线性代数第三章3-5
- 格式:pdf
- 大小:230.98 KB
- 文档页数:11
第三章 几何空间一、 向量的运算1. 向量的数量积(1) 在仿射坐标系123{;,,}O e e e 中给定两个向量123(,,)x x x α=,123(y ,,)y y β=,则112323(,,)y x x x A y y αβ⎛⎫ ⎪⋅= ⎪ ⎪⎝⎭,其中111213212223313233e e e e e e A e e e e e e e e e e e e ⋅⋅⋅⎛⎫ ⎪=⋅⋅⋅ ⎪ ⎪⋅⋅⋅⎝⎭. (2) 在直角坐标系{;,,}O i j k 中给定两个向量123(,,)x x x α=,123(y ,,)y y β=,则131233213(,,)i i i y x x x I y x y y αβ=⎛⎫ ⎪⋅== ⎪ ⎪⎝⎭∑ ∙ =0αβαβ⊥⇔⋅2. 向量的向量积在直角坐标系{;,,}O i j k 中给定两个向量123(,,)x x x α=,123(y ,,)y y β=,则123123i jk x x x y y y αβ⨯=. ∙ //=0αβαβ⇔⨯3. 向量的混合积在直角坐标系{;,,}O i j k 中给定两个向量123(,,)x x x α=,123(y ,,)y y β=,123(,,)z z z γ=则123123123(,,)x x x y y y z z z αβγ=. ∙ (,,)0αβγαβγ⇔=,,共面例:(1)设=αβγδ⨯⨯, =αγβδ⨯⨯,证明αδ-,βγ-共线.(2)设0αββγγα⨯+⨯+⨯=,证明αβγ,,共面.(3)证明()()βγααγβγ⋅-⋅⊥.证明:(1)因为()()αδβγ-⨯-=αβαγδβδγ⨯-⨯-⨯+⨯=αβγδαγ⨯-⨯-⨯+0βδ⨯=,所以αδ-,βγ-共线.(2)因为()αβγ=,,()αβγ⨯⋅=()βγγ-⨯⋅()γαγ-⨯⋅=()βγγ-,,()γαγ-,,0=,所以αβγ,,共面.(3) 因为(()βγα⋅())αγβγ-⋅⋅=()βγ⋅()αγ⋅()αγ-⋅()βγ⋅0=,所以()βγα⋅()αγβ-⋅γ⊥.二、 位置关系的判断1. 两个向量的共线;三个向量的共面.2. 两条直线异面,共面(相交、平行、重合)3. 两个平面相交、平行、重合4. 直线与平面相交、平行、直线在平面上.三、距离和垂线(在右手直角坐标系中讨论)1. 点到直线的距离,垂线方程垂线方程:设直线过已知点0000,,)P x y z (方向向量为0()X Y Z υ=,,,求过111(,,)P x y z 点直线的垂线方程。
第三章 矩阵的初等变换与线性方程组1. 把下列矩阵化为行最简形矩阵:(1)⎪⎪⎭⎫ ⎝⎛--340313021201; 解 ⎪⎪⎭⎫ ⎝⎛--340313021201(下一步: r 2+(-2)r 1, r 3+(-3)r 1. ) ~⎪⎪⎭⎫⎝⎛---020*********(下一步: r 2÷(-1), r 3÷(-2). ) ~⎪⎪⎭⎫⎝⎛--010*********(下一步: r 3-r 2. ) ~⎪⎪⎭⎫⎝⎛--300031001201(下一步: r 3÷3. ) ~⎪⎪⎭⎫⎝⎛--100031001201(下一步: r 2+3r 3. ) ~⎪⎪⎭⎫⎝⎛-100001001201(下一步: r 1+(-2)r 2, r 1+r 3. ) ~⎪⎪⎭⎫⎝⎛100001000001. (2)⎪⎪⎭⎫⎝⎛----174034301320;解 ⎪⎪⎭⎫⎝⎛----174034301320(下一步: r 2⨯2+(-3)r 1, r 3+(-2)r 1. ) ~⎪⎪⎭⎫ ⎝⎛---310031001320(下一步: r 3+r 2, r 1+3r 2. ) ~⎪⎪⎭⎫⎝⎛0000310010020(下一步: r 1÷2. ) ~⎪⎪⎭⎫⎝⎛000031005010. (3)⎪⎪⎪⎭⎫ ⎝⎛---------12433023221453334311; 解 ⎪⎪⎪⎭⎫ ⎝⎛---------12433023221453334311(下一步: r 2-3r 1, r 3-2r 1, r 4-3r 1. ) ~⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311(下一步: r 2÷(-4), r 3÷(-3) , r 4÷(-5). ) ~⎪⎪⎪⎭⎫ ⎝⎛-----22100221002210034311(下一步: r 1-3r 2, r 3-r 2, r 4-r 2. ) ~⎪⎪⎪⎭⎫ ⎝⎛---00000000002210032011.