线性代数第五章答案
- 格式:docx
- 大小:27.53 KB
- 文档页数:21
1.(3)()3212533112E A λλλλλ---=-+-=++ 所以,A 的特征值为1231λλλ===-对于1231λλλ===-,解齐次线性方程组()E A X O --=,得其基础解系为111-⎛⎫ ⎪- ⎪ ⎪⎝⎭,故与1231λλλ===-对应的全体特征向量为111c -⎛⎫ ⎪- ⎪ ⎪⎝⎭其中c 为非零常数.2.设λ为A 的特征值,α是对应的特征向量,则A αλα= 用矩阵A 左乘上式两端,并利用2A A =,得22A A A αλαλααλα====故()10λλα-=即0,1λ=.3.设λ为A 的特征值,α是对应的特征向量,则A αλα= 用矩阵1k A -左乘上式两端,并利用k A O =,得k k A O αλα==故0k λ=即0λ=.4.因为λ是A 的特征值,α是对应的特征向量,则()()11011011m m m m m m m m g A a A a A a A a E a A a A a A a E αααααα----=++++=++++()1011m m m m a a a a g λαλαλααλα--=++++=即()g λ是()g A 的特征值,α是对应的特征向量. 5. 设β为()TAP -1P 对应于λ的特征向量.由题意, A αλα=, 且T A A = T P βα=1()T P AP βλβ-= 1()T T P A P βλβ-= 11()()T T A P P βλβ--=则,1()T P β-为A 对应于λ的特征向量. 故, 1()T P αβ-= 即, T P βα=7. A 的特征多项式为4(2)(1)0λλ+-=. 8. 由题意, 存在可逆矩阵P , 使得1P AP B -=,则111()()()T T T T T T T T B P AP P A P P A P ---=== 由于T P 可逆, 所以T T A B9.因为111P A P B -=,122P A P B -=,则()111121212P A A P P AP P A P B B ---+=+=+,即1212A A B B ++ ;且111121212P A A P P A PP A P B B ---==, 即1212A A B B .10.A 可逆,则1A -存在,且1A ABA BA -=由定义AB BA .16. ()1121121164320132916n n n n n M AM M A M n n ---+⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪⎪⎪ ⎪---⎝⎭⎝⎭⎝⎭⎝⎭18.A 的特征多项式为()21E A λλλ-=-故A 的特征值为1230,1λλλ===对10λ=,齐次线性方程组AX O =的基础解系为124⎛⎫ ⎪ ⎪ ⎪⎝⎭对231λλ==,齐次线性方程组()E A X O -=的基础解系为211,001-⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭令121210401Q -⎛⎫ ⎪= ⎪ ⎪⎝⎭则1000010001Q AQ -⎛⎫ ⎪= ⎪ ⎪⎝⎭1000000010010001001nn Q A Q -⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭故1121000121021210010210252401001401483n A ----⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪⎪ ⎪==-- ⎪⎪⎪ ⎪ ⎪⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭.19.必要性:由性质知,A B ,则,A B 有相同的特征值,又,A B 为对角矩阵,则特征值为主对角元,即A 和B 的主对角元除了排列次序外是完全相同的;充分性:若A 和B 的主对角元除了排列次序外是完全相同的,则必存在初等矩阵()1,2,,i R i s = ,使得1111221s s R R R AR R R B ---= ,即A B .23.设122212221Q -⎛⎫⎪=-- ⎪ ⎪⎝⎭则由题意知1100000001Q AQ -⎛⎫ ⎪= ⎪ ⎪-⎝⎭故11120331001221001222200021200021203300122100122121033A Q Q --⎛⎫- ⎪--⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪⎪⎪==----= ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪⎪⎪-- ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎪ ⎪⎝⎭. 29.因为A 正交,且1A =,则()1nT T T T E A A A A A E A A E A E E A -=-=-=-=-=--又A 为奇数阶,则E A E A -=--,即0E A -= 故E A -为不可逆矩阵. 31.(1)A 的特征多项式为()()()125E A λλλλ-=---故A 的特征值为1231,2,5λλλ===对11λ=,齐次线性方程组()E A X O -=的基础解系为011⎛⎫ ⎪- ⎪ ⎪⎝⎭单位化得1011ε⎛⎫⎪=-⎪⎪⎭对22λ=,齐次线性方程组()2E A X O -=的基础解系为2100ε⎛⎫ ⎪= ⎪ ⎪⎝⎭对35λ=,齐次线性方程组()5E A X O -=的基础解系为11 ⎪ ⎪⎝⎭单位化得3011ε⎛⎫⎪=⎪⎪⎭令()12301000Q εεε⎛⎫ ⎪ ⎪ == ⎝ 则1100020005Q AQ -⎛⎫ ⎪= ⎪ ⎪⎝⎭.(2)A 的特征多项式为()()2110E A λλλ-=--故A 的特征值为1231,10λλλ===对121λλ==,齐次线性方程组()E A X O -=的基础解系为221,001-⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭正交化单位化得1201ε⎛⎫⎪=⎪⎪⎭225145ε⎛⎫-⎪⎪=⎪ ⎪ ⎪⎝⎭对310λ=,齐次线性方程组()10E A X O -=的基础解系为22- ⎪ ⎪⎝⎭单位化得3132323ε⎛⎫- ⎪ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪⎝⎭令()1231320323Q εεε⎫-⎪⎪ ⎪==-⎪ ⎪⎪⎪⎭则11000100010Q AQ -⎛⎫ ⎪= ⎪ ⎪⎝⎭.32. 设()1120T α=-, ()2101Tα=-,特征值8对应的特征向量为123(,,)T x x x x =,由于实对称矩阵不同特征根对应特征向量正交, 故 ()112,20x x x α=-=, ()213,0x x x α=-= 求得方程组的基础解系为()3212Tα= 取3α为特征值8对应的特征向量, 并令 ()123112201012P ααα⎛⎫⎪==- ⎪ ⎪-⎝⎭1100010008P AP --⎛⎫⎪=-=Λ ⎪ ⎪⎝⎭则 1141999112100324425201010202999012008423212999A P P -⎛⎫-⎪-⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪⎪=Λ=---= ⎪⎪ ⎪⎪ ⎪⎪⎪- ⎪⎝⎭⎝⎭⎝⎭ ⎪ ⎪⎝⎭。
