列控模式与列控信息传输技术的发展
- 格式:pptx
- 大小:1.84 MB
- 文档页数:56
第一章●1运行控制系统是轨道交通行车系统的“中枢与神经”,旨在利用各种先进的技术和设备,保证列车以最小安全间隔距离运行,以达到最大的运输能力●2轨道交通信号系统发展历程:(1)地面人工信号为防止列车相撞,在线路上安装各种信号设备。
通过地面信号显示系统,以物体大致形状、灯光的数目和颜色等视觉信号或音响信号等听觉信号给司机以各种运行条件的指示,提醒司机采取相应的措施,以免发生列车正面冲突和追尾事故。
这个阶段,主要是依靠信号工的眼睛观测(传感器),通过人控制的信号给司机传递行车命令(传输),由信号工控制列车间隔。
列车完全由司机驾驶,并负责列车的运行安全。
2)地面自动信号1872年美国人鲁宾逊发明了轨道电路,实现了列车占用钢轨线路状态自动检查。
利用轨道电路检查到的列车占用线路状态控制信号显示,出现了地面自动信号,使地面信号显示能真实反映线路空闲状态,也就是说按信号显示行车能够防止列车冲突事故。
只有当线路在空闲状态时,信号开放才是安全的。
地面信号显示仅仅指明列车前方线路状态,列车完全由司机驾驶,安危在完全掌握在司机手中。
(3)机车信号由于地面信号显示有时受到自然环境(如雾、风沙、大雨等)的影响以及地形的限制,司机往往不能在规定的距离上及时了望前方的信号机的信号显示,因而有产生冒进信号的危险。
为将列车运行前方所接近信号机的显示情况及时通告司机,发明了机车信号设备,将地面的视觉信号变成通过技术手段引入司机室,大大改善了司机了望条件。
这样司机就能够在任何条件下从容地驾驶列车和前方信号为禁止信号时及时采取制动措施,提高了列车运行的效率和安全程度。
4)自动停车装置列车自动停车设备(简称ATS ,Automatic Train Stop)的功能是当地面信号的“禁止命令”未被司机接受时就自动实施紧急制动,强迫列车停车。
电码轨道线路的出现,使得利用轨道电路向机车传送信息成为可能,地面轨道电路、机车信号与自动停车装置结合的构成简单的列车运行自动控制系统。
⏹中国铁路列控系统的发展原则:⏹列控系统技术平台的确立遵循全路统一规划的原则,实现互联互通。
⏹按照“先进、成熟、经济、适用、可靠”的要求,我国300km/h及以上高速客运专线确定CTCS3列控系统作为全路统一技术平台体系,并兼容CTCS2列控系统实现动车组上下线运行。
⏹CTCS3系统采用GSM-R无线通信传输列控信息,主要由车载ATP、无线闭塞中心RBC、微机联锁、调度集中CTC、应答器、ZPW2000轨道电路构成,在引进消化吸收关键技术的基础上,通过系统集成创新,我们将建立符合中国国情路情的、世界一流水平的高速铁路CTCS3列控技术体系。
⏹中国铁路列控系统CTCS2:⏹CTCS2列控系统主要用于200~250km/h客货混运客运专线,主要设备包括:车载A TP、列控中心、微机联锁、调度集中CTC、应答器、ZPW2000轨道电路,并已基本实现国产化。
⏹CTCS2列控系统采用轨道电路加点式应答器作为信息传输手段,实现列车运行的安全控制。
⏹经过改造的既有线也采用CTCS2列控系统,并在时速200公里提速线路上应用。
⏹通过在时速300公里和200公里跨线列车上装备CTCS2和CTCS3车载系统,实现高速列车的跨线运行。
⏹城市轨道交通的发展方向:⏹由轨道电路向基于通信的方向发展。
⏹系统化。
⏹通信信号一体化。
⏹标准化和开放化。
⏹列车运行控制技术的发展经过⏹地面人工信号⏹地面自动信号⏹出现机车信号⏹发明自动停车⏹列控系统ATC⏹综合自动化系统⏹固定闭塞(Fixed Block):线路被划分为固定位置、某一长度的闭塞分区,一个分区只能被一列车占用,闭塞分区的长度按最长列车、满负载、最高速、最不利制动率等最不利条件设计,列车间隔为若干闭塞分区,而与列车在分区内的实际位置无关,列车位置的分辨率为一个闭塞分区(一般为几百米),制动的起点和终点总是某一分区的边界,对列车的控制一般采用速度码台阶式制动曲线方式,该系统要求运行间隔越短,闭塞分区(设备)数也越多。
