等比数列及其求和公式
- 格式:docx
- 大小:36.96 KB
- 文档页数:3
等比数列的基本性质与求和公式等比数列是数学中常见的一种数列,它的前后两项的比值始终保持不变。
等比数列具有许多重要的性质和求和公式,本文将对这些性质和公式进行详细介绍与解析。
一、等比数列的基本性质等比数列的基本性质包括公比、通项公式以及前n项和的公式。
1. 公比公比是等比数列中相邻两项的比值,通常用字母q表示。
对于等比数列{a1, a2, a3, ...},公比q = a2/a1 = a3/a2 = ...。
公比q可以是正数、负数或零。
2. 通项公式等比数列的通项公式是指根据数列的首项和公比,可以得到任意项的数值表达式。
对于等比数列{a1, a2, a3, ...},通项公式为an = a1 *q^(n-1),其中n表示项数,an表示第n项。
通项公式可以帮助我们方便地计算等比数列中任意一项的数值。
3. 前n项和公式等比数列的前n项和公式是指根据数列的首项、公比和项数,可以得到前n项之和的表达式。
前n项和公式为Sn = a1 * (1 - q^n) / (1 - q),其中Sn表示前n项和。
这个公式的推导涉及到对等比数列求和的方法,下文我们将介绍这个求和方法的详细步骤。
二、等比数列的求和公式的推导为了推导等比数列的求和公式,我们可以从以下几个步骤入手:Step 1: 假设等比数列的首项为a1,公比为q。
Step 2: 将等比数列的前n项和用Sn表示。
Step 3: 将等比数列的首项a1与公比q对齐。
Step 4: 将等比数列展开为a1, a1*q, a1*q^2, ..., a1*q^(n-1)。
Step 5: 将等比数列反向展开为a1*q^(n-1), a1*q^(n-2), ..., a1*q^2,a1*q, a1。
Step 6: 将两个等比数列按位相减,并观察相减结果的特点。
Step 7: 将相减结果与等比数列前n项和Sn相加,并观察相加结果的特点。
Step 8: 确定等比数列的前n项和公式Sn。
等比数列及其前n 项和1.等比数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,那么这个数列叫做等比数列.数学语言表达式:a na n -1=q (n ≥2,q 为非零常数). (2)如果三个数a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项,其中G =±ab . 2.等比数列的通项公式及前n 项和公式(1)若等比数列{a n }的首项为a 1,公比是q ,则其通项公式为a n =a 1q n -1;通项公式的推广:a n =a m qn -m.(2)等比数列的前n 项和公式:当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n ) 1-q =a 1-a n q1-q.3.等比数列的性质已知{a n }是等比数列,S n 是数列{a n }的前n 项和.(1)若k +l =m +n (k ,l ,m ,n ∈N *),则有a k ·a l =a m ·a n . (2)相隔等距离的项组成的数列仍是等比数列,即a k ,a k +m ,a k +2m ,…仍是等比数列,公比为q m .(3)当q ≠-1,或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n ,…仍成等比数列,其公比为q n. 【微点提醒】1.若数列{a n }为等比数列,则数列{c ·a n }(c ≠0),{|a n |},{a 2n },⎩⎨⎧⎭⎬⎫1a n 也是等比数列.2.由a n +1=qa n ,q ≠0,并不能立即断言{a n }为等比数列,还要验证a 1≠0.3.在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形而导致解题失误. 【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”) (1)等比数列公比q 是一个常数,它可以是任意实数.( ) (2)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .( )(3)数列{a n }的通项公式是a n =a n,则其前n 项和为S n =a (1-a n )1-a.( )(4)数列{a n }为等比数列,则S 4,S 8-S 4,S 12-S 8成等比数列.( )2.(必修5P53A1(2)改编)已知{a n }是等比数列,a 2=2,a 5=14,则公比q 等于( )A.-12B.-2C.2D.123.(必修5P54A8改编)在9与243中间插入两个数,使它们同这两个数成等比数列,则这两个数为________.4.(2019·天津和平区质检)已知等比数列{a n }满足a 1=1,a 3·a 5=4(a 4-1),则a 7的值为( ) A.2 B.4C.92D.65.(2018·北京卷)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为( )A.32f B.322f C.1225f D.1227f6.(2015·全国Ⅰ卷)在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =________.考点一 等比数列基本量的运算【例1】 (1)(2017·全国Ⅲ卷)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=________. (2)等比数列{a n }的各项均为实数,其前n 项和为S n ,已知S 3=74,S 6=634,则a 8=________.【训练1】 (1)等比数列{a n }中各项均为正数,S n 是其前n 项和,且满足2S 3=8a 1+3a 2,a 4=16,则S 4=( ) A.9B.15C.18D.30(2)(2017·北京卷)若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2=________.考点二 等比数列的判定与证明【例2】 已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.【训练2】 (2019·广东省级名校联考)已知S n 是数列{a n }的前n 项和,且满足S n -2a n =n -4. (1)证明:{S n -n +2}为等比数列; (2)求数列{S n }的前n 项和T n .