线性代数(中国石油大学(华东))知到章节测试答案智慧树2023年最新第一章测试1.二阶行列的乘积项中的元素可以取自同一行.参考答案:错2.参考答案:123.参考答案:4.参考答案:5.齐次线性方程组的系数行列式等于零,则解是唯一的。
参考答案:错6.线性方程组的系数行列式不等于零,则解可能不唯一。
参考答案:错7.齐次线性方程组的存在非零解,则系数行列式一定等于零。
参考答案:对8.一次对换改变排列的一次奇偶性。
参考答案:对9.两个同阶行列式相加,等于对应位置的元素相加后的行列式。
参考答案:错10.克莱默法则对于齐次线性方程组而言,方程的个数可以不等于未知数的个数。
参考答案:错第二章测试1.因为零矩阵的每个元素都为零,所以零矩阵相等。
参考答案:错2.参考答案:错3.参考答案:4.参考答案:A的伴随矩阵的行列式等于A的行列式的n-1次方5.参考答案:错6.对角矩阵就是对角线上的元不全为零的方阵。
参考答案:错7.矩阵的加法与行列式加法相同。
参考答案:错8.参考答案:对9.上三角矩阵的伴随矩阵仍是上三角矩阵。
参考答案:对10.可逆上三角矩阵的逆矩阵仍为上三角矩阵。
对第三章测试1.行向量和列向量都按照矩阵的运算法则进行运算。
参考答案:对2.三个向量线性相关的几何意义是三个向量共面。
参考答案:对3.n个n维向量线性无关可以推出它们构成的方阵的行列式等于零。
参考答案:错4.一个向量空间的基就是一个最大线性无关组。
对5.向量组线性无关的充分必要条件是其个数等于向量组的秩。
参考答案:对6.参考答案:错7.参考答案:错8.参考答案:错9.参考答案:错10.参考答案:A的秩小于等于3第四章测试1.任意两个齐次线性方程组解的和仍为这个线性方程组的解。
()参考答案:对2.参考答案:(A b)是增广矩阵3.参考答案:14.只要系数矩阵一样,则非齐次和齐次方程组具有相同的基础解系.参考答案:错5.参考答案:对6.任意齐次线性方程组解的常数倍,仍为这个线性方程组的解。
第一章 矩阵作业答案班级: 姓名: 学号 : 得分:一、选择题 (每小题5分,共20分)1. 设A 为任意n 阶矩阵,下列4项中( B )是反对称矩阵。
(A )T A A + (B )T A A - (C )T AA (D )A A T2.设n 阶矩阵A ,B 是可交换的,即BA AB =,则不正确的结论是( D )。
(A )当A ,B 是对称矩阵时,AB 是对称矩阵 (B )2222)(B AB A B A ++=+ (C )22))((B A B A B A -=-+(D )当A ,B 是反对称矩阵时,AB 是反对称矩阵3.设n 阶矩阵A ,B 和C 满足E ABAC =,则( A)。
(A )E C A B A T T T T = (B )E C A B A =2222 (C )E C BA =2 (D )E B CA =24. 设÷øöçèæ=21,0,0,21a ,a a T E A -=,a a T E B 2+=,则AB =( B )(A) a a TE + (B) E (C) E - (D) 0二、计算与证明题 (每小题20分,共80分)1.已知úûùêëé--=1121A ,试求与A 可交换的所有二阶矩阵X得分得分2. 已知úúúûùêêêëé=010101001A , (1)证明:E A A A n nn -+=³-223时,(2)求100A.3. 已知矩阵,,试作初等变换把A 化成B ,并用初等矩阵表示从A 到B 的变换.BQ AQ Q Q B a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a A c c c c =úúúûùêêêëé=úúúûùêêêëé==úúúûùêêêëé+++¾¾®¾úúúûùêêêëé+++¾¾®¾úúúûùêêêëé=«+21213133323321232223111312133333323123232221131312113332312322211312110010101001100100013123所以,设解:4.已知矩阵,试作初等行变换,把分块矩阵化成,其中E 是单位矩阵,B 是当左块A 化成E 时,右块E 所变成的矩阵;并计算矩阵的乘积AB 与BA .úúúûùêêêëé----¾¾¾®¾úúúûùêêêëé+-+-101110012430001321100431010212001321312112r r r r )()(解:úúúûùêêêëé----¾¾¾®¾úúúûùêêêëé---¾¾®¾úúúûùêêêëé----¾¾®¾+-+-+--+«3151004160101120013151001011100013210124301011100013211213233321223113r r r r rr r r r r r )()()()(úúúûùêêêëé==úúúûùêêêëé----=100010001315416112BA AB B 则第二章 行列式与矩阵求逆作业答案班级: 姓名: 学号 : 得分:一.计算下列行列式:(每题10分,共30分)1. 已知4阶行列式44332211400000a b a b b a b a D =, 求4D 的值. 解:得分2. 计算n 阶行列式111111111111nn n n D n ----=3. 计算5阶行列式242322214321500032100111011110x x x x x x x x D =二.计算题:(每题15分,共60分)1. 已知3阶行列式2101123z y x D =,且,1,0322213331311-=++=+-M M M M M M2132131=+-M M M其中的值的余之式,求中元素是33D a D M ij ij .得分2. 求4阶行列式22350070222204034--=D 中第4行各元素余之式之和.3. 设úúúúûùêêêêëé=5400320000430021A , 则求1-A .4. 若úúúúûùêêêêëé=121106223211043a A 可逆,则求a 的值.三.(10分)问m l 、取何值时,齐次方程组ïîïíì=+m +=+m +=++l 0200321321321x x x x x x x x x有非零解?零解。
线性代数知识点总结第一章 行列式二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和nnn nj j j j j j j j j nij a a a a ...)1(21212121)..(∑-=τ〔奇偶〕排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变。
〔转置行列式〕TD D =②行列式中*两行〔列〕互换,行列式变号。
推论:假设行列式中*两行〔列〕对应元素相等,则行列式等于零。
③常数k 乘以行列式的*一行〔列〕,等于k 乘以此行列式。
推论:假设行列式中两行〔列〕成比例,则行列式值为零;推论:行列式中*一行〔列〕元素全为零,行列式为零。
④行列式具有分行〔列〕可加性⑤将行列式*一行〔列〕的k 倍加到另一行〔列〕上,值不变行列式依行〔列〕展开:余子式、代数余子式ij M ijji ij M A +-=)1( 定理:行列式中*一行的元素与另一行元素对应余子式乘积之和为零。
