数列练习题(一)求同通项
- 格式:docx
- 大小:185.34 KB
- 文档页数:5
高考数学专题复习练习题12---数列求通项、求和(理)1.已知数列{}n a 的前n 项和21n n S =-,则数列2{}n a 的前10项和为( )A .1041-B .102(21)-C .101(41)3-D .101(21)3-2.已知数列{}n a 的前n 项和为n S ,满足21n n S a =-,则{}n a 的通项公式为n a =( ) A .21n -B .12n -C .21n-D .21n +3.数列{}n a 满足1(1)nn n a a n ++=-⋅,则数列{}n a 的前20项和为( )A .100-B .100C .110-D .1104.已知数列{}n a 的通项公式为100n a n n=+,则122399100||||||a a a a a a -+-++-=L ( ) A .150B .162C .180D .2105.数列{}n a 中,10a =,1n n a a +-=,若9n a =,则n =( )A .97B .98C .99D .1006.在数列{}n a 中,12a =-,111n na a +=-,则2019a 的值为( ) A .2-B .13 C .12D .327.已知n S 是数列{}n a 的前n 项和,且13n n n S S a +=++,4523a a +=,则8S =( ) A .72B .88C .92D .988.在数列{}n a 中,12a =,已知112(2)2n n n a a n a --=≥+,则n a 等于( )A .21n + B .2n C .31n + D .3n9.已知数列21()n a n n =-∈*N ,n T 为数列11{}n n a a +的前n 项和,求使不等式20194039n T ≥成立的最小 正整数( )一、选择题A .2017B .2018C .2019D .202010.已知直线20x y ++=与直线0x dy -+=互相平行且距离为m ,等差数列{}n a 的公差为d ,7835a a ⋅=,4100a a +<,令123||||||||n n S a a a a =++++L ,则m S 的值为( )A .60B .52C .44D .3611.已知定义在R 上的函数()f x 是奇函数且满足3()()2f x f x -=,(2)3f -=-,数列{}n a 是等差数列, 若23a =,713a =,则1232020()()()()f a f a f a f a ++++=L ( ) A .2-B .3-C .2D .312.已知数列满足12323(21)3nn a a a na n ++++=-⋅L ,设4n nnb a =,n S 为数列{}n b 的前n 项和.若n S λ<(常数),n ∈*N ,则λ的最小值为( )A .32B .94C .3112D .311813.已知数列{}n a 的通项公式为12n n a n -=⋅,其前n 项和为n S ,则n S = .14.设数列{}n a 满足1(1)()2n n n na n a n n +-+=∈+*N ,112a =,n a = . 15.已知数列{}n a 满足1(1)(2)nn n a a n n ---=≥,记n S 为数列{}n a 的前n 项和,则40S = .16.等差数列{}n a 中,3412a a +=,749S =,若[]x 表示不超过x 的最大整数,(如[0.9]0=,[2.6]2=,).令[lg ]()n n b a n =∈*N ,则数列{}n b 的前2000项和为 .1.【答案】C答 案 与 解 析二、填空题一、选择题【解析】∵21n n S =-,∴1121n n S ++=-,∴111(21)(21)2n n nn n n a S S +++=-=---=, 又11211a S ==-=,∴数列{}n a 的通项公式为12n n a -=,∴2121(2)4n n n a --==,∴所求值为1010141(41)143-=--. 2.【答案】B【解析】当1n =时,11121S a a =-=,∴11a =;当2n ≥时,1122n n n n n a S S a a --=-=-,∴12n n a a -=,因此12n n a -=.3.【答案】A【解析】121a a +=-,343a a +=-,565a a +=-,787a a +=-,…, 由上述可知,1219201191(13519)1101002a a a a +++++=-⨯++++=-⨯⨯=-L L . 4.