考点三 等比数列的性质及应用【例3】 (1)等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10=( ) A.12B.10C.8D.2+log 35(2)已知数列{a n }是等比数列,S n 为其前n 项和,若a 1+a 2+a 3=4,a 4+a 5+a 6=8,则S 12=( ) A.40 B.60 C.32 D.50【训练3】 (1)(2019·菏泽质检)在等比数列{a n }中,若a 3,a 7是方程x 2+4x +2=0的两根,则a 5的值是( ) A.-2B.- 2C.± 2D. 2(2)(一题多解)设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6=________.类型1 等差数列两个性质的应用在等差数列{a n }中,S n 为{a n }的前n 项和: (1)S 2n -1=(2n -1)a n ;(2)设{a n }的项数为2n ,公差为d ,则S 偶-S 奇=nd .【例1】 (1)等差数列{a n }的前n 项和为S n ,已知a m -1+a m +1-a 2m =0,S 2m -1=38,则m =________. (2)一个等差数列的前12项和为354,前12项中偶数项的和与奇数项的和的比为32∶27,则数列的公差d=________.类型2 等比数列两个性质的应用在等比数列{a n }中,(1)若m +n =p +q (m ,n ,p ,q ∈N *),则a n ·a m =a p ·a q ;(2)当公比q ≠-1时,S n ,S 2n -S n ,S 3n -S 2n ,…成等比数列(n ∈N *).【例2】 (1)等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( ) A.6B.5C.4D.3(2)设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A.18 B.-18C.578D.558类型3 等比数列前n 项和S n 相关结论的活用(1)项的个数的“奇偶”性质:等比数列{a n }中,公比为q . 若共有2n 项,则S 偶∶S 奇=q .(2)分段求和:S n +m =S n +q nS m (q 为公比).【例3】 (1)已知等比数列{a n }共有2n 项,其和为-240,且奇数项的和比偶数项的和大80,则公比q =________.(2)已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为________.【基础巩固题组】(建议用时:40分钟) 一、选择题1.公比不为1的等比数列{a n }满足a 5a 6+a 4a 7=18,若a 1a m =9,则m 的值为( ) A.8 B.9 C.10 D.112.已知各项均为正数的等比数列{a n }中,a 4与a 14的等比中项为22,则2a 7+a 11的最小值为( ) A.16 B.8 C.2 2 D.43.(2019·上海崇明区模拟)已知公比q ≠1的等比数列{a n }的前n 项和为S n ,a 1=1,S 3=3a 3,则S 5=( )A.1B.5C.3148 D.11164.(2017·全国Ⅱ卷)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( ) A.1盏 B.3盏 C.5盏 D.9盏5.(2019·深圳一模)已知等比数列{a n }的前n 项和S n =a ·3n -1+b ,则ab=( )A.-3B.-1C.1D.3二、填空题6.等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 13+a 14a 14+a 15=________.7.已知数列{a n }的前n 项和为S n ,且满足a n +S n =1(n ∈N *),则通项a n =________.8.(2018·南京模拟)已知数列{a n }中,a 1=2,且a 2n +1a n=4(a n +1-a n )(n ∈N *),则其前9项的和S 9=________.三、解答题9.(2018·全国Ⅲ卷)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m .10.已知数列{a n }中,点(a n ,a n +1)在直线y =x +2上,且首项a 1=1. (1)求数列{a n }的通项公式;(2)数列{a n }的前n 项和为S n ,等比数列{b n }中,b 1=a 1,b 2=a 2,数列{b n }的前n 项和为T n ,请写出适合条件T n ≤S n 的所有n 的值.【能力提升题组】(建议用时:20分钟)11.已知等比数列{a n }的各项均为正数且公比大于1,前n 项积为T n ,且a 2a 4=a 3,则使得T 1>1的n 的最小值为( ) A.4 B.5 C.6 D.712.数列{a n }中,已知对任意n ∈N *,a 1+a 2+a 3+…+a n =3n -1,则a 21+a 22+a 23+…+a 2n 等于( ) A.(3n -1)2 B.12(9n -1) C.9n-1 D.14(3n -1)13.(2019·华大新高考联盟质检)设等比数列{a n }的前n 项和为S n ,若a 3a 11=2a 25,且S 4+S 12=λS 8,则λ=______.14.已知数列{a n }满足a 1=1,a n +1=2a n +λ(λ为常数). (1)试探究数列{a n +λ}是不是等比数列,并求a n ; (2)当λ=1时,求数列{n (a n +λ)}的前n 项和T n .15.(创新思维)已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=e a 1+a 2+a3.若a 1>1,则下列选项可能成立的是( )A.a 1<a 2<a 3<a 4B.a 1=a 2=a 3=a 4C.a 1>a 2>a 3>a 4D.以上结论都有可能成立答 案1.判断下列结论正误(在括号内打“√”或“×”) (1)等比数列公比q 是一个常数,它可以是任意实数.( ) (2)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .( )(3)数列{a n }的通项公式是a n =a n,则其前n 项和为S n =a (1-a n )1-a.( )(4)数列{a n }为等比数列,则S 4,S 8-S 4,S 12-S 8成等比数列.