(4)⎪⎪⎪⎭⎫ ⎝⎛------34732038234202173132. 解 ⎪⎪⎪⎭⎫ ⎝⎛------34732038234202173132(下一步: r 1-2r 2, r 3-3r 2, r 4-2r 2. ) ~⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110(下一步: r 2+2r 1, r 3-8r 1, r 4-7r 1. ) ~⎪⎪⎪⎭⎫ ⎝⎛--41000410002020111110(下一步: r 1↔r 2, r 2⨯(-1), r 4-r 3. ) ~⎪⎪⎪⎭⎫ ⎝⎛----00000410001111020201(下一步: r 2+r 3. ) ~⎪⎪⎪⎭⎫ ⎝⎛--00000410003011020201.2. 设⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A , 求A . 解 ⎪⎪⎭⎫⎝⎛100001010是初等矩阵E (1, 2), 其逆矩阵就是其本身.⎪⎪⎭⎫⎝⎛100010101是初等矩阵E (1, 2(1)), 其逆矩阵是 E (1, 2(-1)) ⎪⎪⎭⎫⎝⎛-=100010101. ⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=100010101987654321100001010A ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=287221254100010101987321654.3. 试利用矩阵的初等变换, 求下列方阵的逆矩阵:(1)⎪⎪⎭⎫⎝⎛323513123; 解 ⎪⎪⎭⎫ ⎝⎛100010001323513123~⎪⎪⎭⎫ ⎝⎛---101011001200410123 ~⎪⎪⎭⎫ ⎝⎛----1012002110102/102/3023~⎪⎪⎭⎫ ⎝⎛----2/102/11002110102/922/7003 ~⎪⎪⎭⎫ ⎝⎛----2/102/11002110102/33/26/7001 故逆矩阵为⎪⎪⎪⎪⎭⎫ ⎝⎛----21021211233267.(2)⎪⎪⎪⎭⎫ ⎝⎛-----1210232112201023.解 ⎪⎪⎪⎭⎫ ⎝⎛-----10000100001000011210232112201023 ~⎪⎪⎪⎭⎫ ⎝⎛----00100301100001001220594012102321 ~⎪⎪⎪⎭⎫ ⎝⎛--------20104301100001001200110012102321 ~⎪⎪⎪⎭⎫ ⎝⎛-------106124301100001001000110012102321 ~⎪⎪⎪⎭⎫ ⎝⎛----------10612631110`1022111000010000100021 ~⎪⎪⎪⎭⎫ ⎝⎛-------106126311101042111000010000100001 故逆矩阵为⎪⎪⎪⎭⎫ ⎝⎛-------10612631110104211.4. (1)设⎪⎪⎭⎫ ⎝⎛--=113122214A , ⎪⎪⎭⎫ ⎝⎛--=132231B , 求X 使AX =B ; 解 因为⎪⎪⎭⎫ ⎝⎛----=132231 113122214) ,(B A ⎪⎪⎭⎫ ⎝⎛--412315210 100010001 ~r , 所以 ⎪⎪⎭⎫ ⎝⎛--==-4123152101B A X . (2)设⎪⎪⎭⎫ ⎝⎛---=433312120A , ⎪⎭⎫ ⎝⎛-=132321B , 求X 使XA =B . 解 考虑A T X T =B T . 因为⎪⎪⎭⎫ ⎝⎛----=134313*********) ,(TT B A ⎪⎪⎭⎫⎝⎛---411007101042001 ~r , 所以 ⎪⎪⎭⎫ ⎝⎛---==-417142)(1T T T B A X , 从而 ⎪⎭⎫ ⎝⎛---==-4741121BA X . 5. 设⎪⎪⎭⎫⎝⎛---=101110011A , AX =2X +A , 求X . 