第七章 第二节 基本不等式(09年9月最新更新)
- 格式:pdf
- 大小:607.30 KB
- 文档页数:8
第七章 不等式、推理与证明第一节不等关系与一元二次不等式1.两个实数比较大小的依据 (1)a -b >0⇔a >b . (2)a -b =0⇔a =b . (3)a -b <0⇔a <b . 2.不等式的性质 (1)对称性:a >b ⇔b <a ; (2)传递性:a >b ,b >c ⇒a >c ;(3)可加性:a >b ⇔a +c >b +c ;a >b ,c >d ⇒a +c >b +d ; (4)可乘性:a >b ,c >0⇒ac >bc ; a >b >0,c >d >0⇒ac >bd ;(5)可乘方性:a >b >0⇒a n >b n (n ∈N ,n ≥1); (6)可开方性:a >b >0⇒n a > nb (n ∈N ,n ≥2).3.一元二次不等式与相应的二次函数及一元二次方程的关系由二次函数的图象与一元二次不等式的关系判断不等式恒成立问题的方法,(1)一元二次不等式ax 2+bx +c >0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧a >0,b 2-4ac <0.(2)一元二次不等式ax 2+bx +c <0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧a <0,b 2-4ac <0.[熟记常用结论]1.倒数性质的几个必备结论 (1)a >b ,ab >0⇒1a <1b .(2)a <0<b ⇒1a <1b .(3)a >b >0,0<c <d ⇒a c >bd.(4)0<a <x <b 或a <x <b <0⇒1b <1x <1a .2.两个重要不等式 若a >b >0,m >0,则(1)b a <b +m a +m ;b a >b -m a -m (b -m >0). (2)a b >a +m b +m ;a b <a -m b -m(b -m >0). [小题查验基础]一、判断题(对的打“√”,错的打“×”)(1)两个实数a ,b 之间,有且只有a >b ,a =b ,a <b 三种关系中的一种.( ) (2)一个不等式的两边同时加上或乘同一个数,不等号方向不变.( ) (3)一个非零实数越大,则其倒数就越小.( )(4)若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0.( )(5)若方程ax 2+bx +c =0(a ≠0)没有实数根,则不等式ax 2+bx +c >0的解集为R.( )二、选填题1.设A =(x -3)2,B =(x -2)(x -4),则A 与B 的大小关系为( ) A .A ≥B B .A >B C .A ≤BD .A <B2.若a <b <0,则下列不等式不能成立的是( ) A.1a -b >1a B.1a >1b C .|a |>|b |D .a 2>b 23.函数f (x )=3x -x 2的定义域为( ) A .[0,3]B .(0,3)C .(-∞,0]∪[3,+∞)D .(-∞,0)∪(3,+∞)4.若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的取值范围是________. 5.若1<α<3,-4<β<2,则α-|β|的取值范围是________.[题组练透]1.若a >b >0,c <d <0,则一定有( ) A.a d >bc B.ad <b c C.a c >b dD.a c <b d2.设a ,b ∈R ,则“(a -b )·a 2<0”是“a <b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.若a =ln 22,b =ln 33,则a ____b (填“>”或“<”).4.已知等比数列{a n }中,a 1>0,q >0,前n 项和为S n ,则S 3a 3与S 5a 5的大小关系为________.5.已知-1<x <4,2<y <3,则x -y 的取值范围是________,3x +2y 的取值范围是________.[名师微点]比较大小的方法(1)作差法,其步骤:作差⇒变形⇒判断差与0的大小⇒得出结论. (2)作商法,其步骤:作商⇒变形⇒判断商与1的大小⇒得出结论. (3)构造函数法:构造函数,利用函数单调性比较大小.(4)赋值法和排除法:可以多次取特殊值,根据特殊值比较大小,从而得出结论.考点二一元二次不等式的解法[师生共研过关][典例精析](1)解不等式:-x 2-2x +3≥0;(2)已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≥0,-x 2+2x ,x <0,解不等式f (x )>3;(3)解关于x 的不等式ax 2-2≥2x -ax (a ≤0).[解题技法]1.解一元二次不等式的一般步骤2.解含参数的一元二次不等式时分类讨论的依据 (1)对于ax 2+bx +c >0(<0)的形式: 当a =0时,转化为一次不等式.当a <0时,转化为二次项系数为正的形式. 当a >0时,直接求解.(2)当不等式对应方程的根的个数不确定时,讨论判别式Δ与0的关系.