( ) 【答案】 (1)× (2)× (3)× (4)× 【解析】 (1)在等比数列中,q ≠0.(2)若a =0,b =0,c =0满足b 2=ac ,但a ,b ,c 不成等比数列. (3)当a =1时,S n =na .(4)若a 1=1,q =-1,则S 4=0,S 8-S 4=0,S 12-S 8=0,不成等比数列. 【教材衍化】2.(必修5P53A1(2)改编)已知{a n }是等比数列,a 2=2,a 5=14,则公比q 等于( )A.-12B.-2C.2D.12【答案】 D【解析】 由题意知q 3=a 5a 2=18,即q =12.3.(必修5P54A8改编)在9与243中间插入两个数,使它们同这两个数成等比数列,则这两个数为________. 【答案】 27,81【解析】 设该数列的公比为q ,由题意知, 243=9×q 3,q 3=27,∴q =3.∴插入的两个数分别为9×3=27,27×3=81. 【真题体验】4.(2019·天津和平区质检)已知等比数列{a n }满足a 1=1,a 3·a 5=4(a 4-1),则a 7的值为( ) A.2B.4C.92D.6【答案】 B【解析】 根据等比数列的性质得a 3a 5=a 24,∴a 24=4(a 4-1),即(a 4-2)2=0,解得a 4=2. 又∵a 1=1,a 1a 7=a 24=4,∴a 7=4.5.(2018·北京卷)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为( )A.32f B.322f C.1225f D.1227f【答案】 D【解析】 由题意知十三个单音的频率依次构成首项为f ,公比为122的等比数列,设此数列为{a n },则a 8=1227f ,即第八个单音的频率为1227f .6.(2015·全国Ⅰ卷)在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =________. 【答案】 6【解析】 由a n +1=2a n ,知数列{a n }是以a 1=2为首项,公比q =2的等比数列,由S n =2(1-2n)1-2=126,解得n =6. 【考点聚焦】考点一 等比数列基本量的运算【例1】 (1)(2017·全国Ⅲ卷)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=________. (2)等比数列{a n }的各项均为实数,其前n 项和为S n ,已知S 3=74,S 6=634,则a 8=________.【答案】 (1)-8 (2)32【解析】 (1)由{a n }为等比数列,设公比为q . 由⎩⎪⎨⎪⎧a 1+a 2=-1,a 1-a 3=-3,得⎩⎪⎨⎪⎧a 1+a 1q =-1,①a 1-a 1q 2=-3,②显然q ≠1,a 1≠0,②①得1-q =3,即q =-2,代入①式可得a 1=1, 所以a 4=a 1q 3=1×(-2)3=-8.(2)设数列{a n }首项为a 1,公比为q (q ≠1),则⎩⎪⎨⎪⎧S 3=a 1(1-q 3)1-q =74,S 6=a 1(1-q 6)1-q =634,解得⎩⎪⎨⎪⎧a 1=14,q =2, 所以a 8=a 1q 7=14×27=32.【规律方法】 1.等比数列基本量的运算是等比数列中的一类基本问题,等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)便可迎刃而解.2.等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =a 1(1-q n )1-q =a 1-a n q1-q.【训练1】 (1)等比数列{a n }中各项均为正数,S n 是其前n 项和,且满足2S 3=8a 1+3a 2,a 4=16,则S 4=( ) A.9B.15C.18D.30(2)(2017·北京卷)若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2=________. 【答案】 (1)D (2)1【解析】 (1)设数列{a n }的公比为q (q >0),则⎩⎪⎨⎪⎧2S 3=2(a 1+a 1q +a 1q 2)=8a 1+3a 1q ,a 1q 3=16, 解得q =2,a 1=2,所以S 4=2(1-24)1-2=30.(2){a n }为等差数列,a 1=-1,a 4=8=a 1+3d =-1+3d ,∴d =3,∴a 2=a 1+d =-1+3=2.{b n }为等比数列,b 1=-1,b 4=8=b 1·q 3=-q 3,∴q =-2,∴b 2=b 1·q =2,则a 2b 2=22=1.考点二 等比数列的判定与证明【例2】 已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.【答案】见解析 【解析】(1)证明 由题意得a 1=S 1=1+λa 1,故λ≠1,a 1=11-λ,a 1≠0. 由S n =1+λa n ,S n +1=1+λa n +1, 得a n +1=λa n +1-λa n ,即a n +1(λ-1)=λa n , 由a 1≠0,λ≠0得a n ≠0,所以a n +1a n =λλ-1. 因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝ ⎛⎭⎪⎫λλ-1n -1.(2)解 由(1)得S n =1-⎝ ⎛⎭⎪⎫λλ-1n. 由S 5=3132,得1-⎝ ⎛⎭⎪⎫λλ-15=3132,即⎝ ⎛⎭⎪⎫λλ-15=132.解得λ=-1.【规律方法】 1.证明一个数列为等比数列常用定义法与等比中项法,其他方法只用于选择题、填空题中的判定;若证明某数列不是等比数列,则只要证明存在连续三项不成等比数列即可. 2.在利用递推关系判定等比数列时,要注意对n =1的情形进行验证.【训练2】 (2019·广东省级名校联考)已知S n 是数列{a n }的前n 项和,且满足S n -2a n =n -4. (1)证明:{S n -n +2}为等比数列; (2)求数列{S n }的前n 项和T n . 