列车控制网络技术的现状与发展方向分析作者:梁飞来源:《科技创新导报》2017年第11期DOI:10.16660/ki.1674-098X.2017.11.004摘要:控制网络技术在世界内应用十分的广泛,同时也是列车的关键技术。
随着用户对网络技术性价比与开放性等要求提升,以及适应新的形式下运营工作需要,控制网络出现了多种技术并存的局面,不同技术之间呈现出融合的趋势。
该文就列车控制网络技术的现状与发展方向分析加以简要阐述。
关键词:列车控制网络技术现状发展方向分析中图分类号:U284 文献标识码:A 文章编号:1674-098X(2017)04(b)-0004-02列车通信网络是一套综合的通信系统,具有设备连接、信息共享、监测诊断等功能。
经过长期的发展,技术已经成熟,并成为了关键的技术之一。
在干线铁路与城市轨道交通中广泛应用,与其他的通信方式相比,也能够更好地满足通信要求。
1 列车通信网络的发展在20世纪80年代初,微处理器技术开始迅速的发展并普及,计算机开始应用于轨道交通。
在最初的应用阶段,微处理器面对的是单个设备。
随着控制设备数量增加。
原有技术已经不能满足发展的需要,从而出现了通信总线网络。
而到了90年代,为了满足动车与机车组重联控制的需要,列车总线产生。
大型的铁路公司以牵引系统作为基础,通信系统为钮带,推出了覆盖制动、辅助、牵引、诊断、显示等方面的通信控制系统。
与此同时车载微机也在发展,集内部测控与信息处理于一体的通信网诞生。
在1988年国际电工委成立了工作组,希望制定一套通信标准,标准是开放的,目的是各种机道车辆能够相互挂联,且电子可编程设备可互换。
在第二年的6月,TNC标准草案就成为了国际标准。
该草案总共包括7个方面内容。
我国列车通信网络标准制定工作始于90年代。
在铁道部门开展研发工作的同时,相关单位也在进行自我研发。
涉及到的领域有现场总线、局域网、通信介质、TCN,通信协议等。
经过长期研发工作,拥有自主产权知识的网络控制技术应用范围不断扩大,在积累并总结经验的基础上,进一步发展,已经达到了世界先进水平。
3北方交通大学经管学院 博士生,铁道科学研究院通信信号研究所 研究员,100081 北京 33铁道科学研究院通信信号研究所 研究员,100081 北京专论与综述中国铁路列控系统现状及发展刘虎兴3 范 明33摘要:中国铁路列控系统(CT CS )的发展经历了一个漫长而曲折的过程,对这一过程进行了全面分析,提出应认真总结几十年来我国ATP 发展的经验教训,积极研究引进的新技术。
并提出实行等级配置的CT CS 发展建议。
关键词:铁路 列车控制 建议Abstract :The development of CT CS ev olved with turns and twists.Based on thorough analysis ,the experi 2ence and less on about the development of ATP in our country over the past decades were sumed up.And new technologies im ported required researching enthusiastically.Als o a proposal of constituting hierarchical config 2uration to develop CT CS were put forward.K ey w ords :Railway ,T rain control ,Proposal 安全和效率是铁路运输生产永恒的主题,通信信号系统就是这个主题的重要组成部分。
日本于1964年交付使用了世界上第一条高速铁路———东海道新干线,其以机控为主、设备优先的列车自动控制系统,使列车在高速度、高密度运行的条件下,安全运行30多年。
