线性系统。例如,由电子线路组成的放大元件,会在输出信号超过一定值后出现饱和现象。当由电动机作为执行元件时,由于摩擦力矩和负载力矩的存在,只有在电枢电压达到一定值的时候,电动机才会转动,存在死区。实际上,所有的物理元件都具有非线性特性。如果一个控制系统包含一个或一个以上具有非线性特性的元件,则称这种系统为非线性系统,非线性系统的特性不能由微分方程来描述。 图8-1所示的伺服电机控制特性就是一种非线性特性,图中横坐标u 为电机的控制电压,纵坐标ω为电机的输出转速,如果伺服电动机工作在A 1OA 2区段,则伺服电机的控制电压与输出转速的关系近似为线性,因此可以把伺服电动机作为线性元件来处理。但如果电动机的工作区间在B 1OB 2区段.那么就不能把伺服电动机再作为线性元件来处理,因为其静特性具有明显的非线性。 图8-1 伺服电动机特性 8.1.1控制系统中的典型非线性特性 组成实际控制系统的环节总是在一定程度上带有非线性。例如,作为放大元件的晶体管放大器,由于它们的组成元件(如晶体管、铁心等)都有一个线性工作范围,超出这个范围,放大器就会出现饱和现象;执行元件例如电动机,总是存在摩擦力矩和负载力矩,因此只有当输入电压达到一定数值时,电动机才会转动,即存在不灵敏区,同时,当输入电压超过一定数值时,由于磁性材料的非线性,电动机的输出转矩会出现饱和;各种传动机构由于机械加工和装配上的缺陷,在传动过程中总存在着间隙,等等。 实际控制系统总是或多或少地存在着非线性因素,所谓线性系统只是在忽略了非线性因素或在一定条件下进行了线性化处理后的理想模型。常见典型非线性特性有饱和非线性、死区非线性、继电非线性、间隙非线性等。 8.1.1.1饱和非线性 控制系统中的放大环节及执行机构受到电源电压和功率的限制,都具有饱和特性。如图8-2所示,其中a x a <<-的区域是线性范围,线性范围以外的区域是饱和区。许多元件的运动范围由于受到能源、功率等条件的限制,也都有饱和非线性特性。有时,工程上还人为引入饱和非线性特

系统稳定性意义以及稳定性的几种定义

系统稳定性意义以及稳定性的几种定义 一、引言: 研究系统的稳定性之前,我们首先要对系统的概念有初步的认识。 在数字信号处理的理论中,人们把能加工、变换数字信号的实体称作系统。由于处理数字信号的系统是在指定的时刻或时序对信号进行加工运算,所以这种系统被看作是离散时间的,也可以用基于时间的语言、表格、公式、波形等四种方法来描述。从抽象的意义来说,系统和信号都可以看作是序列。但是,系统是加工信号的机构,这点与信号是不同的。人们研究系统还要设计系统,利用系统加工信号、服务人类,系统还需要其它方法进一步描述。描述系统的方法还有符号、单位脉冲响应、差分方程和图形。 电路系统的稳定性是电路系统的一个重要问题,稳定是控制系统提出的基本要求,也保证电路工作的基本条件;不稳定系统不具备调节能力,也不能正常工作,稳定性是系统自身性之一,系统是否稳定与激励信号的情况无关。对于线性系统来说可以用几点分布来判断,也可以用劳斯稳定性判据分析。对于非线性系统的分析则比较复杂,劳斯稳定性判据和奈奎斯特稳定性判据受到一定的局限性。 二、稳定性定义: 1、是指系统受到扰动作用偏离平衡状态后,当扰动消失,系统经过自身调节能否以一定的准确度恢复到原平衡状态的性能。若当扰动消失后,系统能逐渐恢复到原来的平衡状态,则称系统是稳定的,否则称系统为不稳定。 稳定性又分为绝对稳定性和相对稳定性。 绝对稳定性。如果控制系统没有受到任何扰动,同时也没有输入信号的作用,系统的输出量保持在某一状态上,则控制系统处于平衡状态。 (1)如果线性系统在初始条件的作用下,其输出量最终返回它的平衡状态,那么这种系统是稳定的。 (2)如果线性系统的输出量呈现持续不断的等幅振荡过程,则称其为临界稳定。(临界稳定状态按李雅普洛夫的定义属于稳定的状态,但由于系统参数变化等原因,实际上等幅振荡不能维持,系统总会由于某些因素导致不稳定。因此从工程应用的角度来看,临界稳定属于不稳定系统,或称工程意义上的不稳定。) (3)如果系统在初始条件作用下,其输出量无限制地偏离其平衡状态,这称系统是不稳定的。 实际上,物理系统的输出量只能增大到一定范围,此后或者受到机械制动装置的限制,或者系统遭到破坏,也可以当输出量超过一定数值后,系统变成非线性的,从而使线性微分方程不再适用。因此,绝对稳定性是系统能够正常工作的前提。