克莱姆法则:非齐次线性方程组 :当系数行列式时,有唯一解:0≠D )21(n j DD x j j ⋯⋯==、 齐次线性方程组 :当系数行列式时,则只有零解01≠=D 逆否:假设方程组存在非零解,则D 等于零特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a →②对称行列式:jiij a a =③反对称行列式:奇数阶的反对称行列式值为零ji ij a a -=④三线性行列式: 方法:用把化为零,。
化为三角形行列式333122211312110a a a a a a a 221a k 21a ⑤上〔下〕三角形行列式:行列式运算常用方法〔主要〕行列式定义法〔二三阶或零元素多的〕化零法〔比例〕化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵矩阵的概念:〔零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵)n m A * 矩阵的运算:加法〔同型矩阵〕---------交换、结合律数乘---------分配、结合律n m ij ka kA *)(= 乘法注意什么时候有意义nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑== 一般AB=BA ,不满足消去律;由AB=0,不能得A=0或B=0转置A A TT =)(TTTBA B A +=+)((反序定理)T T kA kA =)(T T T A B AB =)(方幂:2121k k k kA AA += 几种特殊的矩阵:对角矩阵:假设AB 都是N 阶对角阵,k 是数,则kA 、A+B 、AB 都是n 阶对角阵数量矩阵:相当于一个数〔假设……〕 单位矩阵、上〔下〕三角形矩阵〔假设……〕对称矩阵反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 都是0分块矩阵:加法,数乘,乘法:类似,转置:每块转置并且每个子块也要转置注:把分出来的小块矩阵看成是元素逆矩阵:设A 是N 阶方阵,假设存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的,(非奇异矩阵、奇异矩阵|A|=0、伴随矩阵)B A =-1 初等变换1、交换两行〔列〕2.、非零k 乘*一行〔列〕3、将*行〔列〕的K 倍加到另一行〔列〕初等变换不改变矩阵的可逆性 初等矩阵都可逆 初等矩阵:单位矩阵经过一次初等变换得到的〔对换阵 倍乘阵 倍加阵〕等价标准形矩阵⎪⎪⎭⎫ ⎝⎛=O OO I D rr 矩阵的秩r(A):满秩矩阵 降秩矩阵 假设A 可逆,则满秩假设A 是非奇异矩阵,则r 〔AB 〕=r 〔B 〕初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵,行列式n ij n ij a k ka )()(=nijn nij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆;③不是所有的方阵都存在逆矩阵;④假设A 可逆,则其逆矩阵是唯一的。
第4,5章 综合练习题 一、填空题1.已知211A 121112⎡⎤⎢⎥=⎢⎥⎣⎦,100B 01000a ⎡⎤⎢⎥=⎢⎥⎣⎦且A 与B 相似,则_______________a =.2.设可逆阵A 的一个特征值是2,且-4detA =,则A 的伴随阵*A 的一个特征值为__________.3.设A 与B 相似,B 与112⎡⎤⎢⎥-⎢⎥⎣⎦相似,则A 的特征值是_______.4.已知211A 121112⎡⎤⎢⎥=⎢⎥⎣⎦有二重特征值1,则A 的另一个特征值是______.5.二元二次型()112122x 13f (x ,x )x x 52x ⎛⎫⎡⎤= ⎪⎢⎥⎣⎦⎝⎭的矩阵是_______. 6.若矩阵A 的一个特征值为0,则A =7. 二次型()2221231231223,,3524f x x x x x x x x x x =++++的矩阵A =8.设A 为3阶矩阵,其特征值分别为1,2,-1,则A = , 2A 的特征值是__________,1A -的特征值分别为 , *A 的特征值分别为 ,.9.已知矩阵20000101A x ⎛⎫ ⎪= ⎪⎝⎭与20000001B y ⎛⎫⎪= ⎪-⎝⎭相似,则x = , y =10. 已知三阶矩阵11020421A x -⎛⎫⎪= ⎪⎝⎭的特征值为1、2、3,则x =11. 设向量组:(),0,1,11T=α ()T 1,0,12=α ,则与21,αα 等价的正交向量组为___________.12. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=300020001A 的特征值为:_______, 2A 的特征值为:_______.13. 用配方法把二次型32312123222162252x x x x x x x x x +++++化成标准形为 .二、单项选择题1. 设12,αα都是n 阶矩阵A 的属于不同特征值的特征向量,则( ) (A) 02T 1=αα; (B) 12T 1=αα ; (C) 线性相关与21αα ;(D) 线性无关与21αα2. 设n 阶矩阵A 与B 相似,则( )(A) (A)(B)r r =; (B)A 与B 和同一个对角矩阵相似; (C) B E A E -=-λλ; (D) A 与B 的特征向量相同. 3. 设A 为n 阶可逆矩阵,与A 有相同特征值的是( ) (A) -1A ; (B) TA ; (C) *A ; (D) 2A . 4.以下四个矩阵,正定的是( )(A) 1-10-120003⎡⎤⎢⎥⎢⎥⎣⎦ ;(B)120210002⎡⎤⎢⎥⎢⎥⎣⎦ ;(C)120240001⎡⎤⎢⎥⎢⎥⎣⎦; (D)200012023⎡⎤⎢⎥⎢⎥⎣⎦.5.A 与B 都是n 阶矩阵,且都可逆,则( )(A) 必存在可逆n 阶矩阵P ,使B AP P =-1; (B) 必存在可逆n 阶矩阵C ,使TC AC B =; (C) 必存在可逆n 阶矩阵P 与Q ,使B PAQ =; (D) A 与B 都与同一个对角矩阵相似.6. 设4-52A 5-736-94⎡⎤⎢⎥=⎢⎥⎣⎦,则A 的属于特征值00λ=的特征向量是( )(A) T )2,1,1(1=α ; (B) T )3,2,1(2=α ;(C) T)1,0,1(3=α ; (D) T )1,1,1(4=α .7. 二次型2123222132162-6-2)x ,x ,x (f x x x x x +-=是( ) (A)正定的; (B)负定的; (C) 半正定的; (D) 半负定的.8. 设001A 010100⎡⎤⎢⎥=⎢⎥⎣⎦,则以下四个向量中是A 的特征向量者是( )(A) T )1,0,1(; (B) T )1,1,1(-; (C) T )2,0,0( ; (D) T)2,1,0(.9. 设A 为n 阶实对称阵,B 为n 阶可逆阵,Q 为n 阶正交阵,则矩阵 ( )与A 有相同的特征值(A )1T-B Q AQB ; (B) ()11TT --BQ AQB ; (C )T T B Q AQB ; (D) T T BQ AQB10. 