塑性加工力学概述
- 格式:ppt
- 大小:8.85 MB
- 文档页数:42
塑性力学的基本概念和应用塑性力学是力学学科中的一个重要领域,研究物体在超过其弹性限度之后发生的塑性变形和力学行为。
它在工程领域中有着广泛的应用,可以用于设计和分析各种结构和材料。
本文将介绍塑性力学的基本概念和应用。
一、塑性力学的基本概念塑性力学研究材料在受力过程中的变形行为,重点关注材料的塑性变形和它们与应力应变关系之间的联系。
以下是塑性力学中的几个基本概念:1. 弹性和塑性:在外力作用下,材料会产生变形。
当外力移除后,材料能够完全恢复到其初始形状,这种变形称为弹性变形。
而当外力作用超过了材料的弹性限度时,材料会发生不可逆的塑性变形,导致永久性的形变。
2. 屈服点和屈服应力:材料在受力过程中,当应力达到一定数值时会开始产生塑性变形,此时的应力称为屈服应力。
屈服点是应力-应变曲线上的一个特定点,表示材料开始发生塑性变形的阈值。
3. 工程应力应变和真实应力应变:工程应力指材料在不考虑变形前尺寸的情况下受到的力与单位面积的比值,工程应变指材料在变形前尺寸和力的情况下的应变与原始尺寸比值。
真实应力和真实应变则考虑了材料在受力过程中的变形,分别是力和应变与变形的比值。
二、塑性力学的应用塑性力学在工程领域中有着广泛的应用,以下是其中几个典型的应用。
1. 金属成形加工:塑性力学在金属成形加工中扮演着重要的角色。
通过了解材料的塑性特性和应力应变关系,可以优化金属成形加工的工艺参数,提高材料的形变能力,减小残余应力,提高产品质量。
2. 板结构设计:在板结构的设计中,塑性力学可以用于评估结构的稳定性和承载能力。
通过分析材料的屈服点和塑性变形情况,可以确定合适的结构尺寸和加强措施,以满足结构的强度和刚度要求。
3. 地震工程:塑性力学在地震工程中的应用也很重要。
通过研究材料的塑性行为,可以评估结构在地震荷载下的响应和潜在破坏模式。
这有助于设计出抗震性能良好的建筑和结构,并提供灾害防护措施。
4. 仿真和模拟:在产品设计和工艺优化中,塑性力学可以被应用于数值模拟和仿真。
第三篇塑性成形力学塑性成形又称为塑性加工,是材料成形的基本方法之一,它是利用材料的塑性(即产生一定的永久变形又不破坏其完整性的能力)而获得所需形状与尺寸的工件的一种加工方法。
由于塑性加工一般是在外力作用下完成的,所以又称之为压力加工.通常所见的轧制、拉拔、锻造、挤压、冲压等成形方法都属于塑性加工的范畴。
一、塑性加工的特点一般说来,在现代制造业中,塑性加工的主体是金属的塑性加工.同材料成形的其他加工方法相比,金属塑性加工的主要优点有:(1) 金属材料经过相应的塑性变形后,其结构致密,组织改善,性能提高。
因此,凡是对强度和冲击韧度要求较高的零件大都采用塑性加工的方法来制造,例如连杆,曲轴等用于传动的零件主要是通过塑性加工生产出来。
(2) 金属塑性加工主要通过材料的塑性变形来实现体积的转移与重新分配,而不是部分切除金属的多余体积,因而工件的材料利用率较高,流线分布合理,从而也进一步提高了工件的强度。
(3) 用塑性加工生产的工件可以达到较高的精度,可以实现少、无切削的要求。
例如,精密冲裁和冷挤压生产的齿轮可不经切削加工而直接使用,精锻叶片的复杂曲面可达到只需切削的精度。
(4) 塑性加工具有很高的生产率,且容易实现机械化和自动化。
例如,在12000*10kN 的机械压力机上锻造汽车用的6拐曲轴仅需40s;在曲柄压力机上压制一个汽车履盖件仅需几秒时间。
(5) 几乎所有薄壁零件,尤其是大,中型板壳零件,例如汽车履盖件,只能采用塑性加工的方法来制造。
综上所述,由于塑性加工的工艺特点,使其在现代制造业中得到了广泛的应用。
特别是在汽车、航空、家电和日用品等工业部门中,塑性加工更是主要的加工方法,但是,塑性加工也有不足的地方。
这主要表现在:(1) 同材料成形的其他加工方法相比,塑性加工的投资大,尤其是大,中型履盖件的成形模具制造过程的经费多和时间长,常常是制约新产品迅速投产的一个瓶颈。