法国的UT 列车超速防护系统在法国有着成熟的运用经验。
我国的郑武、京郑线引进了UM712T VM300系统,加快了我国列控技术的发展。
列控系统的定义什么是列控系统?列控系统是指铁路、地铁及轻轨等交通运输行业所使用的一种集中控制系统,用于实现对列车运行的监控、指挥和调度。
它是铁路运输的重要组成部分,通过控制信号、轨道电路和车站设备等,确保列车的安全、快速、准点运行。
列控系统的组成与功能1. 联锁系统列控系统的核心组成部分是联锁系统,它负责监控和控制列车在轨道上的运行状态。
联锁系统由信号接发器、车站设备和信号设备等组成,它通过联锁逻辑和相关设备的联动,确保列车按照正确的路线行驶,同时避免碰撞、追尾等事故的发生。
2. 自动闭塞系统自动闭塞系统是列控系统的一个重要组成部分,它利用轨道电路、电缆和信号设备等,实现列车之间的安全间隔控制和通信。
通过自动闭塞系统,列车的运行速度可以自动调整,确保列车之间的安全距离,保证列车运行的安全性。
3. 自动驾驶系统部分列控系统还配备了自动驾驶系统,用于实现列车的自动驾驶。
自动驾驶系统可以通过预设的车站和轨道信息,自动控制列车的起停、加速和减速等操作。
它可以提高列车运行的准确性和效率,减少人为操作的失误。
4. 通信指挥系统列控系统中的通信指挥系统,用于实现列车与调度中心之间的信息传递和命令下达。
调度员可以通过通信指挥系统监控列车的运行情况,灵活调度列车的发车、停站和运行速度等,保障运输的及时性和顺畅性。
列控系统的优势与应用1. 提高运输效率列控系统通过自动化的调度和控制方式,可以减少列车之间的间隔时间,提高列车的运行速度和运输能力。
它可以根据实际需求智能调度列车的发车间隔和运行速度,最大限度地提高运输效率。
2. 提高运输安全列控系统的主要目标是确保列车的安全运行,通过联锁和自动闭塞等控制手段,可以有效避免列车之间的碰撞、追尾等事故。
此外,列控系统还可以通过监控列车的运行状态和及时响应异常情况,提供紧急停车等安全保障措施。
3. 减少能源消耗列控系统可以通过精确控制列车的运行速度和起停操作,减少能源的消耗。
铁路由于先天的综合优势,全天候、占地少、运量大、能耗低、速度快、安全性好、性价比高,必然成为国家综合交通运输体系中的骨干。
随着高速铁路的兴起,对铁路通信信号在安全和功能上提出了更高的新要求, CTCS-2及CTCS-3级列控系统已经实际应用于当今的客运专线上。
列控中心(TCC)是我国CTCS-2级列控系统地面信号控制的核心设备,实现控制有源应答器的报文输出和临时限速的核对与执行,还负责ZPW-2000A/K轨道电路的编码、区间信号机点灯逻辑、站间通信、区间及站内轨道电路改方等逻辑功能,担负着列车行车安全的重大责任。
TCC同时也是CTCS-3级列控系统地面信号控制的降级备用设备,为列车提供行车命令,保障行车安全。
在以往的列控中心仿真系统中,主要存在两个问题:其一是没有对站内编码逻辑进行处理,基本上将站内简化为区间来运行,造成的结果是整个仿真系统不能对侧线运行进行模拟;其二是不能智能的对设计院提供的规定格式的基础数据表进行处理,如果要完整的模拟站内的正线、侧线运行,要手动填写很多配置文件,穷举某一个站所有的进路相关信息,更换站场时,需要重新填写配置文件,工作量大且容易出错,大大的降低了程序的通用性。
本论文介绍了CTCS-2级列控系统的国内外研究现状及其主要由车载系统和地面系统组成。
重点分析和研究了CTCS-2级地面子系统中列控中心的功能,站内及区间的编码规则和点灯控制。
以Visual C++6.0为开发环境,结合CTCS-2级列控中心工作原理、区间及站内的编码设计规则、点灯控制及相应技术文件,设计出CTCS-2级列控中心仿真子系统。
利用计算机仿真技术,结合实际线路条件及车载的控车情况,模拟列控中心的各种功能,不但可以大大降低试验成本,又可以在一定意义上为提高行车效率提供数据依据,具有重要意义。