设矩阵A 与B 相似,则必有( )(A)A 、B 都不可逆 ; (B)A 、B 有相同的特征值 ; (C )A 、B 均与同一个对角矩阵相似 ; (D)矩阵A E λ-与B E λ-相等 11. 设A 是三阶矩阵,10λ=,21λ=,31λ=-是A 的三个特征值,对应的特征向量分别为123,,ααα,则使得1100000001P AP --⎛⎫⎪= ⎪⎝⎭成立的P 是( )(A )(123,,ααα) (B)(132,,ααα) (C)(321,,ααα) (D)(312,,ααα) 12. A 与B 是两个相似的n 阶矩阵,则( )(A)存在非奇异矩阵P ,使1P AP B -= (B)存在对角矩阵D ,使A 与B 都相似与D (C)0AB = (D)E A E B λλ-=-13.如果( ),则矩阵A 与B 相似(A)A B = (B)()()r A r B = (C)A 与B 有相同的特征多项式 (D)n 阶矩阵A 与B 有相同的特征值,且n 个特征值各不相同 14.A 是n 阶正定矩阵的充分必要条件是( )(A)0A > (B)存在n 阶矩阵C ,使TA C C = (C)负惯性指数为零 (D)各阶顺序主子式均为正数 15. 若矩阵A 与B 相似,则下列结论不成立的为( )A. A B =B. ()()r A r B =C. A 与B 有相同的特征值D. A B = 16. 若A 为设n 阶矩阵,则下列结论正确的是( )A. A 的任n 个特征向量线性无关B. A 的属于不同特征值的特征向量线性无关C. A 的属于不同特征值的特征向量正交D. A 的任n 个特征向量线性相关17. 若n 阶方阵A 与B 的特征值完全相同,且A 与B 都有n 个线性无关的特征向量,则( )A. A B =B. A B ≠ 但0A B -=C. A 相似于BD. A 与B 不一定相似,但A B =18.设矩阵a b A b a -⎛⎫=⎪⎝⎭,其中0a b >>,221a b +=,则A 为( ) A. 正定矩阵 B. 初等矩阵 C. 正交矩阵 D. 以上都不对 19. 下列各矩阵中,不是正交矩阵的为( )(A)⎛⎫ ⎪ ⎪⎝⎭;(B)cos sin sin cos θθθθ-⎛⎫ ⎪⎝⎭;(C )1001⎛⎫ ⎪⎝⎭;(D)11222⎛⎫⎪-⎝⎭ 20. 设矩阵A 与B 相似,则必有( )(A)A 、B 同时可逆或不可逆 ; (B)A 、B 有相同的特征向量 ; (C )A 、B 均与同一个对角矩阵相似 ; (D)矩阵E A λ-与E B λ-相等21. 设三阶方阵A 的特征值分别为 -1,0,2.则下列结论正确的是( )。
线性代数第六版习题及答案线性代数是一门数学学科,研究向量空间、线性变换和线性方程组等内容。
在学习线性代数的过程中,习题是非常重要的一部分,通过解习题可以加深对概念和定理的理解,提高问题解决能力。
本文将介绍《线性代数第六版》中的习题及答案,帮助读者更好地掌握线性代数的知识。
第一章是线性代数的基础,主要介绍了向量、矩阵和线性方程组等内容。
在习题中,读者可以通过计算向量的内积、外积和矩阵的乘法等操作来巩固基本概念。
此外,还有一些关于线性方程组的习题,读者可以通过高斯消元法或矩阵的逆等方法求解。
第二章是线性代数的代数基础,主要介绍了向量空间、线性变换和特征值等内容。
在习题中,读者可以通过验证向量空间的定义和性质来加深对向量空间的理解。
此外,还有一些关于线性变换和特征值的习题,读者可以通过计算线性变换的矩阵表示和求解特征值等方法来解答。
第三章是线性方程组的矩阵表示,主要介绍了矩阵的秩、逆和行列式等内容。
在习题中,读者可以通过计算矩阵的秩和行列式来判断矩阵的性质。
此外,还有一些关于矩阵的逆和特殊矩阵的习题,读者可以通过求解矩阵的逆和判断矩阵的特殊性质等方法来解答。
第四章是向量空间的基础,主要介绍了向量空间的子空间、基和维数等内容。
在习题中,读者可以通过验证子空间的定义和性质来加深对子空间的理解。
此外,还有一些关于基和维数的习题,读者可以通过求解向量组的线性相关性和计算向量空间的维数等方法来解答。
第五章是线性变换和矩阵的相似性,主要介绍了线性变换的矩阵表示和矩阵的相似性等内容。
在习题中,读者可以通过计算线性变换的矩阵表示和判断矩阵的相似性来加深对线性变换和矩阵的理解。
此外,还有一些关于特征值和特征向量的习题,读者可以通过计算特征值和求解特征向量等方法来解答。
第六章是内积空间,主要介绍了内积空间的定义和性质,以及正交向量组和正交投影等内容。
在习题中,读者可以通过计算向量的内积和验证正交性质来加深对内积空间的理解。
1.(单选题) 计算?A.;B.;C.;D.。
参考答案:A2。
(单选题) 行列式?A.3;B.4;C.5;D.6.参考答案:B3。
(单选题) 计算行列式。
A.12;B.18;C.24;D.26.参考答案:B4。
(单选题)计算行列式?A.2;B.3;C.0;D.。
参考答案:C1.(单选题) 计算行列式?A.2;B.3;C.;D.。
参考答案:C2。
(单选题) 计算行列式?A.2;B.3;C.0;D.。
参考答案:D第一章行列式·1。
3 阶行列式的定义1.(单选题)利用行列式定义,计算n阶行列式:=? A.;B.;C.;D..参考答案:C2.(单选题) 计算行列式展开式中,的系数. A.1, 4;B.1,—4;C.-1,4;D.—1,-4.参考答案:B第一章行列式·1。
4 行列式的性质1。
(单选题) 计算行列式=?A.-8;B.—7;C.-6;D.—5。
参考答案:B2.(单选题)计算行列式=?A.130 ; B.140;C.150; D.160.参考答案:D3。
(单选题) 四阶行列式的值等于多少?A.;B.;C.;D.。
参考答案:D4。
(单选题) 行列式=?A.;B.;C.;D..参考答案:B5.(单选题) 已知,则? A.6m;B.—6m;C.12m;D.-12m.参考答案:A一章行列式·1。
5 行列式按行(列)展开1。
(单选题) 设=,则?A.15|A|;B.16|A|;C.17|A|;D.18|A|。
参考答案:D2。
(单选题)设矩阵,求=?A.-1;B.0;C.1;D.2.参考答案:B3.(单选题)计算行列式=?A.—1500;B.0;C.-1800;D.—1200。
参考答案:C第一章行列式·1.6 克莱姆法则1。
(单选题) 齐次线性方程组有非零解,则=?A.—1;B.0;C.1;D.2。
参考答案:C2。
(单选题)齐次线性方程组有非零解的条件是=?A.1或-3;B.1或3;C.-1或3;D.-1或-3。
线性代数第三版习题答案线性代数是数学中的一个重要分支,它研究向量空间及其上的线性变换。
而《线性代数》第三版是一本经典的教材,它系统地介绍了线性代数的基本概念和理论。
然而,对于学习者来说,理解和掌握线性代数的关键在于做好习题。
本文将为读者提供《线性代数》第三版习题的答案,帮助读者更好地巩固知识。
第一章:线性方程组第一章主要介绍线性方程组的解法和矩阵的基本运算。
习题一般涉及到高斯消元法、矩阵的行变换和列变换等内容。
在解答习题时,需要注意对矩阵的运算规则和性质的理解和应用。
第二章:矩阵代数第二章主要介绍矩阵的代数运算和性质。
习题一般涉及到矩阵的加法、减法、乘法和转置等运算。
在解答习题时,需要注意运算的顺序和规则,并且要熟练掌握矩阵的运算性质。
第三章:行列式第三章主要介绍行列式的定义、性质和计算方法。
习题一般涉及到行列式的展开、性质的证明和计算方法的应用。