解 原方程化为(A -2E )X =A . 因为⎪⎪⎭⎫⎝⎛---------=-101101110110011011) ,2(A E A ⎪⎪⎭⎫⎝⎛---011100101010110001~,所以 ⎪⎪⎭⎫ ⎝⎛---=-=-011101110)2(1A E A X . 6. 在秩是r 的矩阵中,有没有等于0的r -1阶子式? 有没有等于0的r 阶子式?解 在秩是r 的矩阵中, 可能存在等于0的r -1阶子式, 也可能存在等于0的r 阶子式.例如, ⎪⎪⎭⎫⎝⎛=010*********A , R (A )=3. 0000是等于0的2阶子式, 010001000是等于0的3阶子式.7. 从矩阵A 中划去一行得到矩阵B , 问A , B 的秩的关系怎样?解 R (A )≥R (B ).这是因为B 的非零子式必是A 的非零子式, 故A 的秩不会小于B 的秩.8. 求作一个秩是4的方阵, 它的两个行向量是(1, 0, 1, 0, 0), (1, -1, 0, 0, 0).解 用已知向量容易构成一个有4个非零行的5阶下三角矩阵:⎪⎪⎪⎪⎭⎫ ⎝⎛-0000001000001010001100001, 此矩阵的秩为4, 其第2行和第3行是已知向量.9. 求下列矩阵的秩, 并求一个最高阶非零子式:(1)⎪⎪⎭⎫⎝⎛---443112112013; 解 ⎪⎪⎭⎫⎝⎛---443112112013(下一步: r 1↔r 2. )~⎪⎪⎭⎫⎝⎛---443120131211(下一步: r 2-3r 1, r 3-r 1. ) ~⎪⎪⎭⎫⎝⎛----564056401211(下一步: r 3-r 2. ) ~⎪⎭⎫ ⎝⎛---000056401211, 矩阵的2秩为, 41113-=-是一个最高阶非零子式. (2)⎪⎪⎭⎫ ⎝⎛-------815073*********; 解 ⎪⎪⎭⎫ ⎝⎛-------815073*********(下一步: r 1-r 2, r 2-2r 1, r 3-7r 1. ) ~⎪⎭⎫ ⎝⎛------15273321059117014431(下一步: r 3-3r 2. ) ~⎪⎭⎫ ⎝⎛----0000059117014431, 矩阵的秩是2,71223-=-是一个最高阶非零子式.(3)⎪⎪⎪⎭⎫ ⎝⎛---02301085235703273812.解 ⎪⎪⎪⎭⎫ ⎝⎛---02301085235703273812(下一步: r 1-2r 4, r 2-2r 4, r 3-3r 4. ) ~⎪⎪⎪⎭⎫ ⎝⎛------02301024205363071210(下一步: r 2+3r 1, r 3+2r 1. ) ~⎪⎪⎪⎭⎫ ⎝⎛-0230114000016000071210(下一步: r 2÷16r 4, r 3-16r 2. ) ~⎪⎪⎪⎭⎫ ⎝⎛-02301000001000071210 ~⎪⎪⎪⎭⎫ ⎝⎛-00000100007121002301, 矩阵的秩为3, 070023085570≠=-是一个最高阶非零子式.10. 设A 、B 都是m ⨯n 矩阵, 证明A ~B 的充分必要条件是R (A )=R (B ). 证明 根据定理3, 必要性是成立的.充分性. 设R (A )=R (B ), 则A 与B 的标准形是相同的. 设A 与B 的标准形为D , 则有A ~D , D ~B .由等价关系的传递性, 有A ~B .11. 设⎪⎪⎭⎫⎝⎛----=32321321k k k A , 问k 为何值, 可使 (1)R (A )=1; (2)R (A )=2; (3)R (A )=3.解 ⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ⎪⎪⎭⎫ ⎝⎛+-----)2)(1(0011011 ~k k k k k r . (1)当k =1时, R (A )=1;(2)当k =-2且k ≠1时, R (A )=2;(3)当k ≠1且k ≠-2时, R (A )=3.12. 