(2) 对环境会产生一定程度的污染,但同材料成形的其他方法相比,它所造成的环境污染又是较少的。
工程力学中的弹性力学和塑性力学研究工程力学是指研究物体在外力作用下的力学行为及其相互联系的一门学科。
其中,弹性力学和塑性力学是工程力学领域中两个重要的研究分支。
本文将对弹性力学和塑性力学进行详细的介绍和比较。
一、弹性力学弹性力学是研究物体在受到外力作用后能够恢复原来形状和大小的力学行为。
弹性力学的基本假设是物体受力后所产生的应变与外力呈线性关系,即满足胡克定律。
根据弹性力学的研究结果,可以得到应变与外力的关系,从而预测物体在受力下的变形和应力分布。
弹性力学常用的模型包括钢材的线弹性模型和混凝土的双弹性模型。
线弹性模型假设材料具有线性弹性行为,即应力和应变成正比。
双弹性模型则考虑了材料在加载和卸载过程中的不同力学性质,有利于对混凝土等复杂材料的力学行为进行准确描述。
弹性力学研究的主要内容包括力的平衡条件、物体的变形与应力、弯曲、挠度、自由振动等。
在工程实践中,弹性力学的理论可以应用于建筑结构的设计、机械零部件的选择和优化以及工程材料的改进等方面。
二、塑性力学塑性力学是研究物体在外力作用下会发生永久形变的力学行为。
与弹性力学相比,塑性力学关注的是物体的超弹性行为,即超出了弹性临界点后的力学行为。
塑性力学不仅涉及到材料的变形和应力分布,还包括材料在加载后产生的塑性应变和应力的分析。
塑性力学的研究对象通常是那些在外力作用下会发生塑性形变的金属材料,如钢材、铝合金等。
在塑性力学中,常用的本构模型有线性硬化模型和可塑性理论。
线性硬化模型假设材料的塑性变形与外力呈线性关系,可塑性理论则试图通过复杂的本构方程来描述材料的力学行为,在实际工程中得到了广泛应用。
塑性力学的研究内容包括塑性变形的机理、材料的本构关系、应变硬化、材料的屈服、断裂和破坏等。
在工程实践中,塑性力学的理论可以应用于金属结构的设计、铸造和焊接工艺的优化以及塑性加工工艺的控制等方面。
三、弹性力学与塑性力学的比较弹性力学和塑性力学作为工程力学的分支,各自具有不同的特点和应用范围。
塑性力学大报告1、绪论塑性力学的简介尽管弹塑性理论的研究己有一百多年,但随着电子计算机和各种数值方法的快速发展,对弹塑性本构关系模型的不断深入认识,使得解决复杂应力条件、加载历史和边界条件下的塑性力学问题成为可能。
现在复杂应力条件下塑性本构关系的研究,已成为当务之急。
弹塑性本构模型大都是在整理和分析试验资料的基础上,综合运用弹性、塑性理论建立起来的。
建立弹塑性材料的本构方程时,应尽量反映塑性材料的主要特性。
由于弹塑性变形的现象十分复杂,因此在研究弹塑性本构关系时必须作一些假设。
塑性力学是研究物体发生塑性变形时应力和应变分布规律的学科. 是固体力学的一个重要分支。
塑性力学是理论性很强、应用范围很广的一门学科,它既是基础学科又是技术学科。
塑性力学的产生和发展与工程实践的需求是密不可分的,工程中存在的实际问题,如构件上开有小孔,在小孔周边的附近区域会产生“应力集中”现象,导致局部产生塑性变形;又如杆件、薄壳结构的塑性失稳问题,金属的压力加工问题等,均是因为产生塑性变形而超出了弹性力学的范畴,需要用塑性力学理论来解决的问题,另一方面,塑性力学能为更有效的利用材料的强度并节省材料、金属压力加工工艺设计等提供理论依据。
正是这些广泛的工程实际需要,促进了塑性力学的发展。
塑性力学的发展1913年,Mises提出了屈服准则,同时还提出了类似于Levy的方程;1924年,Hencky采用Mises屈服准则提出另一种理论,用于解决塑性微小变形问题很方便;1926年,Load证实了Levy-Mises应力应变关系在一级近似下是准确的;1930年,Reuss依据Prandtl的观点,考虑弹性应变分量后,将Prandtl所得二维方程式推广到三维方程式;1937年,Nadai研究了材料的加工硬化,建立了大变形的情况下的应力应变关系;1943年,伊柳辛的“微小弹塑性变形理论”问世,由于计算方便,故很受欢迎;1949年,Batdorf和Budiansky从晶体滑移的物理概念出发提出了滑移理论。