(3)确定无根或一个根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集形式.[过关训练]1.不等式0<x 2-x -2≤4的解集为________. 2.求不等式12x 2-ax >a 2(a ∈R)的解集.考点三一元二次不等式的恒成立问题[全析考法过关][考法全析]考法(一)在R上的恒成立问题[例1]若不等式(a-2)x2+2(a-2)x-4<0对一切x∈R恒成立,则实数a的取值范围是()A.(-∞,2]B.[-2,2]C.(-2,2] D.(-∞,-2)考法(二)在给定区间上的恒成立问题[例2]设函数f(x)=mx2-mx-1.若对于x∈[1,3],f(x)<-m+5恒成立,求实数m的取值范围.考法(三)给定参数范围求x的范围的恒成立问题[例3]若对任意m∈[-1,1],函数f(x)=x2+(m-4)x+4-2m的值恒大于零,求x的取值范围.[解]令g(m)=(x-2)m+x2-4x+4.[规律探求][过关训练]1.若不等式x2+mx-1<0对于任意x∈[m,m+1]都成立,则实数m的取值范围是________.2.函数f(x)=x2+ax+3.(1)当x∈R时,f(x)≥a恒成立,求实数a的取值范围;(2)当x∈[-2,2]时,f(x)≥a恒成立,求实数a的取值范围;(3)当a∈[4,6]时,f(x)≥0恒成立,求实数x的取值范围.[课时跟踪检测]一、题点全面练1.已知a1∈(0,1),a2∈(0,1),记M=a1a2,N=a1+a2-1,则M与N的大小关系是() A.M<N B.M>NC.M=N D.不确定2.若m<0,n>0且m+n<0,则下列不等式中成立的是()A.-n<m<n<-m B.-n<m<-m<nC.m<-n<-m<n D.m<-n<n<-m3.若1a <1b <0,给出下列不等式:①1a +b <1ab ;②|a |+b >0;③a -1a >b -1b ;④ln a 2>ln b 2.其中正确的不等式的序号是( )A .①④B .②③C .①③D .②④4.已知函数f (x )=-x 2+ax +b 2-b +1(a ∈R ,b ∈R),对任意实数x 都有f (1-x )=f (1+x )成立,若当x ∈[-1,1]时,f (x )>0恒成立,则b 的取值范围是( )A .(-1,0)B .(2,+∞)C .(-∞,-1)∪(2,+∞)D .不能确定5.已知a ∈Z ,关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数,则所有符合条件的a 的值之和是( )A .13B .18C .21D .266.若不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为________.7.若不等式x 2+ax -2>0在区间[1,5]上有解,则a 的取值范围是________.8.对于实数x ,当且仅当n ≤x <n +1(n ∈N *)时,[x ]=n ,则关于x 的不等式4[x ]2-36[x ]+45<0的解集为________.解析:由4[x ]2-36[x ]+45<0,得32<[x ]<152,又当且仅当n ≤x <n +1(n ∈N *)时,[x ]=n ,所以[x ]=2,3,4,5,6,7,所以所求不等式的解集为[2,8).答案:[2,8)9.若不等式ax 2+5x -2>0的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪12<x <2. (1)求实数a 的值;(2)求不等式ax 2-5x +a 2-1>0的解集.10.已知函数f (x )=x 2-2ax -1+a ,a ∈R. (1)若a =2,试求函数y =f (x )x(x >0)的最小值;(2)对于任意的x ∈[0,2],不等式f (x )≤a 成立,试求实数a 的取值范围.二、专项培优练易错专练——不丢怨枉分 1.不等式x2x -1>1的解集为( )A.⎝⎛⎭⎫12,1B .(-∞,1) C.⎝⎛⎭⎫-∞,12∪(1,+∞) D.⎝⎛⎭⎫12,22.若1a <1b <0,则下列结论不正确的是( )A .a 2<b 2B .ab <b 2C .a +b <0D .|a |+|b |>|a +b |3.已知x >y >z ,且x +y +z =0,下列不等式中成立的是( ) A .xy >yz B .xz >yz C .xy >xz D .x |y |>z |y |4.若α,β满足⎩⎪⎨⎪⎧-1≤α+β≤1,1≤α+2β≤3,则α+3β的取值范围是________.5.求使不等式x 2+(a -6)x +9-3a >0,|a |≤1恒成立的x 的取值范围.令f (a )=(x -3)a +x 2-6x +9,则-1≤a ≤1.第二节二元一次不等式(组)及简单的线性规划问题❶画二元一次不等式(组)表示的平面区域时,一般步骤为:直线定界,虚实分明;特殊点定域,优选原点;阴影表示.注意不等式中有无等号,无等号时直线画成虚线,有等号时直线画成实线.特殊点一般选一个,当直线不过原点时,优先选原点.❷如果目标函数存在一个最优解,那么最优解通常在可行域的顶点处取得;如果目标函数存在多个最优解,那么最优解一般在可行域的边界上取得.1.