求解下列齐次线性方程组:(1)⎪⎩⎪⎨⎧=+++=-++=-++02220202432143214321x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎭⎫ ⎝⎛--212211121211~⎪⎪⎭⎫ ⎝⎛---3/410013100101, 于是 ⎪⎪⎩⎪⎪⎨⎧==-==4443424134334x x x x x x x x , 故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛1343344321k x x x x (k 为任意常数). (2)⎪⎩⎪⎨⎧=-++=--+=-++05105036302432143214321x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎭⎫ ⎝⎛----5110531631121~⎪⎪⎭⎫⎝⎛-000001001021, 于是 ⎪⎩⎪⎨⎧===+-=4432242102x x x x x x x x , 故方程组的解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛10010012214321k k x x x x (k 1, k 2为任意常数). (3)⎪⎩⎪⎨⎧=-+-=+-+=-++=+-+07420634072305324321432143214321x x x x x x x x x x x x x x x x ; 解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎪⎭⎫ ⎝⎛-----7421631472135132~⎪⎪⎪⎭⎫ ⎝⎛1000010000100001,于是 ⎪⎩⎪⎨⎧====00004321x x x x , 故方程组的解为 ⎪⎩⎪⎨⎧====00004321x x x x .(4)⎪⎩⎪⎨⎧=++-=+-+=-+-=+-+03270161311402332075434321432143214321x x x x x x x x x x x x x x x x . 解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎪⎭⎫ ⎝⎛-----3127161311423327543~⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--000000001720171910171317301,于是 ⎪⎪⎩⎪⎪⎨⎧==-=-=4433432431172017191713173x x x x x x x x x x , 故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛1017201713011719173214321k k x x x x (k 1, k 2为任意常数).13. 求解下列非齐次线性方程组:(1)⎪⎩⎪⎨⎧=+=+-=-+83111021322421321321x x x x x x x x ;解 对增广矩阵B 进行初等行变换, 有B =⎪⎪⎭⎫ ⎝⎛--80311102132124~⎪⎭⎫ ⎝⎛----600034111008331, 于是R (A )=2, 而R (B )=3, 故方程组无解.(2)⎪⎩⎪⎨⎧-=+-=-+-=+-=++69413283542432z y x z y x z y x z y x ; 解 对增广矩阵B 进行初等行变换, 有B =⎪⎪⎪⎭⎫ ⎝⎛-----69141328354214132~⎪⎪⎪⎭⎫ ⎝⎛--0000000021101201, 于是 ⎪⎩⎪⎨⎧=+=--=zz z y z x 212, 即 ⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛021112k z y x (k 为任意常数). (3)⎪⎩⎪⎨⎧=--+=+-+=+-+12222412w z y x w z y x w z y x ; 解 对增广矩阵B 进行初等行变换, 有B =⎪⎪⎭⎫ ⎝⎛----111122122411112~⎪⎪⎭⎫ ⎝⎛-00000010002/102/12/11, 于是 ⎪⎪⎩⎪⎪⎨⎧===++-=0212121w z z y y z y x ,即 ⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛00021010210012121k k w z y x (k 1, k 2为任意常数).