在解答习题时,需要注意行列式的性质和计算方法的灵活应用。
第四章:向量空间第四章主要介绍向量空间的定义、性质和基本运算。
习题一般涉及到向量空间的子空间、线性相关性和线性无关性等内容。
在解答习题时,需要注意对向量空间的定义和性质的理解和应用。
第五章:线性变换第五章主要介绍线性变换的定义、性质和基本运算。
习题一般涉及到线性变换的核、像、秩和特征值等内容。
在解答习题时,需要注意对线性变换的定义和性质的理解和应用。
第六章:特征值与特征向量第六章主要介绍特征值和特征向量的定义、性质和计算方法。
习题一般涉及到特征值和特征向量的求解、对角化和相似矩阵等内容。
在解答习题时,需要注意特征值和特征向量的计算方法和性质的灵活应用。
第七章:内积空间第七章主要介绍内积空间的定义、性质和基本运算。
习题一般涉及到内积空间的正交性、投影性质和标准正交基等内容。
在解答习题时,需要注意对内积空间的定义和性质的理解和应用。
第八章:正交变换和正交矩阵第八章主要介绍正交变换和正交矩阵的定义、性质和基本运算。
线性代数第五章答案第五章相似矩阵及二次型1. 试用施密特法把下列向量组正交化:(1)=931421111) , ,(321a a a ;解根据施密特正交化方法,==11111a b ,-=-=101],[],[1112122b b b a b a b ,-=--=12131],[],[],[],[222321113133b b b a b b b b a b a b .(2)---=011101110111) , ,(321a a a .解根据施密特正交化方法,-==110111a b ,-=-=123131],[],[1112122b b b a b a b , ?-=--=433151],[],[],[],[222321113133b b b a b b b b a b a b . 2. 下列矩阵是不是正交阵:(1)---121312112131211;解此矩阵的第一个行向量非单位向量, 故不是正交阵.(2)------979494949198949891.解该方阵每一个行向量均是单位向量, 且两两正交, 故为正交阵.3. 设x 为n 维列向量, x T x =1, 令H =E -2xx T , 证明H 是对称的正交阵. 证明因为H T =(E -2xx T )T =E -2(xx T )T =E -2(xx T )T =E -2(x T )T x T =E -2xx T , 所以H 是对称矩阵. 因为H T H =HH =(E -2xx T )(E -2xx T ) =E -2xx T -2xx T +(2xx T )(2xx T ) =E -4xx T +4x (x T x )x T =E -4xx T +4xx T =E , 所以H 是正交矩阵.4. 设A 与B 都是n 阶正交阵, 证明AB 也是正交阵. 证明因为A ,B 是n 阶正交阵, 故A -1=A T , B -1=B T ,(AB )T (AB )=B T A T AB =B -1A -1AB =E ,故AB 也是正交阵.5. 求下列矩阵的特征值和特征向量:(1)----201335212;解 3)1(201335212||+-=-------=-λλλλλE A ,故A 的特征值为λ=-1(三重). 对于特征值λ=-1, 由----=+000110101101325213~E A ,得方程(A +E )x =0的基础解系p 1=(1, 1, -1)T , 向量p 1就是对应于特征值λ=-1的特征值向量.(2)633312321;解 )9)(1(633312321||-+-=---=-λλλλλλλE A ,故A 的特征值为λ1=0, λ2=-1, λ3=9. 对于特征值λ1=0, 由=000110321633312321~A ,得方程A x =0的基础解系p 1=(-1, -1, 1)T , 向量p 1是对应于特征值λ1=0的特征值向量. 对于特征值λ2=-1, 由=+000100322733322322~E A ,得方程(A +E )x =0的基础解系p 2=(-1, 1, 0)T , 向量p 2就是对应于特征值λ2=-1的特征值向量. 对于特征值λ3=9, 由--???? ??---=-00021101113333823289~E A ,得方程(A -9E )x =0的基础解系p 3=(1/2, 1/2, 1)T , 向量p 3就是对应于特征值λ3=9的特征值向量.(3)0001001001001000.(和书后答案不同,以书后为主,但解题步骤可以参考)解22)1()1(001010010100||+-=----=-λλλλλλλE A ,故A 的特征值为λ1=λ2=-1, λ3=λ4=1. 对于特征值λ1=λ2=-1,由=+00000000011010011001011001101001~E A , 得方程(A +E )x =0的基础解系p 1=(1, 0, 0, -1)T , p 2=(0, 1, -1, 0)T , 向量p 1和p 2是对应于特征值λ1=λ2=-1的线性无关特征值向量.对于特征值λ3=λ4=1, 由------=-00000000011010011001011001101001~E A , 得方程(A -E )x =0的基础解系p 3=(1, 0, 0, 1)T , p 4=(0, 1, 1, 0)T , 向量p 3和p 4是对应于特征值λ3=λ4=1的线性无关特征值向量.6. 设A 为n 阶矩阵, 证明A T 与A 的特征值相同. 证明因为|A T -λE |=|(A -λE )T |=|A -λE |T =|A -λE |,所以A T 与A 的特征多项式相同, 从而A T 与A 的特征值相同.7.设n阶矩阵A、B满足R(A)+R(B)<n,证明a与b有公共的特征值,有公共的特征向量.< p="">证明设R(A)=r,R(B)=t,则r+t<n.< p="">若a1,a2,,a n-r是齐次方程组A x=0的基础解系,显然它们是A的对应于特征值λ=0的线性无关的特征向量.类似地,设b1,b2,,b n-t是齐次方程组B x=0的基础解系,则它们是B的对应于特征值λ=0的线性无关的特征向量.由于(n-r)+(n-t)=n+(n-r-t)>n,故a1,a2,,a n-r,b1,b2,,b n-t 必线性相关.于是有不全为0的数k1,k2,,k n-r,l1,l2,,l n-t,使k1a1+k2a2++k n-r a n-r+l1b1+l2b2++l n-r b n-r=0.记γ=k1a1+k2a2++k n-r a n-r=-(l1b1+l2b2++l n-r b n-r),则k1,k2,,k n-r不全为0,否则l1,l2,,l n-t不全为0,而l1b1+l2b2++l n-r b n-r=0,与b1,b2,,b n-t线性无关相矛盾.因此,γ≠0,γ是A的也是B的关于λ=0的特征向量,所以A与B有公共的特征值,有公共的特征向量.8.设A2-3A+2E=O,证明A的特征值只能取1或2.证明设λ是A的任意一个特征值,x是A的对应于λ的特征向量,则(A2-3A+2E)x=λ2x-3λx+2x=(λ2-3λ+2)x=0.因为x≠0,所以λ2-3λ+2=0,即λ是方程λ2-3λ+2=0的根,也就是说λ=1或λ=2.9.设A为正交阵,且|A|=-1,证明λ=-1是A的特征值.证明因为A为正交矩阵,所以A的特征值为-1或1.