【答案】B【解析】由对勾函数的性质知:当10n ≤时,数列{}n a 为递减; 当10n ≥时,数列{}n a 为递增,故12239910012239101110||||||()()()()a a a a a a a a a a a a a a -+-++-=-+-++-+-L L12111009911010010()()1100(1010)(1001)a a a a a a a a +-++-=-+-=+-+++-L (1010)162+=.5.【答案】D【解析】由1n n a a +-==,利用累加法可得,∴11)n a a -=+++L 1=,∵10a =,∴19n a ==10=,100n =. 6.【答案】B【解析】由题意得,12a =-,111n n a a +=-,∴213122a =+=,321133a =-=,4132a =-=-,…, ∴{}n a 的周期为3,∴20193673313a a a ⨯===. 7.【答案】C【解析】∵13n n n S S a +=++,∴113n n n n S S a a ++-=+=, ∴13n n a a +-=,∴{}n a 是公差为3d =的等差数列,又4523a a +=,可得12723a d +=,解得11a =,∴81878922S a d ⨯=+=. 8.【答案】B 【解析】将等式1122n n n a a a --=+两边取倒数,得到11112n n a a -=+,11112n n a a --=, 1{}n a 是公差为12的等差数列,1112a =,根据等差数列的通项公式的求法得到111(1)222n n n a =+-⨯=,故2n a n=. 9.【答案】C【解析】已知数列21()n a n n =-∈*N ,∵111111()(21)(21)22121n n a a n n n n +==--+-+, ∴11111111(1)()()(1)2335212122121n n T n n n n ⎡⎤=-+-++-=-=⎢⎥-+++⎣⎦L , 不等式20194039n T ≥,即2019214039n n ≥+,解得2019n ≥, ∴使得不等式成立的最小正整数n 的值为2019. 10.【答案】B【解析】由两直线平行得2d =-,由两直线平行间距离公式得10m ==,∵77(2)35a a ⋅-=,得75a =-或77a =, ∵410720a a a +=<,∴75a =-,29n a n =-+,∴12310|||||||||7||5||5||7||9||11|52m S a a a a =++++=+++-+-+-+-=L L . 11.【答案】B【解析】由函数()f x 是奇函数且3()()2f x f x -=,得(3)()f x f x +=, 由数列{}n a 是等差数列,若23a =,713a =,可得到21n a n =-, 可得123456()()()()()()0f a f a f a f a f a f a ++=++=,则其周期为3,12320201()()()()()3f a f a f a f a f a ++++==-L .12.【答案】C【解析】∵12323(21)3nn a a a na n ++++=-⋅L ①,当2n ≥时,类比写出12323a a a ++++L 11(1)(23)3n n n a n ---=-⋅②, 由①-②得143n n na n -=⋅,即143n n a -=⋅.当1n =时,134a =≠,∴13,143,2n n n a n -=⎧=⎨⋅≥⎩,14,13,23n n n b n n -⎧=⎪⎪=⎨⎪≥⎪⎩, 214233333n n n S -=++++=L 021*********n n-+++++L ③, 2311112313933333n n n n nS --=++++++L ④, ③-④得,0231112211111231393333339313n n n n n n n S --=++++++-=+--L ,∴316931124312n n n S +=-<⋅,∵n S λ<(常数),n ∈*N ,∴λ的最小值是3112.13.【答案】(1)21nn -+【解析】由题意得01221122232(1)22n n n S n n --=⨯+⨯+⨯++-⋅+⋅L ①,∴1221222n S =⨯+⨯3132(1)22n n n n -+⨯++-⋅+⋅L ②,①-②得231121222222(1)2112nn nn n n S n n n ---=+++++-⋅=-⋅=-⋅--L ,∴(1)21nn S n =-+.14.