偏振态及其转换的矩阵描述
- 格式:ppt
- 大小:887.50 KB
- 文档页数:24
常见偏振器件的jones矩阵常见偏振器件的Jones矩阵1. 引言偏振光是指在特定方向上振动的光波。
为了描述偏振光的性质和行为,人们使用了一种被称为Jones矩阵的工具。
Jones矩阵是一种描述偏振光传播过程中的线性光学器件的数学方法。
在本文中,我们将探讨几种常见的偏振器件,并分析它们的Jones矩阵。
2. 偏振器的基本概念偏振器是一种用于过滤、操作和分析偏振光的器件。
它们根据其内部结构和特性可以分为很多不同的类型。
在讨论Jones矩阵之前,让我们先了解一些常见的偏振器件和它们的特点。
2.1 偏振片偏振片是最基本的偏振器件之一。
它们由具有特殊光学性质的材料制成,可以将非偏振光转化为具有特定偏振方向的偏振光。
偏振片的Jones矩阵非常简单,它只有一个元素,即眯式参数(transmittance)。
2.2 波片波片也是一种常见的偏振器件,它们可以将一个偏振状态的光波转化为另一个偏振状态。
波片的Jones矩阵取决于其光学轴的方向和波片的类型。
最常见的波片类型是快轴在特定角度上旋转的正交波片和半波片。
2.3 偏振旋转器偏振旋转器是可以通过改变其内部光学路径或材料,改变输入偏振态的偏振角度的器件。
偏振旋转器的Jones矩阵是一个旋转角度相关的矩阵,并且可以由绕轴旋转操纵。
3. 常见偏振器件的Jones矩阵3.1 线性偏振器件线性偏振器件是最简单的偏振器件之一,它们只能产生特定方向上的线偏振光。
对于一个线性偏振器件,它的Jones矩阵可以表示为:```J = [cos^2θ sinθcosθ][sinθcosθ sin^2θ ]```其中,θ表示偏振方向与输入光方向之间的夹角。
3.2 偏振分束器偏振分束器是一种可以将输入光分成两个正交偏振态的器件。
它们的Jones矩阵可以表示为:```J = [ T R][ R T]```其中,T表示透过的光的振幅传输率,R表示反射灯(Reflectance)。
3.3 光电调制器光电调制器是利用外部控制电场的变化来改变光的偏振状态的器件。
浅析光偏振态的矩阵表示法****大学毕业论文题目: ******************学生姓名: ******指导老师: ******学院: ******专业班级: ******完成时间: ******浅析光偏振态的矩阵表示法摘要:介绍了光的偏振态,浅析描述光偏振态的物理量--琼斯矢量,讨论了光偏振态的矩阵表示,给出了典型偏振态的矩阵表达式,分析了偏振器件的琼斯矩阵表达式,阐明怎么利用琼斯矩阵来描述偏振器件的物理特性。
关键词:偏振光;偏振态;琼斯矢量;琼斯矩阵1引言我们学习过用光矢量来表示光波的性质,但是表示起来十分麻烦,所以我们引用了琼斯矢量矩阵来描述光波的性质。
在此之前已经有很多前辈对琼斯矢量矩阵进行了研究。
[1]在姚启钧的《光学教程》(第四版)中介绍了光的各种偏振态和各种偏振光的性质,用矩阵法讨论了偏振光的矢量矩阵和偏振器件的琼斯矩阵,对各种偏振态的矩阵和各种偏振[2]器件的琼斯矩阵得出了结论;陈海云的《偏振光和偏振器件的矩阵表示和运算》从各种偏振态的含义出发,结合高等光学的实质讨论了本文,但只对偏振光的斯托克斯矢量和琼斯矢量矩阵进行描述和范例应用,没有对各种偏振器件进行矩阵求解,也没有利用琼斯矩阵对光的偏振态进行求解,对琼斯矩阵的求法理解有难度;张玲芬的《偏振光与偏振器件的矩阵分[3][4]析》和刘健的《光偏振的矩阵与量子描述》浅析了偏振光的矩阵表示、偏振器件的矩阵表示以及他们的应用,但并没有推导出具体的求解过程,对偏振器件的矩阵表示只罗列出波片的总公式,对详细的过程没有注明,也没有推导偏振片的琼斯矩阵。
偏振是光学的一个重要概念,用琼斯矢量矩阵表示光的偏振态比用电矢量表达式更加清楚简洁,更方便计算,利用琼斯矩阵表示偏振器件的物理特性是一种非常有效也十分简洁的物理方法。
在他们研究的基础上我用投影法来描述了琼斯矩阵,对矩阵法所得出的各偏振器件的琼斯矩阵进行了验证,并用得到的琼斯矢量矩阵和琼斯矩阵来计算出射光的偏振态。