(4)⎪⎩⎪⎨⎧-=+-+=-+-=+-+2534432312w z y x w z y x w z y x .解 对增广矩阵B 进行初等行变换, 有B =⎪⎪⎭⎫ ⎝⎛-----253414312311112~⎪⎭⎫ ⎝⎛----000007/57/97/5107/67/17/101, 于是 ⎪⎪⎩⎪⎪⎨⎧==--=++=w w z z w z y w z x 757975767171, 即 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛00757610797101757121k k w z y x (k 1, k 2为任意常数).14. 写出一个以⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-=1042013221c c x 为通解的齐次线性方程组.解 根据已知, 可得⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛10420132214321c c x x x x , 与此等价地可以写成⎪⎩⎪⎨⎧==+-=-=2413212211432c x c x c c x c c x , 或 ⎩⎨⎧+-=-=432431432x x x x x x , 或 ⎩⎨⎧=-+=+-04302432431x x x x x x , 这就是一个满足题目要求的齐次线性方程组.15. λ取何值时, 非齐次线性方程组⎪⎩⎪⎨⎧=++=++=++23213213211λλλλλx x x x x x x x x .(1)有唯一解; (2)无解; (3)有无穷多个解?解 ⎪⎪⎭⎫ ⎝⎛=21111111λλλλλB ⎪⎭⎫ ⎝⎛+-+----22)1)(1()2)(1(00)1(11011 ~λλλλλλλλλλr . (1)要使方程组有唯一解, 必须R (A )=3. 因此当λ≠1且λ≠-2时方程组有唯一解.(2)要使方程组无解, 必须R (A )<R (B ), 故(1-λ)(2+λ)=0, (1-λ)(λ+1)2≠0.因此λ=-2时, 方程组无解.(3)要使方程组有有无穷多个解, 必须R (A )=R (B )<3, 故(1-λ)(2+λ)=0, (1-λ)(λ+1)2=0.因此当λ=1时, 方程组有无穷多个解.16. 非齐次线性方程组⎪⎩⎪⎨⎧=-+=+--=++-23213213212222λλx x x x x x x x x当λ取何值时有解?并求出它的解.解 ⎪⎪⎭⎫ ⎝⎛----=22111212112λλB ~⎪⎪⎪⎭⎫ ⎝⎛+-----)2)(1(000)1(32110121λλλλ. 要使方程组有解, 必须(1-λ)(λ+2)=0, 即λ=1, λ=-2.当λ=1时,⎪⎪⎭⎫ ⎝⎛----=121111212112B ~⎪⎪⎭⎫ ⎝⎛--000001101101, 方程组解为⎩⎨⎧=+=32311x x x x 或⎪⎩⎪⎨⎧==+=3332311x x x x x x , 即 ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛001111321k x x x (k 为任意常数). 当λ=-2时,⎪⎪⎭⎫ ⎝⎛-----=421121212112B ~⎪⎪⎭⎫ ⎝⎛--000021102101, 方程组解为⎩⎨⎧+=+=223231x x x x 或⎪⎩⎪⎨⎧=+=+=33323122x x x x x x , 即 ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛022111321k x x x (k 为任意常数).17. 设⎪⎩⎪⎨⎧--=-+--=--+=-+-1)5(4224)5(2122)2(321321321λλλλx x x x x x x x x .问λ为何值时, 此方程组有唯一解、无解或有无穷多解? 并在有无穷多解时求解.解 B =⎪⎪⎭⎫ ⎝⎛---------154224521222λλλλ ~⎪⎪⎭⎫ ⎝⎛---------)4)(1()10)(1(0011102452λλλλλλλλ. 要使方程组有唯一解, 必须R (A )=R (B )=3, 即必须(1-λ)(10-λ)≠0,所以当λ≠1且λ≠10时, 方程组有唯一解.