二元一次不等式(组)表示的平面区域(1)把直线ax+by=0向上平移时,直线ax+by=z在y轴上的截距zb逐渐增大,且b>0时z的值逐渐增大,b<0时z的值逐渐减小.(2)把直线ax+by=0向下平移时,直线ax+by=z在y轴上的截距zb逐渐减小,且b>0时z的值逐渐减小,b<0时z的值逐渐增大.以上规律可简记为:当b>0时,直线向上平移z变大,向下平移z变小;当b<0时,直线向上平移z 变小,向下平移z 变大.[小题查验基础]一、判断题(对的打“√”,错的打“×”)(1)不等式Ax +By +C >0表示的平面区域一定在直线Ax +By +C =0的上方.( ) (2)线性目标函数的最优解可能是不唯一的.( )(3)在目标函数z =ax +by (b ≠0)中,z 的几何意义是直线ax +by -z =0在y 轴上的截距.( )二、选填题1.不等式组⎩⎪⎨⎪⎧x -3y +6<0,x -y +2≥0表示的平面区域是()2.不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域的面积等于( )A.32B.23 C.43 D.343.(2018·天津高考)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤5,2x -y ≤4,-x +y ≤1,y ≥0,则目标函数z =3x +5y的最大值为( )A .6B .19C .21D .454.若点(m,1)在不等式2x +3y -5>0所表示的平面区域内,则m 的取值范围是________.5.已知点(-3,-1)和点(4,-6)在直线3x -2y -a =0的两侧,则a 的取值范围为________.考点一 二元一次不等式(组)表示的平面区域[师生共研过关][典例精析](1)不等式组⎩⎪⎨⎪⎧2x +y -6≤0,x +y -3≥0,y ≤2表示的平面区域的面积为( )A .4B .1C .5D .无穷大(2)若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a 表示的平面区域是一个三角形,则实数a 的取值范围是( )A.⎣⎡⎭⎫43,+∞ B .(0,1]C.⎣⎡⎦⎤1,43 D .(0,1]∪⎣⎡⎭⎫43,+∞[过关训练]1.(2019·漳州调研)若不等式组⎩⎪⎨⎪⎧x +y ≥0,x -y +2≥0,2x -y -2≤0所表示的平面区域被直线l :mx -y +m+1=0分为面积相等的两部分,则m =( )A.12 B .2 C .-12D .-22.若不等式组⎩⎪⎨⎪⎧x +y -2≤0,x +2y -2≥0,x -y +2m ≥0表示的平面区域为三角形,且其面积等于43,则m 的值为________.考点二 目标函数的最值问题[全析考法过关][考法全析]考法(一) 求线性目标函数的最值[例1] (2018·郑州第一次质量预测)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,x -3y +4≤0,则目标函数z =2x -y 的最小值为________.考法(二) 求非线性目标函数的最值 [例2] 若实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≤0,x ≥0,y ≤2.则yx的取值范围为________.[变式发散]1.(变设问)本例条件不变,则目标函数z =x 2+y 2的取值范围为________.2.(变设问)本例条件不变,则目标函数z =y -1x -1的取值范围为________.考法(三) 求参数值或取值范围[例3] (2019·黄冈模拟)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +4≥0,x ≤2,x +y +k ≥0,且z =x +3y 的最小值为2,则常数k =________.[规律探求]1.(2018·全国卷Ⅰ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -2y -2≤0,x -y +1≥0,y ≤0,则z =3x +2y 的最大值为________.2.(2019·陕西教学质量检测)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥2,x +y ≤4,2x -y -m ≤0.若目标函数z =3x+y 的最大值为10,则z 的最小值为________.考点三 线性规划的实际应用[师生共研过关][典例精析](2018·福州模拟)某工厂制作仿古的桌子和椅子,需要木工和漆工两道工序.已知生产一把椅子需要木工4个工作时,漆工2个工作时;生产一张桌子需要木工8个工作时,漆工1个工作时.生产一把椅子的利润为1 500元,生产一张桌子的利润为2 000元.该厂每个月木工最多完成8 000个工作时、漆工最多完成1 300个工作时.根据以上条件,该厂安排生产每个月所能获得的最大利润是________元.[过关训练]1.