【答案】21n n +【解析】∵1(1)()2n n n na n a n n +-+=∈+*N ,∴11111(2)(1)12n n a a n n n n n n +-==-+++++,∴11111n n a a n n n n --=--+,…,21112123a a -=-,累加可得11121n a a n n -=-+, 二、填空题∵112a =,∴1111n a nn n n =-=++,∴21n n a n =+. 15.【答案】440【解析】由1(1)(2)nn n a a n n ---=≥可得:当2n k =时,2212k k a a k --=①;当21n k =-时,212221k k a a k --+=-②; 当21n k =+时,21221k k a a k ++=+③;①+②有:22241k k a a k -+=-,③-①得有:21211k k a a +-+=, 则40135739()S a a a a a =+++++L24640109()110(71523)1071084402a a a a ⨯+++++=⨯++++=+⨯+⨯=L L . 16.【答案】5445【解析】设等差数列{}n a 的公差为d ,∵3412a a +=,749S =,∴12512a d +=,1767492a d ⨯+=,解得11a =,2d =, ∴12(1)21n a n n =+-=-,[lg ][lg(21)]n n b a n ==-,1,2,3,4,5n =时,0n b =;650n ≤≤时,1n b =; 51500n ≤≤时,2n b =; 5012000n ≤≤时,3n b =,∴数列{}n b 的前2000项和454502150035445=+⨯+⨯=.。
高考递推数列题型分类归纳解析各种数列问题在很多情形下,就是对数列通项公式的求解。
特别是在一些综合性比较强的数列问题中,数列通项公式的求解问题往往是解决数列难题的瓶颈。
我现在总结出几种求解数列通项公式的方法,希望能对大家有帮助。
类型1)(1n f a a nn解法:把原递推公式转化为)(1n f a a nn ,利用累加法(逐差相加法)求解。
例1. 已知数列na 满足211a ,nna a nn211,求n a 。
变式:已知数列1}{1a a n 中,且a 2k =a 2k -1+(-1)K,a 2k+1=a 2k +3k, 其中k=1,2,3,…….(I )求a 3, a 5;(II )求{ a n }的通项公式. 类型2nna n f a )(1解法:把原递推公式转化为)(1n f a a n n ,利用累乘法(逐商相乘法)求解。
例1:已知数列na 满足321a ,n na n na 11,求n a 。
例2:已知31a ,nna nna 23131)1(n,求n a 。
变式:(2004,全国I,理15.)已知数列{a n },满足a 1=1,1321)1(32nna na a a a (n ≥2),则{a n }的通项1___na 12n n类型3q paa nn1(其中p ,q 均为常数,)0)1((ppq )。
解法(待定系数法):把原递推公式转化为:)(1t a p ta nn,其中pq t1,再利用换元法转化为等比数列求解。
例:已知数列na 中,11a ,321n na a ,求n a .变式:(2006,重庆,文,14)在数列na 中,若111,23(1)nna a a n,则该数列的通项n a _______________变式:(2006.福建.理22.本小题满分14分)已知数列na 满足*111,21().nna a a n N (I )求数列na 的通项公式;(II )若数列{b n }滿足12111*444(1)(),n nb bb bna nN 证明:数列{b n }是等差数列;(Ⅲ)证明:*122311...().232n na a a n nn N a a a 类型4nnnq paa 1(其中p ,q 均为常数,)0)1)(1((q ppq )。
数列的基础练习题一、数列的概念与简单表示法1、下列说法正确的是 ( )A. 数列1,3,5,7可表示为{1,3,5,7}B. 数列1,0,-1,-2与数列-2,-1, 0, 1是相同的数列C. 数列1n n +⎧⎫⎨⎬⎩⎭的第k 项是11k + D. 数列可以看做是一个定义域为正整数集N *的函数3、已知数列的通项公式为2815n a n n =−+,则3( ) A. 不是数列{}n a 中的项 B. 只是数列{}n a 中的第2项C. 只是数列{}n a 中的第6项D. 是数列{}n a 中的第2项或第6项 5、已知数列1,3,5,7,,21,,n −则35是它的 ( ) A. 第22项 B. 第23项 C. 第24项 D. 第28项 6、已知130n n a a +−−=,则数列{}n a 是 ( ) A. 递增数列 B. 递减数列 C. 常数列 D. 摆动数列二、等差数列题型一、计算求值(等差数列基本概念的应用)1、.