要使方程组无解, 必须R (A )<R (B ), 即必须(1-λ)(10-λ)=0且(1-λ)(4-λ)≠0,所以当λ=10时, 方程组无解.要使方程组有无穷多解, 必须R (A )=R (B )<3, 即必须(1-λ)(10-λ)=0且(1-λ)(4-λ)=0,所以当λ=1时, 方程组有无穷多解.此时,增广矩阵为B ~⎪⎪⎭⎫ ⎝⎛-000000001221, 方程组的解为⎪⎩⎪⎨⎧==++-=3322321 1x x x x x x x ,或 ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛00110201221321k k x x x (k 1, k 2为任意常数).18. 证明R (A )=1的充分必要条件是存在非零列向量a 及非零行向量b T , 使A =ab T . 证明 必要性. 由R (A )=1知A 的标准形为)0 , ,0 ,1(001000000001⋅⋅⋅⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅=⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅, 即存在可逆矩阵P 和Q , 使)0 , ,0 ,1(001⋅⋅⋅⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅=PAQ , 或11)0 , ,0 ,1(001--⋅⋅⋅⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅=Q P A . 令⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅=-0011P a , b T =(1, 0, ⋅⋅⋅, 0)Q -1, 则a 是非零列向量, b T 是非零行向量, 且A =ab T . 充分性. 因为a 与b T 是都是非零向量, 所以A 是非零矩阵, 从而R (A )≥1. 因为1≤R (A )=R (ab T )≤min{R (a ), R (b T )}=min{1, 1}=1,所以R (A )=1.19. 设A 为m ⨯n 矩阵, 证明(1)方程AX =E m 有解的充分必要条件是R (A )=m ;证明 由定理7, 方程AX =E m 有解的充分必要条件是R (A )=R (A , E m ),而| E m |是矩阵(A , E m )的最高阶非零子式, 故R (A )=R (A , E m )=m . 因此, 方程AX =E m 有解的充分必要条件是R (A )=m .(2)方程YA =E n 有解的充分必要条件是R (A )=n .证明 注意, 方程YA =E n 有解的充分必要条件是A T Y T =E n 有解. 由(1) A T Y T =E n 有解的充分必要条件是R (A T )=n . 因此,方程YA =E n 有解的充分必要条件是R (A )=R (A T )=n .20. 设A 为m ⨯n 矩阵, 证明: 若AX =AY , 且R (A )=n , 则X =Y .证明 由AX =AY , 得A (X -Y )=O . 因为R (A )=n , 由定理9, 方程A (X -Y )=O 只有零解, 即X -Y =O , 也就是X =Y .。
第三章 课后习题及解答将1,2题中的向量α表示成4321,,,αααα的线性组合:1.()()()()().1,1,1,1,1,1,1,1,1,1,1,1,,1,1,11,,1,12,1T4T3T21T--=--=--===αααααT2.()()()()().1,1,1,0,0,0,1,1,1,3,1,2,1,0,1,1,1,0,0,04321--=====ααααα解:设存在4321,,,k k k k 使得44332211αααααk k k k +++=,整理得14321=+++k k k k24321=--+k k k k14321=-+-k k k k14321=+--k k k k解得.41,41,41,454321-=-===k k k k 所以432141414145ααααα--+=. 设存在 4321,,,k k k k 使得44332211αααααk k k k +++=,整理得02321=++k k k ,04321=+++k k k k ,0342=-k k ,1421=-+k k k .