工程塑性力学简介工程塑性力学是研究工程材料的塑性变形和失效行为的学科。
塑性力学是固体力学的一个重要分支,它研究材料在超过其弹性限度后发生的可逆和不可逆的塑性变形现象。
工程塑性力学的应用领域广泛,包括航空航天、汽车工程、建筑工程等。
塑性与弹性的区别塑性变形和弹性变形是固体力学中两种不同的变形模式。
弹性变形是指物体受到外力作用时,在外力去除后能够完全恢复原状的变形。
而塑性变形是指物体受到外力作用时,即使外力去除后也无法完全恢复原状的变形。
在材料的应力应变曲线上,弹性区域的变形是可逆的,即应变随应力的增加呈线性关系,而塑性区域的变形是不可逆的,即应变随应力的增加不再呈线性关系。
工程塑性力学的研究内容工程塑性力学的研究内容主要包括以下几个方面:塑性力学基本理论塑性力学的基本理论包括应力应变关系、屈服准则、流动准则、应力强度分析等。
应力应变关系是描述材料在塑性变形过程中的应力与应变之间的关系,屈服准则是描述材料发生塑性变形的应力达到一定值时的条件,流动准则是描述材料在塑性变形过程中的流动行为,应力强度分析是研究材料在塑性变形过程中的应力集中现象。
塑性成形工艺塑性成形工艺是指利用塑性变形性质对材料进行加工成形的工艺。
常见的塑性成形工艺有拉伸、压缩、弯曲、挤压等。
塑性成形工艺的选择和优化可以有效提高材料的力学性能和加工效率。
塑性损伤与断裂塑性损伤与断裂是材料塑性变形过程中重要的失效形式。
塑性损伤是材料在塑性变形过程中因应力和应变的作用而导致的微观结构的破坏和变化,断裂是材料在达到其极限强度时出现的失效形式。
研究塑性损伤与断裂的机理和规律有助于提高材料的力学性能和安全性。
塑性力学在工程中的应用工程塑性力学在航空航天、汽车工程和建筑工程等领域有着广泛的应用。
在航空航天工程中,工程塑性力学的研究可以帮助优化飞机结构的设计,提高其载荷承受能力和疲劳寿命。
在汽车工程中,工程塑性力学的研究可以帮助提高车身的安全性能和碰撞能量吸收能力。
塑性加工理论与应用于金属成形的数值模拟塑性加工是一种重要的金属成形方法,广泛应用于工业生产中。
为了提高塑性加工的效率和质量,并减少试验成本和时间,数值模拟在金属成形领域中得到了广泛的应用。
本文将探讨塑性加工理论以及如何将数值模拟应用于金属成形。
塑性加工理论是基于金属的塑性变形行为来描述和预测金属在形状改变过程中的力学行为。
塑性加工理论的基础是塑性流动的本构关系,即材料应力和应变之间的关系。
最常用的塑性加工理论是屈服准则理论,它描述了材料在达到屈服点之后的流变行为。
在金属成形的过程中,应用屈服准则理论可以预测材料的流动行为,从而设计出适当的成形工艺。
然而,仅仅依靠塑性加工理论无法准确地预测金属材料的成形过程,因为金属成形过程中涉及到复杂的变形、应力分布和热机能影响等因素。
这就需要使用数值模拟方法来辅助塑性加工理论的应用。
数值模拟是利用计算机数值方法对实际物理过程进行仿真和预测的一种方法。
在金属成形领域,数值模拟可以提供有关成形过程中金属的应力、应变、温度分布等重要信息。
数值模拟方法通常包括有限元法和有限差分法。
有限元法是一种将复杂的物理问题分解为小的离散单元的方法,通过求解大量离散方程组来模拟实际问题。
有限差分法则是用差分近似替代微分方程,将连续问题转化为离散问题。
在金属成形中,数值模拟可以帮助设计和优化金属成形工艺。
通过数值模拟,可以分析不同工艺参数对成形过程中的材料流动和应力分布的影响。
例如,在压力成形过程中,数值模拟可以确定适当的压力和速度,以避免材料的不均匀变形和破裂。
此外,数值模拟还可以预测在金属成形过程中可能出现的缺陷,如裂纹、疲劳等,从而提前采取适当的措施。
然而,数值模拟在应用中也存在一些问题和挑战。