(2018·河北“五个一名校联盟”模拟)某企业生产甲、乙两种产品均需要A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的限量如表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得的最大利润为( )A .16万元 C .18万元 D .19万元2.某高新技术公司要生产一批新研发的A 款产品和B 款产品,生产一台A 款产品需要甲材料3 kg ,乙材料1 kg ,并且需要花费1天时间,生产一台B 款产品需要甲材料1 kg ,乙材料3 kg ,也需要1天时间,已知生产一台A 款产品的利润是1 000元,生产一台B 款产品的利润是2 000元,公司目前有甲、乙材料各300 kg ,则在不超过120天的情况下,公司生产两款产品的最大利润是________元.[课时跟踪检测]一、题点全面练1.由直线x -y +1=0,x +y -5=0和x -1=0所围成的三角形区域(包括边界)用不等式组可表示为( )A.⎩⎪⎨⎪⎧ x -y +1≤0,x +y -5≤0,x ≥1 B.⎩⎪⎨⎪⎧x -y +1≥0,x +y -5≤0,x ≥1C.⎩⎪⎨⎪⎧x -y +1≥0,x +y -5≥0,x ≤1D.⎩⎪⎨⎪⎧x -y +1≤0,x +y -5≤0,x ≤12.(2018·南昌调研)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0,2x -y -2≤0,则z =3x -2y 的最大值为( )A .-2B .2C .3D .43.(2019·黄冈模拟)若A 为不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x ≤2表示的平面区域,则a 从-2连续变化到1时,动直线x +y =a 扫过A 中的那部分区域的面积为( )A .913B .313 C.72 D.744.(2019·淄博模拟)已知点Q (2,0),点P (x ,y )的坐标满足条件⎩⎪⎨⎪⎧x +y -1≤0,x -y +1≥0,y +1≥0,则|PQ |的最小值是( )A.12 B.22C .1 D. 25.已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3),若z =2x +y 的最小值为1,则a =( )A.12 B.13 C .1 D .26.(2019·开封模拟)已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,x +2y +2≥0,x ≤1,则z =⎝⎛⎭⎫12x -2y的最大值是________.7.已知x ,y 满足以下约束条件⎩⎪⎨⎪⎧x +y ≥5,x -y +5≤0,x ≤3,使z =x +ay (a >0)取得最小值的最优解有无数个,则a 的值为________.8.(2019·山西五校联考)不等式组⎩⎪⎨⎪⎧y -1≥0,x -y +2≥0,x +4y -8≤0表示的平面区域为Ω,直线x =a (a >1)将平面区域Ω分成面积之比为1∶4的两部分,则目标函数z =ax +y 的最大值为________.9.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x -y ≥-1,2x -y ≤2.(1)求目标函数z =12x -y +12的最值;(2)若目标函数z =ax +2y 仅在点(1,0)处取得最小值,求a 的取值范围.10.电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x ,y 表示每周计划播出的甲、乙两套连续剧的次数.(1)用x ,y 列出满足题目条件的数学关系式,并画出相应的平面区域; (2)问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多?二、专项培优练(一)易错专练——不丢怨枉分1.设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +1>0,x +m <0,y -m >0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,则m 的取值范围是( )A.⎝⎛⎭⎫-∞,43 B.⎝⎛⎭⎫-∞,13 C.⎝⎛⎭⎫-∞,-23 D.⎝⎛⎭⎫-∞,-53 解析2.(2019·金华模拟)设z =kx +y ,其中实数x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,x -2y +4≥0,2x -y -4≤0,若z 的最大值为12,则实数k =________.解析3.若存在实数x ,y ,m 使不等式组⎩⎪⎨⎪⎧x -y ≥0,x -3y +2≤0,x +y -6≤0与不等式x -2y +m ≤0都成立,则实数m 的取值范围是( )A .[0,+∞)B .(-∞,3]C .[1,+∞)D .[3,+∞)(二)交汇专练——融会巧迁移4.[与向量交汇]已知P (x ,y )为不等式组⎩⎪⎨⎪⎧x -2y +2≥0,x -y -1≤0,x +y -1≥0所确定的平面区域上的动点,若点M (2,1),O (0,0),则z =OP ―→·OM ―→的最大值为( )A .1B .2C .10D .115.