等差数列{a n }的前三项依次为 a-6,2a -5, -3a +2,则 a 等于( ) A . -1 B . 1 C .-2 D. 22.在数列{a n }中,a 1=2,2a n+1=2a n +1,则a 101的值为 ( )A .49B .50C .51D .52 3.等差数列1,-1,-3,…,-89的项数是( )A .92B .47C .46D .45 4、已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是( )( ) A 15 B 30 C 31 D 645. 首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是( )A.d >38B.d <3C. 38≤d <3D.38<d ≤36、.在数列}{n a 中,31=a ,且对任意大于1的正整数n ,点),(1−n n a a 在直03=−−y x 上,则n a =_____________.7、在等差数列{a n }中,a 5=3,a 6=-2,则a 4+a 5+…+a 10= . 8、等差数列{}n a 的前n 项和为n S ,若=则432,3,1S a a ==( )(A )12(B )10 (C )8 (D )69、设数列{}n a 的首项)N n ( 2a a ,7a n 1n 1∈+=−=+且满足,则=+++1721a a a ______.10、已知{a n }为等差数列,a 3 + a 8 = 22,a 6 = 7,则a 5 = __________ 11、已知数列的通项a n = -5n +2,则其前n 项和为S n = .12、设n S 为等差数列{}n a 的前n 项和,4S =14,30S S 710=−,则9S = .题型二、等差数列性质1、已知{a n }为等差数列,a 2+a 8=12,则a 5等于( )(A)4 (B)5 (C)6 (D)72、设n S 是等差数列{}n a 的前n 项和,若735S =,则4a =( )A .8B .7C .6D .53、 若等差数列{}n a 中,37101148,4,a a a a a +−=−=则7__________.a =4、记等差数列{}n a 的前n 项和为n S ,若42=S ,204=S ,则该数列的公差d=( )A .7 B. 6 C. 3 D. 25、等差数列{}n a 中,已知31a 1=,4a a 52=+,33a n =,则n 为( )(A )48 (B )49 (C )50 (D )516.、等差数列{a n }中,a 1=1,a 3+a 5=14,其前n 项和S n =100,则n =( )(A)9 (B)10 (C)11 (D)127、设S n 是等差数列{}n a 的前n 项和,若==5935,95S S a a 则( )A .1B .-1C .2D .218、已知等差数列{a n }满足α1+α2+α3+…+α101=0则有( )A .α1+α101>0B .α2+α100<0C .α3+α99=0D .α51=519、如果1a ,2a ,…,8a 为各项都大于零的等差数列,公差0d ≠,则( ) (A )1a 8a >45a a (B )8a 1a <45a a (C )1a +8a >4a +5a (D )1a 8a =45a a 10、若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )(A )13项 (B )12项 (C )11项 (D )10项题型三、等差数列前n 项和1、等差数列{}n a 中,已知12310a a a a p ++++=,98n n n a a a q −−+++=,则其前n 项和n S = .2、等差数列 ,4,1,2−的前n 项和为 ( )A. ()4321−n nB. ()7321−n nC. ()4321+n nD. ()7321+n n3、已知等差数列{}n a 满足099321=++++a a a a ,则 ( )A. 0991>+a aB. 0991<+a aC. 0991=+a aD. 5050=a4、在等差数列{}n a 中,78,1521321=++=++−−n n n a a a a a a ,155=n S ,则=n 。
数列史上最全求通项公式10种方法并配大量习题及答案求数列通项公式的方法有很多种。
这个问题通常是高考试卷的第一问,如果无法解决或没有思路,那么即使后面的问题可以解决,也是无济于事的。
下面我们逐个讲解这些重要的方法。
递推公式法是指利用an=Sn−Sn−1的形式,其中Sn表示数列的前n项和。
这种方法有两种类型。