列控系统——浅论中国铁路通信信号技术发展方向列控系统——浅论中国铁路通信信号技术发展方向第45期铁路通信专刊文/铁道部运输局刘胜利铁路由于先天的综合优势,全天候、占地少、运量大、能耗低、速度快、安全性好、性价比高,必然成为国家综合交通运输体系中的骨干。
《ctcs-3级列控系统发展历程及技术创新》2023-10-26CATALOGUE目录•CTCS-3级列控系统发展历程•CTCS-3级列控系统技术创新•CTCS-3级列控系统应用现状及问题•CTCS-3级列控系统未来发展趋势及展望•CTCS-3级列控系统典型案例分析01CTCS-3级列控系统发展历程2004年中国铁路开始引进法国TVM-300系统,并将其应用于京沪高铁。
2006年中国铁路开始引进欧洲ETCS-1系统,并将其应用于武广高铁。
2009年中国铁路开始引进日本ATC系统,并将其应用于沪宁高铁。
引进阶段中国铁路开始对引进的TVM-300、ETCS-1和ATC系统进行技术消化吸收。
2010年中国铁路成功研发出CTCS-3级列控系统,并应用于京津、郑西高铁。
2012年技术消化吸收阶段032018年中国铁路成功研发出CTCS-3级列控系统升级版,提高了安全性能和可靠性,并应用于“八纵八横”高铁网。
技术创新阶段012013年中国铁路开始对CTCS-3级列控系统进行技术创新,引入了智能感知、大数据分析等技术。
022015年中国铁路成功研发出新一代CTCS-3+ATO列控系统,并应用于京沪、沪杭高铁。
02CTCS-3级列控系统技术创新信号系统升级是CTCS-3级列控系统技术创新的重要方面之一,旨在提高列控系统的安全性和效率。
详细描述信号系统升级包括采用先进的计算机技术、网络通信技术和信息安全技术,实现列车与地面设备之间的信息传输和处理,提供列车控制、监测、维护和管理的综合功能。
升级后的信号系统具有更高的可靠性和安全性,能够适应不同线路和运营条件的需求。
总结词信号系统升级VS轨道电路的升级改造是CTCS-3级列控系统技术创新的另一个重要方面,旨在提高轨道电路的可靠性和安全性。
轨道电路升级改造采用先进的轨道电路技术和设备,提高轨道电路的传输速度、可靠性和安全性。
同时,升级改造后的轨道电路能够适应不同线路的运营条件,提供更高的列车控制精度和运营效率。
中国铁路列控系统现状及发展
中国铁路列控系统是中国国家铁路局负责管理的,用于控制铁路交通运行的系统。
随着国家经济的发展,铁路系统的规模不断扩大,列车数量也逐渐增多,这就需要更加先进和高效的列控系统来保证铁路交通的安全性和稳定性。
目前,中国铁路列控系统采用的是CTC系统(Centralized Traffic Control System),这是一种集中式的列车运行控制系统,主要包括调度控制、车站设备、通信系统和信号系统等几个主要部分。
该系统不仅可以实现对铁路车辆的控制和监视,还可以协调多个区域的铁路交通,确保列车的运行路线安全和高效,并且能够支持高速动车组、城际列车等多种车型的运行。
近年来,中国铁路列控系统取得了一系列的技术突破和进步。
比如大面积采用自动化控制系统,进一步提高了系统的智能化和自动化程度,减少了人为因素的干扰和错误。
此外,铁路列车的自动化驾驶也有了突破,有望实现列车的自动行驶,进一步提高了列车的安全性和运行效率。
在未来,中国铁路列控系统将会面临更多的挑战和压力。
一方面,随着轨道交通在中国的快速发展,铁路系统需要加强对安全性和可靠性的保障,尤其是在高速运行和复杂环境下的情况下。
另一方面,需要不断改进和优化列控系统的技术,以更好地解决运行过程中的各种问题和应对相关风险。
总之,中国铁路列控系统的发展不仅关乎铁路交通的安全和稳定运行,也与国家经济和社会发展息息相关。
因此,加强铁路列控系统的技术创新和研发,并保持其先进和高效的技术水平是十分重要和必要的。