[与概率交汇]关于实数x ,y 的不等式组⎩⎪⎨⎪⎧x ≤4,y ≥2,x -y +2≥0所表示的平面区域记为M ,不等式(x -4)2+(y -3)2≤1所表示的平面区域记为N ,若在M 内随机取一点,则该点取自N 的概率为( )A.π16 B.π8 C.14 D.126.[与圆交汇]记不等式组⎩⎪⎨⎪⎧4x +3y ≥10,x ≤3,y ≤4表示的平面区域为D ,过区域D 中任意一点P 作圆x 2+y 2=1的两条切线,切点分别为A ,B ,则当∠APB 的值最大时,cos ∠APB =( )A.32B.23C.13D.12第三节基本不等式1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 2.几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R);(2)b a +ab ≥2(a ,b 同号);(3)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R);(4)⎝⎛⎭⎫a +b 22≤a 2+b22(a ,b ∈R); (5)2ab a +b≤ab ≤a +b 2≤a 2+b 22(a >0,b >0). 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.4.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 24(简记:和定积最大). 注:(1)此结论应用的前提是“一正”“二定”“三相等”.“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指等号成立.(2)连续使用基本不等式时,牢记等号要同时成立.[小题查验基础]一、判断题(对的打“√”,错的打“×”) (1)当a ≥0,b ≥0时,a +b2≥ab .( )(2)两个不等式a 2+b 2≥2ab 与a +b2≥ab 成立的条件是相同的.( )(3)x >0且y >0是x y +yx ≥2的充要条件.( )(4)函数f (x )=cos x +4cos x,x ∈⎝⎛⎭⎫0,π2的最小值等于4.( )二、选填题1.设x >0,y >0,且x +y =18,则xy 的最大值为( ) A .80 B .77 C .81 D .822.设0<a <b ,则下列不等式中正确的是( ) A .a <b <ab <a +b2B .a <ab <a +b2<b C .a <ab <b <a +b2D.ab <a <a +b2<b3.函数f (x )=x +1x 的值域为( )A .[-2,2]B .[2,+∞)C .(-∞,-2]∪[2,+∞)D .R4.若实数x ,y 满足xy =1,则x 2+2y 2的最小值为________.5.若x >1,则x +4x -1的最小值为________.考点一 利用基本不等式求最值[全析考法过关] (一) 拼凑法——利用基本不等式求最值[例1] (1)已知0<x <1,则x (4-3x )取得最大值时x 的值为________. (2)已知x <54,则f (x )=4x -2+14x -5的最大值为________.(3)函数y =x 2+2x -1(x >1)的最小值为________.(二) 常数代换法——利用基本不等式求最值[例2] 已知a >0,b >0,a +b =1,则1a +1b 的最小值为________.[变式发散]1.(变条件)将条件“a +b =1”改为“a +2b =3”,则1a +1b 的最小值为________.2.(变设问)保持本例条件不变,则⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b 的最小值为________.[解题技法]通过常数代换法利用基本不等式求解最值的基本步骤 (1)根据已知条件或其变形确定定值(常数); (2)把确定的定值(常数)变形为1;(3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积为定值的形式; (4)利用基本不等式求解最值. (三) 消元法——利用基本不等式求最值[例3] 已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________.(四) 利用两次基本不等式求最值[例4] 已知a >b >0,那么a 2+1b (a -b )的最小值为________.[过关训练]1.(2019·常州调研)若实数x 满足x >-4,则函数f (x )=x +9x +4的最小值为________.2.若正数x ,y 满足x 2+6xy -1=0,则x +2y 的最小值是________.考点二 利用基本不等式解决实际问题[师生共研过关][典例精析]某厂家拟定在2019年举行促销活动,经调查测算,该产品的年销量(即该厂的年产量)x 万件与年促销费用m (m ≥0)万元满足x =3-km +1(k 为常数).如果不搞促销活动,那么该产品的年销量只能是1万件.