(需要说明)因为|A|等于所有特征值之积,又|A|=-1,所以必有奇数个特征值为-1,即λ=-1是A的特征值.10.设λ≠0是m阶矩阵A m?n B n?m的特征值,证明λ也是n阶矩阵BA的特征值.证明设x是AB的对应于λ≠0的特征向量,则有(AB)x=λx,于是B(AB)x=B(λx),或BA(B x)=λ(B x),从而λ是BA的特征值,且B x是BA的对应于λ的特征向量.11.已知3阶矩阵A的特征值为1, 2, 3,求|A3-5A2+7A|.解令?(λ)=λ3-5λ2+7λ, 则?(1)=3, ?(2)=2, ?(3)=3是?(A )的特征值, 故 |A 3-5A 2+7A |=|?(A )|=?(1)??(2)??(3)=3?2?3=18.12. 已知3阶矩阵A 的特征值为1, 2, -3, 求|A *+3A +2E |. 解因为|A |=1?2?(-3)=-6≠0, 所以A 可逆, 故 A *=|A |A -1=-6A -1, A *+3A +2E =-6A -1+3A +2E .令?(λ)=-6λ-1+3λ+2, 则?(1)=-1, ?(2)=5, ?(-3)=-5是?(A )的特征值, 故 |A *+3A +2E |=|-6A -1+3A +2E |=|?(A )|=?(1)??(2)??(-3)=-1?5?(-5)=25.13. 设A 、B 都是n 阶矩阵, 且A 可逆, 证明AB 与BA 相似.证明取P =A , 则P -1ABP =A -1ABA =BA ,即AB 与BA 相似.14. 设矩阵=50413102x A 可相似对角化, 求x .解由)6()1(50413102||2---=---=-λλλλλλx E A ,得A 的特征值为λ1=6, λ2=λ3=1.因为A 可相似对角化, 所以对于λ2=λ3=1, 齐次线性方程组(A -E )x =0有两个线性无关的解, 因此R (A -E )=1. 由-???? ??=-00030010140403101)(~x x E A r知当x =3时R (A -E )=1, 即x =3为所求.15. 已知p =(1, 1, -1)T 是矩阵---=2135212b a A 的一个特征向量.(1)求参数a , b 及特征向量p 所对应的特征值;解设λ是特征向量p 所对应的特征值, 则(A -λE )p =0, 即=???? ??-???? ??------0001112135212λλλb a ,解之得λ=-1, a =-3, b =0.(2)问A 能不能相似对角化?并说明理由. 解由3)1(201335212||--=-------=-λλλλλE A ,得A 的特征值为λ1=λ2=λ3=1. 由-???? ??----=-00011010111325211~r b E A知R (A -E )=2, 所以齐次线性方程组(A -E )x =0的基础解系只有一个解向量. 因此A 不能相似对角化.16. 试求一个正交的相似变换矩阵, 将下列对称阵化为对角阵:(1)----020212022;解将所给矩阵记为A . 由λλλλ-------=-20212022E A =(1-λ)(λ-4)(λ+2),得矩阵A 的特征值为λ1=-2, λ2=1, λ3=4. 对于λ1=-2, 解方程(A +2E )x =0, 即0220232024321=----x x x , 得特征向量(1, 2, 2)T , 单位化得T)32 ,32 ,31(1=p .对于λ2=1, 解方程(A -E )x =0, 即0120202021321=-----x x x , 得特征向量(2, 1, -2)T , 单位化得T )32 ,31 ,32(2-=p . 对于λ3=4, 解方程(A -4E )x =0, 即0420232022321=-------x x x , 得特征向量(2, -2, 1)T , 单位化得T )31 ,32 ,32(3-=p . 于是有正交阵P =(p 1, p 2, p 3), 使P -1AP =diag(-2, 1, 4).(2)----542452222. (和书后答案不同,以书后答案为准,解题步骤可以参考)解将所给矩阵记为A . 由λλλλ-------=-542452222E A =-(λ-1)2(λ-10),得矩阵A 的特征值为λ1=λ2=1, λ3=10. 对于λ1=λ2=1, 解方程(A -E )x =0, 即=???? ?????? ??----000442442221321x x x , 得线性无关特征向量(-2, 1, 0)T 和(2, 0, 1)T , 将它们正交化、单位化得T 0) 1, ,2(511-=p , T 5) ,4 ,2(5312=p .对于λ3=10, 解方程(A -10E )x =0, 即=???? ?????? ??-------000542452228321x x x ,得特征向量(-1, -2, 2)T , 单位化得T )2 ,2 ,1(313--=p . 于是有正交阵P =(p 1, p 2, p 3), 使P -1AP =diag(1, 1, 10).17. 设矩阵------=12422421x A 与-=Λy 45相似, 求x , y ; 并求一个正交阵P , 使P -1AP =Λ.解已知相似矩阵有相同的特征值, 显然λ=5, λ=-4, λ=y 是Λ的特征值, 故它们也是A 的特征值. 因为λ=-4是A 的特征值, 所以0)4(9524242425|4|=-=---+---=+x x E A ,解之得x =4.已知相似矩阵的行列式相同, 因为100124242421||-=-------=A , y y2045||-=-=Λ,所以-20y =-100, y =5.对于λ=5, 解方程(A -5E )x =0, 得两个线性无关的特征向量(1, 0, -1)T , (1, -2, 0)T . 将它们正交化、单位化得T )1 ,0 ,1(211-=p , T )1 ,4 ,1(2312-=p .对于λ=-4, 解方程(A +4E )x =0, 得特征向量(2, 1, 2)T , 单位化得T )2 ,1 ,2(313=p .于是有正交矩阵?--=23132212343102313221P , 使P -1AP =Λ. 18. 设3阶方阵A 的特征值为λ1=2, λ2=-2, λ3=1; 对应的特征向量依次为p 1=(0, 1, 1)T , p 2=(1, 1, 1)T , p 3=(1,1, 0)T , 求A .解令P =(p 1, p 2, p 3), 则P -1AP =diag(2, -2, 1)=Λ, A =P ΛP -1.因为---=???? ??=--11011101101111111011P ,所以---???? ??-???? ??=Λ=-1101110111000200020111111101P P A------=244354332. 19. 设3阶对称阵A 的特征值为λ1=1, λ2=-1, λ3=0; 对应λ1、λ2的特征向量依次为p 1=(1, 2, 2)T , p 2=(2, 1, -2)T , 求A .解设=653542321x x x x x x x x x A , 则A p 1=2p 1, A p 2=-2p 2, 即 =++=++=++222222122653542321x x x x x x x x x , ---① =-+-=-+-=-+222122222653542321x x x x x x x x x . ---② 再由特征值的性质, 有x 1+x 4+x 6=λ1+λ2+λ3=0. ---③由①②③解得612131x x --=, 6221x x =, 634132x x -=,642131x x -=, 654132x x +=. 