第一种类型是题目中给出的是Sn=f(n)的形式,要将n改成n-1,包括角标,这样加上题中给出的式子就得到两个式子,两式子做差,即可整理出通项公式。
但是需要注意的是,求出的通项公式一定要检验是否需要写成分段的形式,即验证一下a1和S1是否相等,若不相等,则需要写成分段的形式。
第二种类型是a(n-1),an和a(n+1)与S(n-1),Sn和S(n+1)同时存在于一个等式中,我们的思路是将n改写成n-1,又得到另一个式子,这两个式子做差,在做差相减的过程中,要将等式的一端通过移项等措施处理为零,这样整理,容易得出我们想要的关系式。
累加法(迭、叠加法)是在教材上推导等差数列通项公式和前n项和公式的时候使用的一种方法。
其实这个方法不仅仅适用于等差数列,它的使用范围是非常广泛的。
只要适合an=an-1+f(n)的形式,都可以使用累加法。
基本的书写步骤是将an-an-1=f(n)展开,然后累加,得到an-a1=f(2)+f(3)+f(4)+。
+f(n)。
因此重点就是会求后边这部分累加式子的和,而这部分累加的式子,绝大部分都是三种情况之一,要么是一个等差数列的前n-1项的和,要么是一个等比数列的前n-1项的和,要么就是能够在累加过程能够中消掉,比如使用裂项相消法等。
累乘法的使用条件是,凡是适合an=an-1*f(n)形式的求通项公式问题,都可以使用累乘法。
它的基本书写步骤格式是:an=a1*f(2)*f(3)*。
*f(n)。
以上是数列通项公式的三种求法。
2.改写每段话:首先,我们来看等式左右两边的乘积。
左边相乘得到的总是1,右边相乘得到的是f(2)乘以f(3)乘以f(4)一直到f(n)。
数列求通项公式的方法(八种方法)(一)由数列的前几项求数列的通项公式(观察法)1.(1)数列-11×2,12×3,-13×4,14×5,…的一个通项公式a n=________.(2)数列{a n}的前4项是32,1,710,917,则这个数列的一个通项公式a n=________.解析:(1)这个数列前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式为a n=(-1)n1n(n+1).(2)数列{a n}的前4项可变形为2×1+112+1,2×2+122+1,2×3+132+1,2×4+142+1,故a n=2n+1n2+1.答案:(1)(-1)n1n(n+1)(2)2n+1n2+1由数列的前几项求数列通项公式的策略根据所给数列的前几项求其通项公式时,需仔细观察分析,抓住以下几方面的特征,并对此进行归纳、联想,具体如下:(1)分式中分子、分母的特征;(2)相邻项的变化特征;(3)拆项后的特征;(4)各项符号特征等.(二)由a n与S n的关系求通项a n(公式法)2.(2017·东营模拟)设数列{a n}的前n项和为S n,数列{S n}的前n项和为T n,满足T n=2S n-n2,n∈N*.(1)求a1的值;(2)求数列{a n}的通项公式.解析:(1)令n=1时,T1=2S1-1,∵T1=S1=a1,∴a1=2a1-1,∴a1=1.(2)n≥2时,T n-1=2S n-1-(n-1)2,则S n=T n-T n-1=2S n-n2-[2S n-1-(n-1)2]=2(S n-S n-1)-2n+1=2a n-2n+1.因为当n=1时a1=S1=1也满足上式,所以S n=2a n-2n+1(n≥1),当n≥2时,S n-1=2a n-1-2(n-1)+1,两式相减得a n=2a n-2a n-1-2,所以a n=2a n-1+2(n≥2),所以a n+2=2(a n-1+2),因为a1+2=3≠0,所以数列{a n+2}是以3为首项,公比为2的等比数列.所以a n+2=3×2n-1,∴a n=3×2n-1-2,当n=1时也成立,所以a n=3×2n-1-2.1.规律方法已知S n求a n的3个步骤(1)先利用a1=S1求出a1;(2)用n-1替换S n中的n得到一个新的关系,利用a n=S n-S n-1(n≥2)便可求出当n≥2时a n的表达式;(3)对n=1时的结果进行检验,看是否符合n≥2时a n的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n=1与n≥2两段来写.(三)由递推关系求数列的通项公式递推公式和通项公式是数列的两种表示方法,它们都可以确定数列中的任意一项,只是由递推公式确定数列中的项时,不如通项公式直接.归纳起来常见的探究角度有:(1)形如a n +1=a n f (n ),求a n . (累乘法) (2)形如a n +1=a n +f (n ),求a n . (累加法)(3)形如a n +1=Aa n +B (A ≠0且A ≠1),求a n . (构造法一)(4)形如a n +1=Aa nBa n +C (A ,B ,C 为常数),求a n . (取倒数法,构造二)命题点1 形如a n +1=a n f (n ),求a n3.