解得 .0,1,0,14321=-===k k k k 所以31ααα-=.判断3,4题中的向量组的线性相关性: 3. ()()().6,3,1,5,2,0,1,1,1T3T2T1===ααα4. ()().3,0,7,142,1,3,0,)4,2,1,1(T3T2T 1==-=βββ,解:3.设存在 321,,k k k 使得0332211=++αααk k k ,即⎪⎩⎪⎨⎧=++=++=+065032032132131k k k k k k k k ,由0651321101=,解得321,,k k k 不全为零, 故321,,ααα线性相关.4.设存在 321,,k k k 使得0332211=++βββk k k ,即⎪⎪⎩⎪⎪⎨⎧=++=++=+-=+0142407203033213212131k k k k k k k k k k 可解得321,,k k k 不全为零,故321,,βββ线性相关. 5.论述单个向量)(n a a a ,,,21 =α线性相关和线性无关的条件.解:设存在k 使得0=αk ,若0≠α,要使0=αk ,当且仅当0=k ,故,单个向量线性无关的充要条件是0≠α;相反,单个向量)(n a a a ,,,21 =α线性相关的充要条件是0=α.6.证明:如果向量组线性无关,则向量组的任一部分组都线性无关. 证:设向量组n n αααα,,,,121- 线性无关,利用反证法,假设存在该向量组的某一部分组)(,,,21n i r i i i r ≤ααα 线性相关,则向量组n n αααα,,,,121- 线性相关,与向量组n n αααα,,,,121- 线性无关矛盾, 所以该命题成立.7.证明:若21,αα线性无关,则2121,αααα-+也线性无关.证:方法一,设存在21,k k 使得0)()(212211=-++ααααk k ,整理得,0)()(221121=-++ααk k k k ,因为21,αα线性无关,所以⎩⎨⎧=-=+02121k k k k ,可解得021==k k ,故2121,αααα-+线性无关.方法二,因为=-+)(2121,αααα⎪⎪⎭⎫⎝⎛-1111,21)(αα, 又因为021111≠-=-,且21,αα线性无关,所以向量组2121,αααα-+的秩为2,故2121,αααα-+线性无关.8.设有两个向量组s ααα,,,21 和,,,,21s βββ 其中,13121111⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=k a a a a α,3222122⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=ks a a a a α ,,321⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=ks s s s s a a a a αs βββ,,,21 是分别在s ααα,,,21 的k 个分量后任意添加m 个分量mj j j b b b ,,,21),,2,1(s j =所组成的m k +维向量,证明:(1) 若s ααα,,,21 线性无关,则s βββ,,,21 线性无关; (2) 若s βββ,,,21 线性相关,则s ααα,,,21 线性相关.证:证法1,(1)设()s A ααα,,,21 =,()s B βββ,,,21 =,因为s ααα,,,21 线性无关,所以齐次线性方程0=AX 只有零解,即,)(s A r = 且s B r =)(,s βββ,,,21 线性无关.证法2,因为s ααα,,,21 线性无关,所以齐次线性方程0=AX 只有零解,再增加方程的个数,得0=BX ,该方程也只有零解,所以s βββ,,,21 线性无关.(2) 利用反证法可证得,即假设s ααα,,,21 线性无关,再由(1)得s βββ,,,21 线性无关,与s βββ,,,21 线性相关矛盾.9. 证明:133221,,αααααα+++线性无关的充分必要条件是321,,ααα线性无关.证:方法1,(133221,,αααααα+++)=(321,,ααα)⎪⎪⎪⎭⎫ ⎝⎛110011101因为321,,ααα线性无关,且02110011101≠=,可得133221,,αααααα+++的秩为3所以133221,,αααααα+++线性无关.