中国铁路列控系统技术及发展趋势赵德生【摘要】目前,中国列车运行控制系统技术体系分为5级:CTCS-0级、CTCS-1级、CTCS-2级、CTCS-3级、CTCS-4级列控系统,衍生列控系统有3种:CTCS-0+列控系统(试验阶段)、CTCS-2+ATO列控系统(应用阶段)、CTCS-3+ ATO(研究阶段).文章首先介绍了CTCS-0+列控系统和CTCS-2+ATO列控系统的系统需求、总体技术方案和技术原则,然后介绍了目前技术成熟的CTCS-0、CTCS-2和CTCS-3列控系统的组成、系统原理和各子系统功能,提出了一种基于无线通信的CTCS-1列控系统总体技术方案设想,最后分析了中国列控系统未来的发展趋势,并总结我国下一代CTCS-4列控系统所用到的关键技术.【期刊名称】《高速铁路技术》【年(卷),期】2018(009)001【总页数】5页(P10-14)【关键词】列控系统;LKJ;通信;ATO【作者】赵德生【作者单位】南京铁道职业技术学院, 南京210031【正文语种】中文【中图分类】U284.2列控系统由地面设备和车载设备组成,利用点式应答器、ZPW-2000A、RBC等地面设备提供的线路信息、目标距离和进路状态,列控车载计算机生成列车允许速度控制模式曲线,通过与列车速度的实时比校,如超速后可及时限速,是确保行车安全的信号系统。
借鉴欧洲ETCS列控系统的发展思路和其他国外高速铁路列控系统运营经验,结合我国铁路运输特点和特色,遵循全路统一规划的原则,原铁道部确定构建中国的列车运行控制系统技术体系(CTCS)[1-2]。
CTCS列控系统应用分为5级:CTCS-0级、CTCS-1级、CTCS-2级、CTCS-3级、CTCS-4级列控系统,目前衍生列控系统共3种:CTCS-0+(试验阶段)、CTCS-2+ATO(应用阶段)、CTCS-3+ATO(研究阶段)。
根据线路允许速度选用CTCS列控系统装备等级,250 km/h以下铁路采用CTCS-2级列控系统,250 km/h铁路宜采用 CTCS-3级列控系统,300 km/h铁路采用CTCS-3级列控系统。
列车运行控制系统的发展作者:刘志红来源:《硅谷》2009年第01期[摘要]在介绍国外列车运行控制系统研究的历史进程和基本情况的基础上,对其中具有代表性的研究成果作较为详细的分析和评价。
最后介绍中国列车运行控制系统的发展概况及对发展趋势提出了若干建议。
[关键词]铁路列车运行控制系统铁路运输中图分类号:TP2 文献标识码:A 文章编号:1671-7597(2009)0110107-01自19世纪铁路诞生以来,如何控制铁路运输的安全就一直是世界各国铁路运输业面临的主要课题,而列车运行安全是列车运行控制的核心。
一、列车运行控制系统的发展简史19世纪中叶出现火车后,立即就有人研究如何控制火车安全运行问题。
最早的年代,为了保证列车的安全,采用早期人骑马作为列车运行先导,以后又用过在一定距离设置导运人员,挥旗来表示列车可否安全前行等方法。
1830年在英国开始第一次应用横木式带灯光的信号机。
1841年英国人提出闭塞电报机专利,并于1851年在英国铁路获得普及应用,以后逐渐发展为电话、路牌、路签构成闭塞系统。
自19世纪末出现采用钢轨作为导体来传递电信号的轨道电路出现后,铁路区间行车控制进入了“基于轨道电路的列车运行控制(Track Circuit Based Train Control,TBTC)”时代。
但轨道电路本身具有一些不足和矛盾影响正确接收信息。
随着科学技术的发展,人们提出一种新的设想,采用通信方法来实现信号的传递,这就产生了以通信为基础的列车控制系统(Communication Based Train Control,CBTC)。
二、国外发展概况从各国列车运行控制系统的发展过程看,大多数国家都是在原有装备的基础上进行技术改造,不断增加新功能,逐步向更高的级别发展。
下面介绍具有代表性的欧洲列车运行控制系统。
欧洲人花了10年时间研究ETCS,最初的目的是为了解决欧洲境内铁路运输的互联互通问题。
没有ETCS,列车泛欧运行不仅要安装多套车载设备,极大地提高成本,而且运行的安全性和可靠性也难以保障。