在数列{a n }中,a 1=1,a n =n -1n a n -1(n ≥2),求数列{a n }的通项公式. 解析:因为a n =n -1n a n -1(n ≥2), 所以a n -1=n -2n -1a n -2,…,a 2=12a 1.由累乘法可得a n =a 1·12·23·…·n -1n =a 1n =1n (n ≥2).又a 1=1符合上式,∴a n =1n .命题点2 形如a n +1-a n =f (n ),求a n4.在数列{a n }中,a 1=2,a n +1=a n +3n +2,求数列{a n }的通项公式. 解析:因为a n +1-a n =3n +2,所以a n -a n -1=3n -1(n ≥2),所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n (3n +1)2(n ≥2).当n =1时,a 1=2=12×(3×1+1),符合上式,所以a n =32n 2+n 2. 命题点3 形如a n +1=Aa n +B (A ≠0且A ≠1)求a n5.在数列{a n }中a 1=1,a n +1=3a n +2,求数列{a n }的通项公式.解析:因为a n +1=3a n +2,所以a n +1+1=3(a n +1),所以a n +1+1a n +1=3,所以数列{a n +1}为等比数列,公比q =3.又a 1+1=2,所以a n +1=2·3n -1,所以a n =2·3n-1-1.1111()n n n n n n n n a pa qa a xa pa q x px q x a x p a x ++++=+===+⇒=+⇒-=-数列第一类型解释:代换 代入 原式命题点4 形如a n +1=Aa nBa n +C(A ,B ,C 为常数),求a n6.已知数列{a n }中,a 1=1,a n +1=2a na n +2,求数列{a n }的通项公式.解析:∵a n +1=2a na n +2,a 1=1,∴a n ≠0,∴1a n +1=1a n +12,即1a n +1-1a n =12,又a 1=1,则1a 1=1,∴⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公差的等差数列.∴1a n =1a 1+(n -1)×12=n 2+12, ∴a n =2n +1(n ∈N *).课堂练习 a n 与S n 的关系求通项a n (公式法)1.已知数列{}n a 的前n 项和为23nn S =-,则n a = .2.已知n S 是数列{}n a 的前n 项和,且11=a ,12n n na S +=.则n a = .3.数列{}n a 满足112n n S a =-,则n a = . 4.若数列{a n }的前n 项和为S n ,且满足S n =32a n -3,则数列{a n }的前n 项和S n 等于5.各项为正数的数列{}n a 满足2421n n n a S a =--(*n ∈N ),其中n S 为{}n a 前n 项和.(1)求1a ,2a 的值; (2)求数列{}n a 的通项公式6.已知2a 、5a 是方程027122=+-x x 的两根,数列{}n a 是递增的等差数列,数列{}n b 的前n 项和为n S ,且n n b S 211-=(*∈N n ).求数列{}n a ,{}n b 的通项公式; 7.已知数列{}n a 的前n 项和为S n ,且312n n S a =-*()n ∈N .(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)在数列{}n b 中,15b =,1n n n b b a +=+,求数列{}n b 的通项公式.8.数列{}n a 的前n 项和为n S ,若12a =且12n n S S n -=+(2n ≥,*n ∈N ).( I )求n S ; ( II ) 是否存在等比数列{}n b 满足112339, b a b a b a ===,?若存在,则求出数列{}n b 的通项公式;若不存在,则说明理由.9、已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式. (累加法)10、已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
2021高考理科数学必考点解题方式秘籍:数列求通项高考中的递推数列求通项问题,情境新颖新颖,有广度,创新度和深度,是高考的热点之一。
是一类考查思维能力的好题。
