Fcr1
I=
πd 4
64
2
= 0.5
πd 4
π E π 2EI π 3Ed 4 64 = Fcr1 = 2 =2 8L2 (L)2 (0.5L)2
两根直径为d的圆杆,上下两端分别与刚性板固结,如 图示.试分析在总压力作用下,压杆可能失稳的几种形式, 并求出最小的临界荷载.(设满足欧拉公式的使用条件) 2.两杆下端固定上端自由,以z为中性轴弯曲失稳. 2.两杆下端固定上端自由,以z
π Ed
8L
2
4
Fcr 2 =
π 3Ed 4
128L
2
Fcr min = Fcr 2 =
π 3Ed 4
128L2
一中心受压直杆如图所示,两端固定,但上端可 沿水平方向移动,设EI为常数,求临界力.
M ( x) = ຫໍສະໝຸດ y M 0Fx δ F M0
y
L x
x
F
M(x)
x
y y
F
M0
M ( x) = Fy M 0
y
A=0
M0 B= F
M0 y = F (1 cos kx) y′ = kM 0 sin kx F
X=L
sin kL = 0
y′ = 0
kL = nπ
y′ =
kM 0 sin kL = 0 F
(n = 1, 3) 2,
k=
π
L
Fcr =
π 2EI
L2
�
Fcr 2
Iz =
πd 4
64
=2
πd 4
π E π 2EI π 3Ed 4 64 = Fcr 2 = 2 =2 128L2 (L)2 (2L)2
2