常用光学元器件琼斯矩阵
光学元器件是光学系统中不可或缺的组成部分,通常由多种光学元件组合而成,用于调制、分光、合成、偏振和转换光线等。
琼斯矩阵则是描述光学元器件对光线偏振状态影响的标准表达方式。
下面我们将介绍一些常用的光学元器件的琼斯矩阵。
1. 偏振片
偏振片是一种常用的光学元件,它可以使光线偏振态发生变化,并且具有很强的选择性,只允许一定方向的光通过。
偏振片的琼斯矩阵如下:
⎡cos^2θ sinθcosθ⎡
⎡sinθcosθ sin^2θ ⎡
其中,θ为偏振片的传输轴与x轴的夹角。
该矩阵表示了偏振片对于通过的光线偏振状态的影响。
2. 波片
波片可以转化光线的偏振状态,将偏振光线分解为正交的两个部分。
一般来说,波片有四种类型:1/4波片、1/2波片、3/4波片和全波片。
它们的琼斯矩阵分别如下:
1/4波片: ⎡1 0 ⎡
⎡0 -i ⎡
这些矩阵描述了波片对于通过的光线偏振状态的转换。
3. 反射器
反射器是一种将光线反射并改变其方向和偏振状态的元器件。
它的琼斯矩阵如下:
其中,θ为照射反射器的光线与反射器表面法线的夹角。
4. 可调偏振器
可调偏振器是一种可以控制光线偏振方向的元器件。
它的琼斯矩阵可以通过旋转矩阵来描述,旋转角度为α,旋转矩阵为:
5. 偏振束分束器
偏振束分束器可以将偏振光线按照它们的偏振状态分开。
其琼斯矩阵如下:
其中,θ为分束器的切割角。
米勒矩阵琼斯矩阵斯托克斯参数米勒矩阵、琼斯矩阵和斯托克斯参数均是电磁场的描述工具。
它们广泛应用于各种电磁波传播和光学问题的研究中。
本文将分别介绍这三种工具及其在电磁场中的应用。
一、米勒矩阵米勒矩阵是描述各向同性介质中电磁波偏振状态的工具。
在自然光(非偏振光)通过介质时,会发生振动方向的改变,这就是偏振现象。
米勒矩阵描述了光波经过各向同性介质后的偏振状态和光强变化情况。
米勒矩阵可以理解为一个4x4的矩阵,其元素表示光的电场分量与偏振状态的关系。
假设光在入射面的偏振状态描述为E=(Ex, Ey, Ez)T,则米勒矩阵M可以表示为:M = |E'x1| E'=(E'x, E'y, E'z)T为透射面的偏振状态描述。
|E'y2||E'z3||E' 4|米勒矩阵可以用来描述光线经过介质气体、液体或固体时的偏振状态的变化,从而有助于分析光的传播过程。
米勒矩阵在液晶显示器中也有广泛应用。
二、琼斯矩阵J = |J11 J12| J21和J22为复数,描述了光波通过器件后的偏振状态。
|J21 J22|琼斯矩阵可以用来描述偏振光在具有线性或圆偏振光学器件中传输后的偏振状态变化情况。
在应用领域上,琼斯矩阵被广泛用于在激光器件和传感器中来解决光传播的问题。
三、斯托克斯参数斯托克斯参数是描述偏振光波的4个参数,包括偏振度P、方向角度Phi、椭圆度E和振幅As,它们可以描述光波的偏振状态和强度。
偏振度P表示光波偏振的程度,其数值范围为0<P<1,当P=0时为非偏振光,P=1时为全偏振光;振幅As表示光波的强度,其数值可以是任意正实数。
斯托克斯参数可以用于描述偏振光波的状态和变化情况,被广泛用于天文学、大气物理学以及光学测量中。
总结以上三种描述电磁场的工具在光学和电磁学中都有广泛的应用。
米勒矩阵主要用于描述各向同性介质中电磁波偏振状态和光强变化情况;琼斯矩阵被广泛用于解决激光器件和传感器中光传播的问题;斯托克斯参数可以用于描述偏振光波的状态和变化情况,被广泛用于天文学、大气物理学以及光学测量中。
穆勒矩阵(Mueller matrix)是用于描述偏振光与材料相互作用后偏振状态变化的一个4x4矩阵。
它是偏振光学中一个非常重要的概念,广泛应用于遥感、生物医学成像、材料科学等领域。
穆勒矩阵的一般形式如下:
M = [ m_00 m_01 m_02 m_03
m_10 m_11 m_12 m_13
m_20 m_21 m_22 m_23
m_30 m_31 m_32 m_33 ]