令x 6=0, 得311-=x , x 2=0, 323=x ,314=x , 325=x . 因此-=022********A . 20. 设3阶对称矩阵A 的特征值λ1=6, λ2=3, λ3=3, 与特征值λ1=6对应的特征向量为p 1=(1, 1, 1)T , 求A .解设=653542321x x x x x x x x x A .因为λ1=6对应的特征向量为p 1=(1, 1, 1)T , 所以有=???? ??1116111A , 即?=++=++=++666653542321x x x x x x x x x ---①. λ2=λ3=3是A 的二重特征值, 根据实对称矩阵的性质定理知R (A -3E )=1. 利用①可推出--???? ??---=-331113333653542653542321~x x x x x x x x x x x x x x x E A .因为R (A -3E )=1, 所以x 2=x 4-3=x 5且x 3=x 5=x 6-3, 解之得x 2=x 3=x 5=1, x 1=x 4=x 6=4.因此=411141114A .21. 设a =(a 1, a 2, , a n )T , a 1≠0, A =aa T . (1)证明λ=0是A 的n -1重特征值;证明设λ是A 的任意一个特征值, x 是A 的对应于λ的特征向量, 则有A x =λx ,λ2x =A 2x =aa T aa T x =a T a A x =λa T ax , 于是可得λ2=λa T a , 从而λ=0或λ=a T a .设λ1, λ2, ? ? ?, λn 是A 的所有特征值, 因为A =aa T 的主对角线性上的元素为a 12, a 22, ? ? ?, a n 2, 所以a 12+a 22+ ? ? ? +a n 2=a T a =λ1+λ2+ ? ? ? +λn ,这说明在λ1, λ2, ? ? ?, λn 中有且只有一个等于a T a , 而其余n -1个全为0, 即λ=0是A 的n -1重特征值.(2)求A 的非零特征值及n 个线性无关的特征向量. 解设λ1=a Ta , λ2= ? ? ? =λn =0.因为A a =aa T a =(a T a )a =λ1a , 所以p 1=a 是对应于λ1=a T a 的特征向量.对于λ2= ? ? ? =λn =0, 解方程A x =0, 即aa T x =0. 因为a ≠0, 所以a T x =0, 即a 1x 1+a 2x 2+ ? ? ? +a n x n =0, 其线性无关解为p 2=(-a 2, a 1, 0, , 0)T ,p 3=(-a 3, 0, a 1, , 0)T , ? ? ?,p n =(-a n , 0, 0, , a 1)T .因此n 个线性无关特征向量构成的矩阵为--=112212100), , ,(a a a aa a a nn n p p p . 22. 设-=340430241A , 求A 100. 解由)5)(5)(1(340430241||+---=----=-λλλλλλλE A ,得A 的特征值为λ1=1, λ2=5, λ3=-5.对于λ1=1, 解方程(A -E )x =0, 得特征向量p 1=(1, 0, 0)T . 对于λ1=5, 解方程(A -5E )x =0, 得特征向量p 2=(2, 1, 2)T . 对于λ1=-5, 解方程(A +5E )x =0, 得特征向量p 3=(1, -2, 1)T . 令P =(p 1, p 2, p 3), 则P -1AP =diag(1, 5, -5)=Λ, A =P ΛP -1, A 100=P Λ100P -1. 因为Λ100=diag(1, 5100, 5100),--=???? ??-=--1202105055112021012111P ,所以--???? ?????? ??-=12021050555112021012151100100100A-=1001001005000501501.23. 在某国, 每年有比例为p 的农村居民移居城镇, 有比例为q 的城镇居民移居农村, 假设该国总人口数不变, 且上述人口迁移的规律也不变. 把n 年后农村人口和城镇人口占总人口的比例依次记为x n 和y n (x n +y n =1).(1)求关系式??=??++n n n n y x A y x 11中的矩阵A ;解由题意知x n +1=x n +qy n -px n =(1-p )x n +qy n , y n +1=y n +px n -qy n = px n +(1-q )y n , 可用矩阵表示为--=??? ??++n n n n y x q p q p y x 1111,因此--=q p q p A 11.(2)设目前农村人口与城镇人口相等, 即??? ??=??? ??5.05.000y x , 求?n n y x .解由??=??++n n n n y x A y x 11可知??=??00y x A y x n n n . 由)1)(1(11||q p q p qp E A ++--=----=-λλλλλ,得A 的特征值为λ1=1, λ2=r , 其中r =1-p -q .对于λ1=1, 解方程(A -E )x =0, 得特征向量p 1=(q , p )T . 对于λ1=r ,解方程(A -rE )x =0, 得特征向量p 2=(-1, 1)T . 令??-==11) ,(21p q P p p , 则 P -1AP =diag(1, r )=Λ, A =P ΛP -1, A n =P Λn P -1.于是 11100111-??-??? ????? ??-=p q r p q A n n-??? ????? ??-+=q p r p q q p n 11001111+--++=n n n n qr p pr p qr q pr q q p 1,+--++=??? ??5.05.01n n n n n n qr p pr p qr q pr q q p y x ??-+-++=n n r p q p r q p q q p )(2)(2)(21.24. (1)设??--=3223A , 求?(A )=A 10-5A 9; 解由)5)(1(3223||--=----=-λλλλλE A ,得A 的特征值为λ1=1, λ2=5.对于λ1=1, 解方程(A -E )x =0, 得单位特征向量T )1 ,1(21. 对于λ1=5, 解方程(A -5E )x =0, 得单位特征向量T )1 ,1(21-.于是有正交矩阵?-=111121P , 使得P -1AP =diag(1, 5)=Λ,从而A =P ΛP -1, A k =P Λk P -1. 因此?(A )=P ?(Λ)P -1=P (Λ10-5Λ9)P -1 =P [diag(1, 510)-5diag(1, 59)]P -1 =P diag(-4, 0)P -1-??? ??-??? ??-=1111210004111121-=??? ??----=111122222.(2)设=122221212A , 求?(A )=A 10-6A 9+5A 8.