线性无关;反之也成立.方法2,充分性,设321,,ααα线性无关,证明133221,,αααααα+++线性无关.设存在321,,k k k 使得0)()()(133322211=+++++ααααααk k k ,整理得,0)()()(332221131=+++++αααk k k k k k因为321,,ααα线性无关,所以⎪⎩⎪⎨⎧=+=+=+000322131k k k k k k ,可解得0321===k k k ,所以133221,,αααααα+++线性无关. 必要性,(方法1)设133221,,αααααα+++线性无关,证明321,,ααα线性无关,假设321,,ααα线性相关,则321,,ααα中至少有一向量可由其余两个向量线性表示,不妨设321,ααα可由线性表示,则向量组133221,,αααααα+++可由32,αα线性表示,且23>,所以133221,,αααααα+++线性相关,与133221,,αααααα+++线性无关矛盾,故321,,ααα线性无关.方法2,令133322211,,ααβααβααβ+=+=+=,设存在321,,k k k 使得0332211=++αααk k k ,由133322211,,ααβααβααβ+=+=+=得)()()(32133212321121,21,21βββαβββαβββα---=-+=+-=,代入 0332211=++αααk k k 得,0212121321332123211=++-+-+++-)()()(βββββββββk k k ,即 0)()()(332123211321=+-+++-+-+βββk k k k k k k k k因为321,,βββ线性无关,所以⎪⎩⎪⎨⎧=+-=++-=-+000321321321k k k k k k k k k可解得0321===k k k ,所以321,,ααα线性无关.10.下列说法是否正确?如正确,证明之;如不正确,举反例:(1)m ααα,,,21 )(2>m 线性无关的充分必要条件是任意两个向量线性无关; 解:不正确,必要条件成立,充分条件不成立,例:2维向量空间不在一条直线的3个向量,虽然两两线性无关,但这3个向量线性相关。
线性代数第三章总结概述线性代数是数学的一个重要分支,探究了向量空间和线性变换的性质与运算规律。
本文主要总结线性代数第三章的内容,包括矩阵的基本知识、矩阵运算以及逆矩阵的求解方法等。
矩阵的基本知识矩阵是线性代数中最重要的概念之一,它是由数字构成的一个矩形数组。
矩阵可以表示为一个m行n列的二维矩形,用符号A表示。
在矩阵中,每个数字称为一个元素,用aij表示矩阵A中第i行第j列的元素。
矩阵的大小由行数m和列数n决定,记作m×n。
矩阵可以进行加法和数乘运算。
对于两个矩阵A和B,只有当它们的行数和列数相同时,才能进行加法运算 A + B。
数乘运算是指将一个矩阵的每个元素乘以一个实数。
矩阵运算矩阵运算是线性代数中的重要内容,常见的矩阵运算包括矩阵的乘法、转置和求逆等。
矩阵乘法矩阵乘法是指对于两个矩阵A和B,当A的列数等于B的行数时,可以进行矩阵乘法运算。
乘法运算的结果是一个新的矩阵C,它的行数等于A的行数,列数等于B的列数。
矩阵乘法的计算规则是将A的第i行与B的第j列对应元素相乘,然后将乘积相加。
矩阵乘法可以用以下公式表示:Cij = ∑(AikBkj)其中∑ 表示对k的求和。
矩阵转置矩阵的转置是指将矩阵的行变为列,列变为行。
对于一个m×n的矩阵A,其转置矩阵记作AT,转置矩阵的行数等于A的列数,列数等于A的行数。
转置矩阵的运算规则是将A的第i行变为AT的第i列,将A的第j列变为AT的第j行。
逆矩阵的求解逆矩阵是指对于一个n×n的矩阵A,存在一个矩阵B,满足A乘以B等于单位矩阵I,同时B乘以A也等于单位矩阵I。
这个矩阵B被称为A的逆矩阵,记作A-1。
逆矩阵的求解需要满足以下条件: - 矩阵A的行数等于列数,即A是一个方阵。
- 矩阵A的行列式不等于0,即|A| ≠ 0。
如果一个矩阵满足上述条件,则可以使用伴随矩阵法求解逆矩阵。
具体的求解步骤如下: 1. 计算A的伴随矩阵C,其中Cij = (-1)i+j × Mij,Mij是A的代数余子式。