其中,m_ij(i,j=0,1,2,3)是穆勒矩阵的元素,代表不同偏振态之间的转换关系。
这些元素可以通过实验测量获得,或者根据材料的光学特性进行计算。
穆勒矩阵的计算通常涉及到以下步骤:
1. 确定材料的光学特性:包括折射率、消光系数、双折射等。
2. 建立偏振光与材料相互作用的数学模型:根据麦克斯韦方程组,结合材料的光学特性,建立描述偏振光通过材料后偏振状态变化的数学模型。
3. 求解数学模型:通过数值方法或解析方法求解数学模型,得到穆勒矩阵的元素。
4. 验证和校正:通过实验数据对计算结果进行验证和校正,确保穆勒矩阵的准确性和可靠性。
需要注意的是,穆勒矩阵的计算过程可能比较复杂,需要一定的物理和数学知识,以及相关的软件工具支持。
此外,由于实验条件和材料特性的差异,同一种材料在不同情况下的穆勒矩阵可能会有所不同。
半波片和四分之一波片的琼斯矩阵
半波片和四分之一波片是常见的光学元件,它们可以将入射的自然光线偏振成特定方向的偏振光线。
这种偏振转换的过程可以用琼斯矩阵来描述。
半波片是一种光学元件,它可以将入射的线偏振光线转化为垂直方向的偏振光线,或将垂直方向的偏振光线转化为水平方向的偏振光线。
它的琼斯矩阵为:
J = 1/sqrt(2) *
[1 -i;
-i 1]
其中,i为虚数单位,sqrt(2)为常数。
四分之一波片是一种光学元件,它可以将入射的线偏振光线转化为45°方向的偏振光线,或将垂直方向的偏振光线转化为135°方向的偏振光线。
它的琼斯矩阵为:
J = 1/2 *
[1 -i;
-i -1]
需要注意的是,这里的i同样为虚数单位,1/2为常数。
这些琼斯矩阵是通过对偏振光线进行数学分析推导出来的。
在实际应用中,我们可以利用这些矩阵来计算光学系统中的光线传输和偏振转换。
- 1 -。
偏振光的矩阵陈泽(西华师范大学物电学院)摘要:偏振是物理光学中的一个重要部分。
近年来,科学实验研究中已经广泛应用了光的偏振特性。
而琼斯(Jones )矩阵的提出和发展迄今已历半个多世纪之久,其形式的简明有目共睹。
本文将利用琼斯(Jones)矩阵来描述偏振。
引言:我们知道,波的振动方向和波的传播方向相同的波称为纵波;波的振动方向和波的传播方向相互垂直的波称为横波,在纵波的情况下,通过波的传播方向的所有平面内的运动情况都相同,其中没有一个平面显示出比其他任何平面特殊,这通常称为波的振动对传播方向具有对称性。
对横波来说,通过波的传播方向且包含振动矢量的那个平面显然和其他不包含振动矢量的任何平面有区别,这通常称为波的振动方向对传播方向没有对称性,波的振动方向对于传播方向的不对称性叫做偏振,它是横波区别于纵波的一个最明显的标志,只有横波才有偏振现象。
光波是电磁波,光波的传播方向就是电磁波的传播方向,光波中的电矢量E 和磁矢量H 都与传播速度ν垂直,因此光波是横波,它具有偏振性。
1、光波的偏振态平面电磁波是横波,电场和磁场彼此正交,因此当光沿Z 方向传输时,电场只有x 、y 方向的分量,平面波取如下形式:)cos(00δκ+-=E ut E E (1) 式中,写成分量形式为:⎪⎩⎪⎨⎧=+=+=0)cos()cos(21E oy ox E E Ey E Ex δτδτ (2)为了求得电场矢量的端点所描绘的曲线,把上式中参变量Z 消去可得:δδ2022sin cos 2)1(2)1(=-+oy y x oy x E E E E E E Eox (3)偏振情况一般分为两种,一种是电矢量E 的方向永远保护不变,即是线偏振;另一种是电矢量E 端点轨迹为一圆,即圆偏振。
这两种情况都是椭圆偏振的特例:由式(3),当)2,1,0(12 ±±==-=m m πδδδ时,椭圆就退化的一条直线。
x oy mE E Ex Ey 0)1((-= (4) 这时电矢量E 称为线偏振(亦称平面偏振)当Ex.Ey 两分量的振幅相等,且其相位差为2/π的奇数倍,即o oy ox E E E ==)5,3,1(2/12 ±±±==-=m m πδδδ,则试(3)椭圆退化为圆:222E E E y x =+ (6) 则称电矢量是圆偏振。