【答案】见解析【解析】(1)证明 因为a n =S n -S n -1(n ≥2), 所以S n -2(S n -S n -1)=n -4(n ≥2), 则S n =2S n -1-n +4(n ≥2),所以S n -n +2=2[S n -1-(n -1)+2](n ≥2), 又由题意知a 1-2a 1=-3, 所以a 1=3,则S 1-1+2=4,所以{S n -n +2}是首项为4,公比为2等比数列. (2)解 由(1)知S n -n +2=2n +1,所以S n =2n +1+n -2,于是T n =(22+23+…+2n +1)+(1+2+…+n )-2n=4(1-2n)1-2+n (n +1)2-2n =2n +3+n 2-3n -82.考点三 等比数列的性质及应用【例3】 (1)等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10=( ) A.12B.10C.8D.2+log 35(2)已知数列{a n }是等比数列,S n 为其前n 项和,若a 1+a 2+a 3=4,a 4+a 5+a 6=8,则S 12=( ) A.40B.60C.32D.50【答案】 (1)B (2)B【解析】 (1)由等比数列的性质知a 5a 6=a 4a 7,又a 5a 6+a 4a 7=18,所以a 5a 6=9,则原式=log 3(a 1a 2…a 10)=log 3(a 5a 6)5=10.(2)数列S 3,S 6-S 3,S 9-S 6,S 12-S 9是等比数列,即数列4,8,S 9-S 6,S 12-S 9是首项为4,公比为2的等比数列,则S 9-S 6=a 7+a 8+a 9=16,S 12-S 9=a 10+a 11+a 12=32,因此S 12=4+8+16+32=60. 【规律方法】1.在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m +n =p +q ,则a m ·a n =a p ·a q ”,可以减少运算量,提高解题速度.2.在应用相应性质解题时,要注意性质成立的前提条件,有时需要进行适当变形.此外,解题时注意设而不求思想的运用.【训练3】 (1)(2019·菏泽质检)在等比数列{a n }中,若a 3,a 7是方程x 2+4x +2=0的两根,则a 5的值是( ) A.-2B.- 2C.± 2D. 2(2)(一题多解)设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6=________. 【答案】 (1)B (2)73【解析】 (1)根据根与系数之间的关系得a 3+a 7=-4,a 3a 7=2,由a 3+a 7=-4<0,a 3a 7>0,所以a 3<0,a 7<0,即a 5<0, 由a 3a 7=a 25,得a 5=-a 3a 7=- 2.(2)法一 由等比数列的性质S 3,S 6-S 3,S 9-S 6仍成等比数列,由已知得S 6=3S 3, ∴S 6-S 3S 3=S 9-S 6S 6-S 3,即S 9-S 6=4S 3,S 9=7S 3,∴S 9S 6=73. 法二 因为{a n }为等比数列,由S 6S 3=3,设S 6=3a ,S 3=a (a ≠0),所以S 3,S 6-S 3,S 9-S 6为等比数列,即a ,2a ,S 9-S 6成等比数列,所以S 9-S 6=4a ,解得S 9=7a ,所以S 9S 6=7a 3a =73.【反思与感悟】1.等比数列基本量的运算是等比数列中的一类基本问题,数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)便可迎刃而解.2.(1)方程思想:如求等比数列中的基本量.(2)分类讨论思想:如求和时要分q =1和q ≠1两种情况讨论,判断单调性时对a 1与q 分类讨论. 【易错防范】1.特别注意q =1时,S n =na 1这一特殊情况.2.S n ,S 2n -S n ,S 3n -S 2n 未必成等比数列(例如:当公比q =-1且n 为偶数时,S n ,S 2n -S n ,S 3n -S 2n 不成等比数列;当q ≠-1或q =-1时且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n 成等比数列),但等式(S 2n -S n )2=S n ·(S 3n -S 2n )总成立. 【核心素养提升】【数学运算】——等差(比)数列性质的应用1.数学运算是指在明析运算对象的基础上,依据运算法则解决数学问题的素养.本系列数学运算主要表现为:理解数列问题,掌握数列运算法则,探究运算思路,求得运算结果.通过对数列性质的学习,发展数学运算能力,促进数学思维发展.2.数学抽象是指能够在熟悉的情境中直接抽象出数学概念和规则,能够在特例的基础上归纳形成简单的数学命题,能够在解决相似的问题中感悟数学的通性通法,体会其中的数学思想. 类型1 等差数列两个性质的应用 在等差数列{a n }中,S n 为{a n }的前n 项和: (1)S 2n -1=(2n -1)a n ;(2)设{a n }的项数为2n ,公差为d ,则S 偶-S 奇=nd .【例1】 (1)等差数列{a n }的前n 项和为S n ,已知a m -1+a m +1-a 2m =0,S 2m -1=38,则m =________. (2)一个等差数列的前12项和为354,前12项中偶数项的和与奇数项的和的比为32∶27,则数列的公差d =________.【答案】 (1)10 (2)5【解析】 (1)由a m -1+a m +1-a 2m =0得2a m -a 2m =0,解得a m =0或2. 又S 2m -1=(2m -1)(a 1+a 2m -1)2=(2m -1)a m =38,显然可得a m ≠0,所以a m =2.代入上式可得2m -1=19,解得m =10.(2)设等差数列的前12项中奇数项和为S 奇,偶数项的和为S 偶,等差数列的公差为d .由已知条件,得⎩⎪⎨⎪⎧S 奇+S 偶=354,S 偶∶S 奇=32∶27,解得⎩⎪⎨⎪⎧S 偶=192,S 奇=162. 又S 偶-S 奇=6d ,所以d =192-1626=5.类型2 等比数列两个性质的应用在等比数列{a n }中,(1)若m +n =p +q (m ,n ,p ,q ∈N *),则a n ·a m =a p ·a q ;(2)当公比q ≠-1时,S n ,S 2n -S n ,S 3n -S 2n ,…成等比数列(n ∈N *).【例2】 (1)等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( ) A.6B.5C.4D.3(2)设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A.18B.