已知2019年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2019年该产品的利润y 万元表示为年促销费用m 万元的函数; (2)该厂家2019年的促销费用投入多少万元时,厂家利润最大?[解题技法]利用基本不等式解决实际问题的3个注意点(1)设变量时一般要把求最大值或最小值的变量定义为函数.(2)根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值. (3)在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.[过关训练]1.若把总长为20 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是________m 2.2.(2019·孝感模拟)经测算,某型号汽车在匀速行驶的过程中每小时耗油量y (L)与速度x (km/h)(50≤x ≤120)的关系可近似表示为y =⎩⎨⎧175(x 2-130x +4 900),x ∈[50,80),12-x60,x ∈[80,120].(1)该型号汽车的速度为多少时,可使得每小时耗油量最低?(2)已知A ,B 两地相距120 km ,假定该型号汽车匀速从A 地驶向B 地,则汽车速度为多少时总耗油量最少?考点三 基本不等式的综合应用[师生共研过关][典例精析](1)已知直线ax +by +c -1=0(b >0,c >0)经过圆C :x 2+y 2-2y -5=0的圆心,则4b +1c 的最小值是( )A .9B .8C .4D .2(2)设等差数列{a n }的公差是d ,其前n 项和是S n ,若a 1=d =1,则S n +8a n的最小值是________.[过关训练]1.已知函数f (x )=x +ax +2的值域为(-∞,0]∪[4,+∞),则a 的值是( )A.12 B.32 C .1 D .2解析:2.已知向量a =(m,1),b =(4-n,2),m >0,n >0,若a ∥b ,则1m +8n 的最小值为________.[课时跟踪检测]一、题点全面练1.已知f (x )=x 2-2x +1x ,则f (x )在⎣⎡⎦⎤12,3上的最小值为( ) A.12 B.43 C .-1 D .02.(2018·哈尔滨二模)若2x +2y =1,则x +y 的取值范围是( ) A .[0,2] B .[-2,0] C .[-2,+∞) D .(-∞,-2]3.若实数a ,b 满足1a +2b =ab ,则ab 的最小值为( )A. 2 B .2 C .2 2 D .44.已知a >0,b >0,若不等式3a +1b ≥ma +3b 恒成立,则m 的最大值为( )A .9B .12C .18D .245.正数a ,b 满足1a +9b =1,若不等式a +b ≥-x 2+4x +18-m 对任意实数x 恒成立,则实数m 的取值范围是( )A .[3,+∞)B .(-∞,3]C .(-∞,6]D .[6,+∞)6.(2019·青岛模拟)已知x >0,y >0,(lg 2)x +(lg 8)y =lg 2,则1x +13y 的最小值是________.7.若正数x ,y 满足4x 2+9y 2+3xy =30,则xy 的最大值为________.8.规定:“⊗”表示一种运算,即a ⊗b =ab +a +b (a ,b 为正实数).若1⊗k =3,则k 的值为________,此时函数f (x )=k ⊗xx的最小值为________.9.已知x >0,y >0,且2x +8y -xy =0,求: (1)xy 的最小值; (2)x +y 的最小值.10.(1)当x <32时,求函数y =x +82x -3的最大值;(2)设0<x <2,求函数y =x (4-2x )的最大值.二、专项培优练(一)易错专练——不丢怨枉分1.已知a >b >1,且2log a b +3log b a =7,则a +1b 2-1的最小值为( )A .3 B. 3 C .2 D. 22.若正数a ,b 满足:1a +2b =1,则2a -1+1b -2的最小值为( )A .2 B.322 C.52 D .1+324解3.函数y =1-2x -3x (x <0)的值域为________.(二)交汇专练——融会巧迁移4.[与函数交汇]已知函数f (x )=log a (x +4)-1(a >0且a ≠1)的图象恒过定点A ,若直线xm +yn=-2(m >0,n >0)也经过点A ,则3m +n 的最小值为( ) A .16 B .8 C .12 D .145.[与数列交汇]已知首项与公比相等的等比数列{a n }中,若m ,n ∈N *,满足a m a 2n =a 24,则2m +1n的最小值为( ) A .1 B.32 C .2 D.926.[与解析几何交汇]若直线mx +ny +2=0(m >0,n >0)被圆(x +3)2+(y +1)2=1所截得的弦长为2,则1m +3n的最小值为( )A .4B .6C .12D .167.[与线性规划交汇]已知x ,y 满足⎩⎪⎨⎪⎧x +2y -3≤0,x +3y -3≥0,y ≤1,z =2x +y 的最大值为m ,若正数a ,b 满足a +b =m ,则1a +4b的最小值为__________.。