要求考生进行严格的逻辑推理,找到数列的通项公式,为此介绍几种常见递推数列通项公式的求解方式。
类型一:1()n n a a f n +=+(()f n 能够求和)−−−−→解决方法累加法例一、在数列{}n a 中,已知1a =1,当2n ≥时,有121n n a a n -=+-()2n ≥,求数列的通项公式。
解析:121(2)n n a a n n --=-≥∴213243113521n n a a a a a a a a n --=⎧⎪-=⎪⎪-=⎨⎪⎪-=-⎪⎩ 上述1n -个等式相加可得: 评注:一样情形下,累加法里只有n-1个等式相加。
类型一专项练习题:一、已知11a =,1n n a a n -=+(2≥n ),求n a 。
(12n n n a +=)二、已知数列{}n a ,1a =2,1n a +=n a +3n +2,求n a 。
(31)2n n n a +=3、已知数列}a {n 知足1a 1n 2a a 1n 1n =++=+,,求数列}a {n 的通项公式。
21n a n =+ 4、已知}{n a 中,n n n a a a 2,311+==+,求n a 。
21nn a =+ 五、已知112a =,112n n n a a +⎛⎫=+ ⎪⎝⎭*()n N ∈,求数列{}n a 通项公式.13122n n a -⎛⎫=- ⎪⎝⎭六、 已知数列{}n a 知足11,a =()1132,n n n a a n --=+≥求通项公式n a ?(312n n a -=)7、假设数列的递推公式为1*113,23()n n n a a a n N ++==-⋅∈,那么求那个数列的通项公式 1123n n a +=-八、 已知数列}a {n 知足3a 132a a 1nn 1n =+⋅+=+,,求数列}a {n 的通项公式。
2023考点专题复习——数列的通项公式考法一:累加法——适用于)(1n f a a n n +=+()(n f 可以求和)例1、在数列{}n a 中,已知1a =1,当2n ≥时,有121n n a a n -=+-()2n ≥,求数列的通项公式。
例2、已知数列}{n a 中, 0>n a 且)(21nn n a na S +=,求数列}{n a 的通项公式.例3、已知数列{}n a 满足112313n n n a a a ,,求数列{}n a 的通项公式。
练习1、已知数列{}n a 的首项为1,且*12()n n a a n nN 写出数列{}n a 的通项公式.练习2、已知数列}{n a 满足13a ,11(2)(1)n n a a n n n -=+≥-求此数列的通项公式.练习3、已知数列{}n a 满足11211nn a a n a ,,求数列{}n a 的通项公式。
练习4、已知在数列{}n a 中,13a =,112(2)n n n a a n --=+. (1)求数列{}n a 的通项公式; (2)设21log (1)n n b a +=-,求11{}n n b b +的前n 项和n T .练习5、在数列{}n a 中,12a =,122n n n a a +=++. (1)求数列{2}n n a -的通项公式;(2)设数列{}n b 满足2(22)n n b a n =+-,求{}n b 的前n 项和n S .练习6、已知数列{}n a 满足211=a ,nn a a n n ++=+211,求n a 。
练习7、已知数列{}n a 满足11a =,1n n n a a +-=,则数列{}n a 的通项公式练习8、在数列{}n a 中,12a =,11ln 11n n a a n n n +⎛⎫⎪⎝+++⎭=,则数列{}n a 的通项公式练习9、已知数列{a n }满足11a =-,111+1n n a a n n +=-+,n ∈N *,求数列的通项公式a n .练习10、设数列{}n a 满足11a =,()*112n n n a a n +-=∈N ,则数列{}n a 的通项公式练习11、已知数列{}n a 满足112a =,121n n a a n n+=++,则数列{}n a 的通项公式考法二:累乘法例1、在数列{}n a 中,已知11,a =有()11n n na n a -=+,(2n ≥)求数列{}n a 的通项公式。
1
数列练习题(一)
数列通项的求法
1、观察法求数列的通项公式:
例1、(1)、3537,1,,,,28832;
(2)、191731,,,,,335639;
(3)0,5,0,5,0,5,;
(4)0,1,0,1,0,1,0,1,;
(5)7,77,777,7777,;
(6)1,234,56789,10111213141516,
2、公式法:(1)等差数列11nnmaandaanmd()或()
