2.描述函数的求取步骤
1)绘制输入—输出波形图,写出输入为e(t)Asiω nt
时非线性输出表达式
2)由波形图分析 x (t )的对称性,并计算
A1 B1 X 1 1
3)描述函数为 N(A)B1jA1X1ej1
A AA
自动控制原理
武汉理工大学自动化学院
例 非线性元件的静特性方程为
x(t)1e(t)1[e(t)]3 24
非线性系统,在没有外作用时,系统中完全有可能发生 一定频率和振幅的稳定的周期运动,这个周期运动在物 理上是可以实现的,通常把它称为自激振荡。
自动控制原理
武汉理工大学自动化学院
非线性系统与线性系统的区别(4)
线性系统中,当输入量是正弦信号时,输出稳态分量 也是同频率的正弦函数,可以引入频率特性的概念 并用它来表示系统固有的动态特性。
有关, 还与系统的初始状态及输入信号的形式和大小有关.
由于非线性控制系统的基本数学模型是非线性微分方程, 而 从数学上讲, 非线性微分方程没有一个统一的解法, 再由于 第二个特征, 对非线性控制系统也没有一个统一的分析和设 计的方法, 只能具体问题具体对待.
本章将介绍的分析非线性控制系统的相平面法和描述函数法,
非线性环节的描述函数总是输入信号幅值A的函数,
一般也是频率的函数,因此,描述函数一般记为 N(A, j)
非线性元件的描述函数或等效幅相频率特性与输入的正弦振 荡的振幅A有关,这是非线性特性本质的反映。它与线性环 节的情况正好相反,线性环节的幅相特性(频率特性)与正 弦输入的幅值无关。
自动控制原理
武汉理工大学自动化学院
具有死区的单值继电器特性
功能:改善系统性能的切换元件
具有滞环的继电器特性