-18C.578D.558【答案】 (1)C (2)A【解析】 (1)数列{lg a n }的前8项和S 8=lg a 1+lg a 2+…+lg a 8=lg(a 1·a 2·…·a 8)=lg(a 1·a 8)4=lg(a 4·a 5)4=lg(2×5)4=4.(2)因为a 7+a 8+a 9=S 9-S 6,且S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以8(S 9-S 6)=1,即S 9-S 6=18,所以a 7+a 8+a 9=18.类型3 等比数列前n 项和S n 相关结论的活用(1)项的个数的“奇偶”性质:等比数列{a n }中,公比为q . 若共有2n 项,则S 偶∶S 奇=q .(2)分段求和:S n +m =S n +q nS m (q 为公比).【例3】 (1)已知等比数列{a n }共有2n 项,其和为-240,且奇数项的和比偶数项的和大80,则公比q =________.(2)已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为________.【答案】 (1)2 (2)3116【解析】 (1)由题意,得⎩⎪⎨⎪⎧S 奇+S 偶=-240,S 奇-S 偶=80,解得⎩⎪⎨⎪⎧S 奇=-80,S 偶=-160,所以q =S 偶S 奇=-160-80=2. (2)设等比数列{a n }的公比q ,易知S 3≠0. 则S 6=S 3+S 3q 3=9S 3,所以q 3=8,q =2.所以数列⎩⎨⎧⎭⎬⎫1a n 是首项为1,公比为12的等比数列,其前5项和为1-⎝ ⎛⎭⎪⎫1251-12=3116. 【分层训练】【基础巩固题组】(建议用时:40分钟) 一、选择题1.公比不为1的等比数列{a n }满足a 5a 6+a 4a 7=18,若a 1a m =9,则m 的值为( ) A.8 B.9 C.10 D.11【答案】 C【解析】 由题意得,2a 5a 6=18,a 5a 6=9,∴a 1a m =a 5a 6=9, ∴m =10.2.已知各项均为正数的等比数列{a n }中,a 4与a 14的等比中项为22,则2a 7+a 11的最小值为( ) A.16 B.8 C.2 2 D.4【答案】 B【解析】 因为a 4与a 14的等比中项为22, 所以a 4·a 14=a 7·a 11=(22)2=8, 所以2a 7+a 11≥22a 7a 11=22×8=8, 所以2a 7+a 11的最小值为8.3.(2019·上海崇明区模拟)已知公比q ≠1的等比数列{a n }的前n 项和为S n ,a 1=1,S 3=3a 3,则S 5=( ) A.1 B.5C.3148D.1116【答案】 D【解析】 由题意得a 1(1-q 3)1-q =3a 1q 2,解得q =-12或q =1(舍),所以S 5=a 1(1-q 5)1-q =1-⎝ ⎛⎭⎪⎫-1251-⎝ ⎛⎭⎪⎫-12=1116.4.(2017·全国Ⅱ卷)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( ) A.1盏 B.3盏C.5盏D.9盏【答案】 B【解析】 设塔的顶层的灯数为a 1,七层塔的总灯数为S 7,公比为q ,则依题意S 7=381,公比q =2.∴a 1(1-27)1-2=381,解得a 1=3.5.(2019·深圳一模)已知等比数列{a n }的前n 项和S n =a ·3n -1+b ,则a b=( )A.-3B.-1C.1D.3【答案】 A【解析】 ∵等比数列{a n }的前n 项和S n =a ·3n -1+b ,∴a 1=S 1=a +b ,a 2=S 2-S 1=3a +b -a -b =2a ,a 3=S 3-S 2=9a +b -3a -b =6a ,∵等比数列{a n }中,a 22=a 1a 3, ∴(2a )2=(a +b )×6a ,解得ab=-3. 二、填空题6.等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 13+a 14a 14+a 15=________.【答案】2-1【解析】 设{a n }的公比为q .由题意得a 1+2a 2=a 3,则a 1(1+2q )=a 1q 2,q 2-2q -1=0,所以q =1+2(舍负). 则a 13+a 14a 14+a 15=1q=2-1.7.已知数列{a n }的前n 项和为S n ,且满足a n +S n =1(n ∈N *),则通项a n =________. 【答案】12n 【解析】 ∵a n +S n =1,① ∴a 1=12,a n -1+S n -1=1(n ≥2),②由①-②,得a n -a n -1+a n =0,即a n a n -1=12(n ≥2), ∴数列{a n }是首项为12,公比为12的等比数列,则a n =12×⎝ ⎛⎭⎪⎫12n -1=12n . 8.(2018·南京模拟)已知数列{a n }中,a 1=2,且a 2n +1a n=4(a n +1-a n )(n ∈N *),则其前9项的和S 9=________.【答案】 1 022【解析】 由a 2n +1a n=4(a n +1-a n )得,a 2n +1-4a n +1a n +4a 2n =0,∴(a n +1-2a n )2=0,a n +1a n =2,∴数列{a n }是首项a 1=2,公比为2的等比数列,∴S 9=2(1-29)1-2=1 022.三、解答题9.(2018·全国Ⅲ卷)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m . 【答案】见解析【解析】(1)设{a n }的公比为q ,由题设得a n =qn -1.由已知得q 4=4q 2,解得q =0(舍去),q =-2或q =2. 故a n =(-2)n -1或a n =2n -1.(2)若a n =(-2)n -1,则S n =1-(-2)n3.由S m =63得(-2)m=-188,此方程没有正整数解. 若a n =2n -1,则S n =2n-1.由S m =63得2m=64,解得m =6. 综上,m =6.10.已知数列{a n }中,点(a n ,a n +1)在直线y =x +2上,且首项a 1=1. (1)求数列{a n }的通项公式;(2)数列{a n }的前n 项和为S n ,等比数列{b n }中,b 1=a 1,b 2=a 2,数列{b n }的前n 项和为T n ,请写出适合条件T n ≤S n 的所有n 的值.