解求得正交矩阵为---=20223123161P , 使得P -1AP =diag(-1, 1, 5)=Λ, A =P ΛP -1. 于是?(A )=P ?(Λ)P -1=P (Λ10-6Λ9+5Λ8)P -1 =P [Λ8(Λ-E )(Λ-5E )]P -1=P diag(1, 1, 58)diag(-2, 0, 4)diag(-6, -4, 0)P -1 =P diag(12, 0,0)P -1---???? ?---=222033*********223123161----=4222112112. 25. 用矩阵记号表示下列二次型: (1) f =x 2+4xy +4y 2+2xz +z 2+4yz ; 解=z y x z y x f 121242121) , ,(.(2) f =x 2+y 2-7z 2-2xy -4xz -4yz ; 解-------=z y x z y x f 722211211) , ,(.(3) f =x 12+x 22+x 32+x 42-2x 1x 2+4x 1x 3-2x 1x 4+6x 2x 3-4x 2x 4.解------=432143211021013223111211) , , ,(x x x x x x x x f .26. 写出下列二次型的矩阵: (1)x x x ?=1312)(T f ;解二次型的矩阵为=1222A .(2)x x x=987654321)(T f .解二次型的矩阵为=975753531A .27. 求一个正交变换将下列二次型化成标准形: (1) f =2x 12+3x 22+3x 33+4x 2x 3;解二次型的矩阵为=320230002A . 由)1)(5)(2(320230002λλλλλλλ---=---=-E A ,得A 的特征值为λ1=2, λ2=5, λ3=1. 当λ1=2时, 解方程(A -2E )x =0, 由=-0001002101202100002~E A ,得特征向量(1, 0, 0)T . 取p 1=(1, 0, 0)T . 当λ2=5时, 解方程(A -5E )x =0, 由-???? ??---=-0001100012202200035~E A ,得特征向量(0, 1, 1)T . 取T )21 ,21,0(2=p .当λ3=1时, 解方程(A -E )x =0, 由=-000110001220220001~E A ,得特征向量(0, -1, 1)T . 取T )21 ,21 ,0(3-=p .于是有正交矩阵T =(p 1, p 2, p 3)和正交变换x =T y , 使f =2y 12+5y 22+y 32.(2) f =x 12+x 22+x 32+x 42+2x 1x 2-2x 1x 4-2x 2x 3+2x 3x 4.解二次型矩阵为----=1101111001111011A . 由2)1)(3)(1(1101111001111011--+=--------=-λλλλλλλλE A ,得A 的特征值为λ1=-1, λ2=3, λ3=λ4=1.当λ1=-1时, 可得单位特征向量T )21 ,21 ,21 ,21(1--=p .当λ2=3时, 可得单位特征向量T )21 ,21 ,21 ,21(2--=p . 当λ3=λ4=1时, 可得线性无关的单位特征向量T )0 ,21 ,0 ,21(3=p , T )21 ,0 ,21 ,0(4=p .于是有正交矩阵T =( p 1, p 2, p 3, p 4)和正交变换x =T y , 使f =-y 12+3y 22+y 32+y 42.28. 求一个正交变换把二次曲面的方程3x 2+5y 2+5z 2+4xy -4xz -10yz =1化成标准方程.解二次型的矩阵为----=552552223A .由)11)(2(552552223||---=-------=-λλλλλλλE A , 得A 的特征值为λ1=2,λ2=11, λ3=0, .对于λ1=2, 解方程(A -2E )x =0, 得特征向量(4, -1, 1)T , 单位化得)231 ,231 ,234(1-=p .对于λ2=11, 解方程(A -11E )x =0, 得特征向量(1, 2, -2)T , 单位化得)32 ,32 ,31(2-=p . 对于λ3=0, 解方程A x =0, 得特征向量(0, 1, 1)T , 单位化得)21 ,21,0(3=p .于是有正交矩阵P =(p 1, p 2, p 3), 使P -1AP =diag(2, 11, 0), 从而有正交变换--=???? ??w v u z y x 21322312132231031234,使原二次方程变为标准方程2u 2+11v 2=1.29. 明: 二次型f =x T A x 在||x ||=1时的最大值为矩阵A 的最大特征值. 证明 A 为实对称矩阵, 则有一正交矩阵T , 使得TAT -1=diag(λ1, λ2, ? ? ?, λn )=Λ成立, 其中λ1, λ2, ? ? ?, λn 为A 的特征值, 不妨设λ1最大. 作正交变换y =T x , 即x =T T y , 注意到T -1=T T , 有 f =x T A x =y T TAT T y =y T Λy =λ1y 12+λ2y 22+ ? ? ? +λn y n 2. 因为y =T x 正交变换, 所以当||x ||=1时, 有||y ||=||x ||=1, 即y 12+y 22+ ? ? ? +y n 2=1.因此f =λ1y 12+λ2y 22+ ? ? ? +λn y n 2≤λ1,又当y 1=1, y 2=y 3=? ? ?=y n =0时f =λ1, 所以f max =λ1.30. 用配方法化下列二次形成规范形, 并写出所用变换的矩阵. (1) f (x 1, x 2, x 3)=x 12+3x 22+5x 32+2x 1x 2-4x 1x 3;解 f (x 1, x 2, x 3)=x 12+3x 22+5x 32+2x 1x 2-4x 1x 3 =(x 1+x 2-2x 3)2+4x 2x 3+2x 22+x 32 =(x 1+x 2-2x 3)2-2x 22+(2x 2+x 3)2.令 ??+==-+=323223211222x x y x y x x x y , 即+-==+-=323223211221225y y x y x y y y x , 二次型化为规范形f =y 12-y 22+y 32,所用的变换矩阵为--=12002102251C .(2) f (x 1, x 2, x 3)=x 12+2x 32+2x 1x 3+2x 2x 3; 解 f (x 1, x 2, x 3)=x 12+2x 32+2x 1x 3+2x 2x 3 =(x 1+x 3)2+x 32+2x 2x 3; =(x 1+x 3)2-x 22+(x 2+x 3)2.令 +==+=32322311x x y x y x x y , 即+-==-+=3 23223211y y x y x y y y x ,二次型化为规范形f =y 12-y 22+y 32,所用的变换矩阵为--=110010111C .(3) f (x 1, x 2, x 3)=2x 12+x 22+4x 32+2x 1x 2-2x 2x 3. 解 f (x 1, x 2, x 3)=2x 12+x 22+4x 32+2x 1x 2-2x 2x 3.</n.<></n,证明a与b有公共的特征值,有公共的特征向量.<>。