线性系统的稳定性分析

第三章 线性系统的稳定性分析 3.1 概述 如果在扰动作用下系统偏离了原来的平衡状态,当扰动消失后,系统能够以足够 的准确度恢复到原来的平衡状态,则系统是稳定的。否则,系统不稳定。一个实际的系统必须是稳定的,不稳定的系统是不可能付诸于工程实施的。因此,稳定性问题是系统控制理论研究的一个重要课题。对于线性系统而言,其响应总可以分解为零状态响应和零输入响应,因而人们习惯分别讨论这两种响应的稳定性,从而外部稳定性和内部稳定性的概念。 应用于线性定常系统的稳定性分析方法很多。然而,对于非线性系统和线性时变系 统,这些稳定性分析方法实现起来可能非常困难,甚至是不可能的。李雅普诺夫(A.M. Lyapunov)稳定性分析是解决非线性系统稳定性问题的一般方法。 本章首先介绍外部稳定性和内部稳定性的概念及其相互关系,然后介绍李雅普诺夫 稳定性的概念及其判别方法,最后介绍线性定常系统的李雅普诺夫稳定性分析。 虽然在非线性系统的稳定性问题中,Lyapunov 稳定性分析方法具有基础性的地 位,但在具体确定许多非线性系统的稳定性时,却并不是直截了当的。技巧和经验在解决非线性问题时显得非常重要。在本章中,对于实际非线性系统的稳定性分析仅限于几种简单的情况。 3.2 外部稳定性与内部稳定性 3.2.1 外部稳定: 考虑一个线性因果系统,如果对一个有界输入u (t ),即满足条件: 1()u t k ≤<∞ 的输入u (t ),所产生的输出y (t )也是有界的,即使得下式成立: 2()y t k ≤<∞ 则称此因果系统是外部稳定的,即BIBO (Bounded Input Bounded Output )稳定。 注意:在讨论外部稳定性的时候,我们必须要假定系统的初始条件为零,只有在这种假定下面,系统的输入—输出描述才是唯一的和有意义的。 系统外部稳定的判定准则 系统的BIBO 稳定性可根据脉冲响应矩阵或者传递函数矩阵来进行判别。

非线性时变系统的稳定性和鲁棒性

外文资料翻译 非线性时变系统的:稳定性和鲁棒性 概要:我们这里所叙述的是采样数据模型预测控制的框架,使用连续时间模型, 但采样的实际状况以及为计算控制的状态,进行了在离散instants的时间。在此框架内可以解决一个非常大的一类系统,非线性,时变的,非完整。 如同在许多其他采样数据模型预测控制计划,barbalat的引理一个重要的角色,在证明的名义稳定的结果。这是争辩这泛barbalat的引理,形容这里,可以有也类似的的作用,在证明的鲁棒稳定性的结果,也允许以解决一个很一般类非线性,时 变的,非完整系统,受到的干扰。那个的可能性的框架内,以容纳间断的意见是必要 的实现名义的稳定性和鲁棒稳定性,例如一般类别的系统。 1 引言 许多模型预测控制(MPC)计划描述,在文献上使用连续时间的模型和样本状态 的在离散的instants 时间。见例如[3,7,9,13] ,也是[6] 。有许多好处,在考虑 连续时间模型。不过,任何可执行的模型预测控制计划只能措施,状态和解决的优化问题在离散instants的时间。 在所有的提述,引用上述情况, barbalat的引理,或修改它,是用来作为一个 重要步骤,以证明稳定的MPC的计划。( barbalat的引理是众所周知的和有力的工具,以推断的渐近稳定性的非线性系统,尤其是时间变系统,利用Lyapunov样的办法; 见例如[17]为讨论和应用)。显示模型预测控制的一项战略是稳定(在名义如此),这表明,如果某些设计参数(目标函数,码头设置等),方便的选定,然后价值函数是单调递减。然后,运用barbalat的引理,吸引力该轨迹的名义模型可以建立(i.e. x(t) →0 as t →∞).这种稳定的状态可以推断,一个很笼统的类非线性系统:包括时变 系统的,非完整系统,系统允许间断意见,等此外,如果值函数具有一定的连续性属性,然后Lyapunov稳定性(即轨迹停留任意接近的起源提供了足够的密切开始向原产地)

相关主题
文本预览
相关文档 最新文档