【答案】见解析【解析】(1)根据已知a 1=1,a n +1=a n +2, 即a n +1-a n =2=d ,所以数列{a n }是一个首项为1,公差为2的等差数列,a n =a 1+(n -1)d =2n -1.(2)数列{a n }的前n 项和S n =n 2.等比数列{b n }中,b 1=a 1=1,b 2=a 2=3, 所以q =3,b n =3n -1.数列{b n }的前n 项和T n =1-3n1-3=3n-12.T n ≤S n 即3n-12≤n 2,又n ∈N *,所以n =1或2.【能力提升题组】(建议用时:20分钟)11.已知等比数列{a n }的各项均为正数且公比大于1,前n 项积为T n ,且a 2a 4=a 3,则使得T 1>1的n 的最小值为( ) A.4 B.5 C.6 D.7【答案】 C【解析】 ∵{a n }是各项均为正数的等比数列,且a 2a 4=a 3,∴a 23=a 3,∴a 3=1.又∵q >1,∴a 1<a 2<1,a n >1(n >3),∴T n >T n -1(n ≥4,n ∈N *),T 1<1,T 2=a 1·a 2<1,T 3=a 1·a 2·a 3=a 1a 2=T 2<1,T 4=a 1a 2a 3a 4=a 1<1,T 5=a 1·a 2·a 3·a 4·a 5=a 53=1,T 6=T 5·a 6=a 6>1,故n 的最小值为6.12.数列{a n }中,已知对任意n ∈N *,a 1+a 2+a 3+…+a n =3n -1,则a 21+a 22+a 23+…+a 2n 等于( ) A.(3n -1)2B.12(9n-1) C.9n-1D.14(3n-1) 【答案】 B【解析】 ∵a 1+a 2+…+a n =3n-1,n ∈N *,n ≥2时,a 1+a 2+…+a n -1=3n -1-1,∴当n ≥2时,a n =3n-3n -1=2·3n -1,又n =1时,a 1=2适合上式,∴a n =2·3n -1,故数列{a 2n }是首项为4,公比为9的等比数列. 因此a 21+a 22+…+a 2n =4(1-9n)1-9=12(9n-1).13.(2019·华大新高考联盟质检)设等比数列{a n }的前n 项和为S n ,若a 3a 11=2a 25,且S 4+S 12=λS 8,则λ=______. 【答案】 83【解析】 ∵{a n }是等比数列,a 3a 11=2a 25, ∴a 27=2a 25,∴q 4=2,∵S 4+S 12=λS 8,∴a 1(1-q 4)1-q +a 1(1-q 12)1-q =λa 1(1-q 8)1-q,∴1-q 4+1-q 12=λ(1-q 8), 将q 4=2代入计算可得λ=83.14.已知数列{a n }满足a 1=1,a n +1=2a n +λ(λ为常数). (1)试探究数列{a n +λ}是不是等比数列,并求a n ; (2)当λ=1时,求数列{n (a n +λ)}的前n 项和T n . 【答案】见解析【解析】(1)因为a n +1=2a n +λ,所以a n +1+λ=2(a n +λ). 又a 1=1,所以当λ=-1时,a 1+λ=0,数列{a n +λ}不是等比数列, 此时a n +λ=a n -1=0,即a n =1;当λ≠-1时,a 1+λ≠0,所以a n +λ≠0,所以数列{a n +λ}是以1+λ为首项,2为公比的等比数列, 此时a n +λ=(1+λ)2n -1,即a n =(1+λ)2n -1-λ.(2)由(1)知a n =2n-1,所以n (a n +1)=n ×2n,T n =2+2×22+3×23+…+n ×2n ,①2T n =22+2×23+3×24+…+n ×2n +1,②①-②得:-T n =2+22+23+ (2)-n ×2n +1=2(1-2n)1-2-n ×2n +1=2n +1-2-n ×2n +1=(1-n )2n +1-2.所以T n =(n -1)2n +1+2.【新高考创新预测】15.(创新思维)已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=e a 1+a 2+a3.若a 1>1,则下列选项可能成立的是( ) A.a 1<a 2<a 3<a 4 B.a 1=a 2=a 3=a 4 C.a 1>a 2>a 3>a 4D.以上结论都有可能成立【答案】 A【解析】 构造函数f (x )=e x -x -1,f ′(x )=e x -1=0,x =0,得极小值f (0)=0,故f (x )≥0,即e x≥x +1恒成立(x =0取等号).a 1+a 2+a 3+a 4=e a 1+a 2+a3>a 1+a 2+a 3+1⇒a 4>1⇒q >0,且a 2>1,a 3>1,若公比q∈(0,1],则4a1≥a1+a2+a3+a4=e a1+a2+a3>e2+a1>7e a1>7a1+7>4a1,产生矛盾. 所以公比q>1,故a1<a2<a3<a4.故选A.。
等比数列求和两个公式在数学的世界里,等比数列是一个重要的概念,而其中的求和公式更是解决相关问题的有力工具。
今天,咱们就来好好聊聊等比数列求和的两个公式。
咱们先来说说什么是等比数列。
等比数列就是从第二项起,每一项与它的前一项的比值等于同一个常数的数列。
比如说,2,4,8,16,32……这就是一个等比数列,每一项和前一项的比值都是 2 。
等比数列的通项公式为\(a_{n} = a_{1}q^{n-1}\),其中\(a_{1}\)是首项,\(q\)是公比,\(n\)是项数。
接下来,咱们重点讲讲等比数列求和的两个公式。
第一个公式是:当\(q ≠ 1\)时,等比数列的前\(n\)项和\(S_{n} =\frac{a_{1}(1 q^{n})}{1 q}\)。
咱们来推导一下这个公式。
假设等比数列的首项是\(a_{1}\),公比是\(q\),前\(n\)项和是\(S_{n}\),那么\(S_{n} = a_{1} + a_{1}q + a_{1}q^{2} +\cdots + a_{1}q^{n-1}\)①。
在①式两边同时乘以\(q\),得到\(qS_{n} = a_{1}q +a_{1}q^{2} + a_{1}q^{3} +\cdots + a_{1}q^{n}\)②。
然后用①式减去②式,可得:\\begin{align}S_{n} qS_{n}&=a_{1} a_{1}q^{n}\\S_{n}(1 q)&=a_{1}(1 q^{n})\\S_{n}&=\frac{a_{1}(1 q^{n})}{1 q}\end{align}\咱们通过这个推导过程,就得到了等比数列求和的第一个公式。