(2)等比数列1*1(,)nnmnnmaaqaaqnmN或
例2、(1)已知数列na中,11a,21nnaa,求na。(2)21a,nnaa211,求na。
3、利用,nnaS的关系求数列的通项公式:
(1)已知nS的表达式,利用求12nnnaSSn()求na。1()2nnnafnSSn设()
①当1(1)af时,则*()nafnN(), ②当1(1)af时,则11(1)(2)nnnSnaSSn;
例3、(1)223nSnn; (2)2231nSnn。
(2)不知道nS的表达,可利用12nnnaSSn()将关系式转化为关于1nnaa、的关系式,求出na,
或转化为1nnSS、的关系式,求出nS,再求出na。
例3、(3)
数列{}na满足各项为正,前n项和为nS,且222nnaS 求数列{}na的通项。
2
例3、(4)
已知数列{}na的前n项和为nS,且满11120(2);2nnnaSSna求na
4、累加法(叠加法)求通项公式:递推式为1()()nnaafnnN
变形为:1()nnaafn,∴213211()()()nnnaaaaaaaa
例4、已知数列{}na中,11211241nnaaan,,求na。
练习:(1)、在数列{}na中11a,当 nN时 1nnaan,则100a的值为( )
A 5050 B 5051 C 4950 D 4951
(2)、在数列{}na中,1112,ln(1)nnaaan,则na ( )
A 2lnn B 2(1)lnnn C 2lnnn D 1lnnnn
(3)、已知数列{}na中,1140,21,()nnaaannN,则数列{}na的通项na=
5、累乘法(叠乘法)求通项公式:递推式为1()()nnafnanN
变形为:1()nnafna,∴321121nnnaaaaaaaa
例5、已知数列{}na中,21a,nnanna11,求na。
练习:(1)已知数列{}na满足nnanS2且11a,求{}na的通项公式na= 。
(2)设{}na是正项数列,11a且2211(1)0()nnnnnanaaanN,求通项公式na。
3
★以下为“构造法”求数列的通项公式:通过恰当的恒等变形, 如配方、因式分解、取
对数、取倒数等, 转化为等比数列或等差数列.
6、递推式为qpaann1(qp,是常数)
111(){}1111nnnnnqqqqapaqapaaaqpppp
是以为首项,以为公比的等比数列
方法:1()1nnqapapqp设
例6、已知数列{}na满足112,31nnaaa,求通项公式na。
7、递推式为1()nnapaqn(1,,ppq是常数,)
1111111()()(),(),4nnnnnnnnnnnnnnnnnnaaaaqnapaqnfnpppppabbbfnbap
令则转化为类型,再由累加法求出,从而求出
例7、已知数列na中,651a,且对一切nN都有11)21(31nnnaa,求na。
8、递推式为1nnnpaarqa(qp,是常数)
111111nnnnnnnnnparqabbkbmrqaapapa
,令
,转化为类型6
例8、求{}na的通项公式,(1)1121,()2nnnaaanNa,
4
9、递推式为1qnnapa(qp,是常数)
111lglglglgqnnnnnnnnapaaqapbabqbm
,令
,转化为类型6
例9、若数列{}na中,2111,10nnaaa,求通项公式na。
10、递推式为nnnqapaa12(qp,是常数)
(1)若1pq,212111211(){}(),.nnnnnnnnnnnnapaqaaaqaaaaaaqaafna是以为首项,以为等比数列,求出再用累加法求出
例10、已知数列{}na中,2,121aa,且对一切nN都有nnnaaa313212,求na。
拓展练习:
1、若数列{}na中,naaann2,211,则100a的值是 。
2、若数列{}na中,nnnaaa21,111,则na 。
3、已知数列na满足11,121nnnaaaa,求na的表达式。
4、已知数列{}na满足121nnaa且11a,求na的表达式。
5
5、已知数列{}na满足)2(2311naaannn且3,121aa,求na的表达式。
6、已知数列{}na满足)1(1nSann且11a,求na和nS的表达式。
7、已知数列na中,前n项和为nS,满足111(2),121nnnSSnaS,求通项公式na。
8、设函数211231(),(0),2nnfxaaxaxaxf数列{}na满足2(1)()nfnanN,求数列
{}na的通项na
。
9、已知数列na中,对一切,0nnNa,且21nnSa,求na的通项公式na。
10、已知数列na中,112,()1nnnaaaanNa,求na的通项公式na。