再来说说第二个公式,当\(q = 1\)时,等比数列就变成了常数列,前\(n\)项和\(S_{n} = na_{1}\)。
这个就很好理解啦,因为每一项都相等,都是\(a_{1}\),所以前\(n\)项和就是\(n\)个\(a_{1}\)相加,即\(na_{1}\)。
等比数列的求和与通项等比数列是指一个数列中,从第二个数开始,每个数都是前一个数与一个固定的非零常数的乘积。
等比数列可以写成如下形式:a,ar,ar²,ar³,…其中,a为首项,r为公比。
求和公式要求等比数列的前n项和Sn,可以利用以下求和公式:Sn = a(1 - rⁿ) / (1 - r)通项公式要求等比数列的第n项an,可以利用以下通项公式:an = a * rⁿ⁻¹例如,对于等比数列1,2,4,8,16,…首项a = 1,公比r = 2。
我们可以通过求和公式来计算前n项和,也可以通过通项公式来计算第n项。
实例分析假设我们要求等比数列1,2,4,8,16的前4项和。
首先,根据通项公式可得:a₄ = a * r⁴⁻¹= 1 * 2³= 8然后,根据求和公式可得:S₄ = a(1 - rⁿ) / (1 - r)= 1(1 - 2⁴) / (1 - 2)= 1(1 - 16) / (1 - 2)= -15 / -1= 15因此,等比数列1,2,4,8,16的前4项和为15。
进一步推广除了给定首项和公比,我们还可以根据已知等比数列的前两项求解该等比数列。
举个例子,假设我们已知等比数列的首项为2,第二项为6,求解该等比数列的通项公式和前n项和。
首先,根据已知条件可得:a = 2,a₂ = 6由此,我们可以求解公比r:a₂ = a * r¹6 = 2 * rr = 3接下来,我们可以求解通项公式an:an = a * rⁿ⁻¹= 2 * 3ⁿ⁻¹最后,我们可以求解前n项和Sn:Sn = a(1 - rⁿ) / (1 - r)= 2(1 - 3ⁿ) / (1 - 3)通过以上计算,我们可以得到所求等比数列的通项公式和前n项和。
总结等比数列是数学中常见且重要的概念。
求等比数列的前n项和和通项是数学中常见的问题,可以通过求和公式和通项公式来解决。
等比数列求和的公式等比数列是指一个数列中每一项与它前一项的比值都相等的数列。
比如:1,2,4,8,16,……就是一个等比数列,因为第n项与第n-1项之间的比值都是2。
等比数列求和的公式可以帮助我们快速计算出这样一个数列中前n项的和。
公式所需的变量设等比数列的首项为a1,公比为q,第n项为an。
公式等比数列的求和公式为:S= a1(1 - q^n) / (1 - q)其中 S 表示等比数列的前n项和。
根据这个公式,我们可以算出等比数列中前n项的和。
需要注意的是,若q=1,则公式失去意义,此时等比数列退化为等差数列,应当使用等差数列的求和公式。
下面,我们列举一些例子,以帮助大家更好地理解这个公式。
例子1:1,2,4,8,16,……是一个公比为2的等比数列。
求该数列的前5项和。
首先,根据公式,我们有:S= a1(1 - q^n) / (1 - q)代入等比数列的值:S= 1(1 - 2^5) / (1 - 2)计算得:S= 31因此,该等比数列前5项的和为31。
例子2:2,-4,8,-16,32,……是一个公比为-2的等比数列。
求该数列的前6项和。
同样使用求和公式:S= a1(1 - q^n) / (1 - q)代入等比数列的值:S= 2(1 - (-2)^6) / (1 - (-2))计算得:S= 126因此,该等比数列前6项的和为126。
例子3:1,3,9,27,……是一个公比为3的等比数列。
求该数列前4项的和。
此时,根据公式:S= a1(1 - q^n) / (1 - q)代入等比数列的值:S= 1(1 - 3^4) / (1 - 3)计算得:S= 40因此,该等比数列前4项的和为40。
需要注意的是,在使用等比数列求和公式时,一定要将公比的值算出来,否则将无法计算出正确的结果。
此外,公比也不能为0,否则数列中会有0,一旦出现0,公式也将失去意义。
等比数列的通项与求和公式等比数列是数学中常见的一种数列形式,由于其特殊的规律性质,在各个领域都有广泛的应用。
本文将以等比数列的通项与求和公式为主线,探讨其定义、性质及应用等方面内容。
一、等比数列的定义等比数列是指数列中的每一项与它前一项的比值相等的数列。
通常用字母a表示首项,字母r表示公比,公比r≠0。
二、等比数列的通项公式设等比数列的首项是a,公比是r,第n项是an。
根据等比数列的定义,可得等式:an = ar^(n-1)即等比数列的通项公式为an = a × r^(n-1)。
三、等比数列的求和公式对于等比数列的求和,有两种情况要讨论。
1. 当公比r不等于1时,求和公式为:Sn = a(1 - r^n) / (1 - r)其中,Sn表示等比数列的前n项和。
2. 当公比r等于1时,求和公式为:Sn = na这是因为当r=1时,等比数列变为等差数列,其求和公式为Sn =(n/2)(a + an) = na。
四、等比数列的性质1. 等比数列的比值恒定:对于等比数列中的任意两项an和an+1,它们的比值都等于公比r,即an+1 / an = r。
2. 等比数列前n项的和与后n项的和的关系:等比数列的前n项和Sn与后n项和Sn'的关系是Sn' = Sn × r^n。
3. 等比数列的性质与对数函数的关系:等比数列与指数函数和对数函数密切相关,等比数列的通项公式可以看作是指数函数的离散形式,而求和公式则与对数函数有着密切的联系。
五、等比数列的应用等比数列在各个领域都有广泛的应用,以下列举几个常见的应用场景:1. 财务分析:某企业每年的盈利额按等比数列递增或递减,通过求和公式可以计算出多年的总盈利额。
2. 投资计算:等比数列可以用来计算复利的本金增长情况,根据投资年限和年复利率,可以计算出多年后的本金总额。
3. 几何形状分析:等比数列可以用来分析几何形状中的边长、面积、体积等相关问题,如等比缩放、等比放大等。
两个等比数列求和公式的区别在数学中,等比数列是一种特殊的数列,它的每一项与前一项的比值都相等。
而求和公式则是用来计算数列的和的公式。
在本文中,我们将讨论两个等比数列求和公式的区别。
让我们回顾一下单个等比数列的求和公式。
对于一个等比数列a,其首项为a₁,公比为q,项数为n,其求和公式如下:S₁ = a₁(1 - qⁿ) / (1 - q)这个公式可以通过将数列从第一项到第n项相加得到。
其中,(1 - qⁿ) / (1 - q) 是一个常数,称为等比数列的求和系数。
现在,我们来考虑两个等比数列的求和。
假设我们有两个等比数列a和b,它们的首项分别为a₁和b₁,公比分别为q和p,项数均为n。
我们想要求这两个数列的和。
那么,我们可以使用以下的求和公式:S₂ = (a₁(1 - qⁿ) / (1 - q)) + (b₁(1 - pⁿ) / (1 - p))这个公式的推导过程比较复杂,我们不在这里展开讨论。
但可以这么理解,我们将两个数列的每一项相加,然后再分别使用单个等比数列的求和公式计算出和,最后将这两个和相加得到最终的结果。
通过比较这两个公式,我们可以发现它们的区别主要体现在求和的方式上。
单个等比数列的求和公式只需要一个等比数列的信息,即首项、公比和项数,就可以计算出和。
而两个等比数列的求和公式则需要两个等比数列的信息,即首项、公比和项数,同时还需要将两个等比数列的和相加才能得到最终的结果。
需要注意的是,这里我们假设了两个等比数列的项数是相同的。
如果两个数列的项数不同,那么我们需要在求和之前先将两个数列的项数调整为相同,然后再进行求和。
总结起来,单个等比数列的求和公式和两个等比数列的求和公式的主要区别在于求和的方式。
单个等比数列的求和公式只需要一个等比数列的信息,而两个等比数列的求和公式则需要两个等比数列的信息,并且还需要将两个等比数列的和相加。
了解这两个求和公式的区别,可以帮助我们更好地理解等比数列的性质和求和的方法。
等比公式前n项求和公式等比公式是数学中常见的一种公式,用于求解等比数列的前n项和。
在数学中,等比数列是指每一项与前一项的比值相等的数列。
等比数列的前n项和的公式可以用来计算任意等比数列的前n项之和。
设等比数列的首项为a,公比为r,第n项为an。
根据等比数列的定义,我们可以得到如下关系式:a2 = ar (第二项等于首项乘以公比)a3 = ar^2 (第三项等于首项乘以公比的平方)...an = ar^(n-1) (第n项等于首项乘以公比的n-1次方)为了求解等比数列的前n项和,我们可以利用以上关系式进行变形和求和。
具体步骤如下:Step 1: 将等比数列的前n项和表示为SnStep 2: 将Sn乘以公比rStep 3: Sn乘以公比r后,得到的结果仍然是一个等比数列,其首项为ar,公比为rStep 4: 用Sn乘以公比r后的等比数列减去原等比数列,即Sn - rSnStep 5: 将Sn - rSn进行因式分解,得到公式 Sn(1 - r) = a(1 - r^n)Step 6: 由于1 - r不等于0,所以可以将公式进一步变形为 Sn = a(1 - r^n) / (1 - r)通过以上步骤,我们得到了用于求解等比数列前n项和的公式 Sn = a(1 - r^n) / (1 - r)。
这个公式可以广泛应用于实际生活和工作中的问题。
例如,在金融领域,我们可以利用等比数列的前n项和公式来计算年金的现值和未来值。
在工程领域,我们可以利用等比数列的前n项和公式来计算复利的本利和。
在电子商务领域,我们可以利用等比数列的前n 项和公式来计算销售额的增长率。
需要注意的是,等比数列的前n项和公式只有在公比r的绝对值小于1时才成立。
当公比r的绝对值大于等于1时,等比数列的前n 项和将无穷大。
因此,在使用等比公式前n项求和公式时,需要确保公比r的绝对值小于1。
等比数列的前n项和公式也可以通过数学归纳法进行推导和证明。
等比数列求和公式高中数学
等比数列的求和公式在高中数学中主要有两种情况:
有限项等比数列求和:如果一个等比数列的首项为a1,公比为q (q≠1),共有n项,则其前n项和S_n可以通过下面的公式计算:S_n = a1 * (1 - q^n) / (1 - q)
无限项等比数列求和:当|q| < 1时(即公比绝对值小于1,保证级数收敛),无限项等比数列的和可以表示为:S = a1 / (1 - q)
请注意,如果公比q等于1,那么所有项都相等,可以直接用乘法算出总和,即S_n = n * a1。
另外,当公比q等于-1且项数n为偶数时,由于正负项相互抵消,也可以具体计算得出结果;若项数为奇数则不能直接使用上述公式。
等比数列及其求和公式
数列是数学中常见的一种序列,其中等比数列是一种特殊的数列。
在等比数列中,每一项与前一项的比值都保持不变,这个比值叫做公比。
等比数列常常出现在各个领域的问题中,如金融、科学、工程等。
等比数列的通项公式可以表达为:an = a1 * r^(n-1),其中an表示第
n项,a1表示首项,r表示公比,n表示项数。
通过这个通项公式,我
们可以方便地计算等比数列的各项数值。
除了计算单独的项数外,我们还可以通过求和公式来计算等比数列
的和。
等比数列的求和公式可以表达为:
S = a1 * (1 - r^n) / (1 - r),其中S表示等比数列的和,a1表示首项,
r表示公比,n表示项数。
下面我们通过一个具体的例子来说明等比数列及其求和公式的应用。
例子:
某公司的销售代表每天要拜访客户,第一天拜访了1个客户,之后
每天拜访的客户数都是前一天的2倍。
现在我们需要计算该销售代表
连续拜访第5天至第10天的总客户数。
首先,我们可以通过等比数列的通项公式计算出前10天的客户数:第1天:a1 = 1
公比:r = 2
客户数可以表示为:an = a1 * r^(n-1)
第2天:a2 = a1 * r^1 = 1 * 2 = 2
第3天:a3 = a1 * r^2 = 1 * 2^2 = 4
第4天:a4 = a1 * r^3 = 1 * 2^3 = 8
第5天:a5 = a1 * r^4 = 1 * 2^4 = 16
第6天:a6 = a1 * r^5 = 1 * 2^5 = 32
第7天:a7 = a1 * r^6 = 1 * 2^6 = 64
第8天:a8 = a1 * r^7 = 1 * 2^7 = 128
第9天:a9 = a1 * r^8 = 1 * 2^8 = 256
第10天:a10 = a1 * r^9 = 1 * 2^9 = 512
接下来,我们可以使用等比数列的求和公式计算第5天至第10天的总客户数:
S = a1 * (1 - r^n) / (1 - r)
其中,a1 = 1,r = 2,n = 10
S = 1 * (1 - 2^10) / (1 - 2)
= 1 * (1 - 1024) / (-1)
= 1 * (-1023) / (-1)
= 1023
因此,销售代表连续拜访第5至第10天的总客户数为1023。
通过这个例子,我们可以看到等比数列及其求和公式在解决实际问题中的应用。
无论是计算特定项数的数值,还是求解一段连续数值的和,等比数列的公式都能够提供便捷的计算方法。
在实际应用中,我们可以将等比数列的概念运用到各种领域,帮助我们更好地理解和解决问题。