首先,金属材料的塑性行为和流动规律非常复杂,需要建立准确的本构模型来描述材料的行为。
其次,数值模拟的计算精度和计算效率需要进行平衡,因为提高模拟的精度往往会增加计算的时间和成本。
最后,数值模拟结果的验证和验证也是一个重要的问题,需要与实际试验结果进行对比和分析,以确保模拟结果的准确性和可靠性。
三个阶段:①弹性变形: OA②均匀塑性变形: AB③不均匀塑性变形: BCLl w变形后变形量的表示相对应变e 真应变 εeeInhomogeneous yielding of low carbon steel. After the initial stress maximum, the deformation in the material occurs within a narrow band that propagates the length of the gauge section before the stress rises again.Courtesy of K. H. Subramanian& A. J. DuncanPhoto of Lüders bands formation in steel, contributed by Mike Meier, Univ. of California, DavisYield plateauLubliner(2005)图1-5 主应力图塑性变形力学图应力偏张量与π平面+应力张量应力球张量偏应力张量23,,)(1,0,1)σσ=沿σ轴投影'''123121,,)(,,)333σσσ=-112(,,)333y =-- 1,1,0)21*11*00*1)21++=-直接计算长度:222'121333σ-⎛⎫⎛⎫⎛⎫=++=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭两种方式是否一致?为什么?虚线之间沿投影轴的间距对应于3D 空间的单位主应力,投影后对应单位偏应力,是单位主应力的倍0112||sin()3θσσ==S π平面这里s = σ’θ0=54.74︒应力主轴101cos()3θ=OE =22(a)(b)2312O23Courtesy of P. KellyJohann Bauschinger (1834-1893, Germany)Henri E. Tresca(1814-1885, France)”,对应于材料力学第三强度理论。
塑性加工成形过程中的力学模拟分析
塑性加工成形过程是指将材料通过塑性变形令其成为所需要的形状的过程。
可
分为拉伸成形、压缩成形、弯曲成形等多种方式,而塑性加工成形过程中的力学模拟分析旨在为生产制造提供技术支持。
首先,塑性加工成形过程需要进行材料力学分析,确定所需的成形方式和参数。
在此基础上,进行有限元模拟分析,使用有限元软件将材料的塑性加工成形过程进行数字模拟。
其次,进行力学分析的过程中需要考虑力学因素对于成形质量的影响。
比如,
对于拉伸成形,应考虑拉伸应力的大小和方向,拉伸速度等规律。
对于压缩成形,应考虑压缩应力的大小和方向,压缩速度等规律。
对于弯曲成形,应考虑弯曲应力的大小和方向,弯曲速度等规律。
然后,进行力学分析时需要考虑材料的各种特性,比如材料的硬度、韧性、弹
性等。
同时还需要考虑材料所受到的外界力量,比如机器设备施加的力量、各种工具所施加的力量等。
同时还需要考虑温度对于材料特性的影响,比如材料的延展性等。
最后,需要考虑到进行力学分析所需要的软件和计算方法。
常用的有限元分析
软件有ANSYS、ABAQUS等,对于具体问题应选择合适的软件进行模拟分析。
另外,在进行数字模拟前,还需要进行实际加工试验,以验证模拟结果的准确性。
总之,力学模拟分析是塑性加工成形过程中的非常重要的一环,它可以提供科
学的制造技术支持,为材料加工成形提供指导和优化方案,有效降低材料加工成形的成本,提高了生产效率和质量。
因此,力学分析已成为现代制造业中不可或缺的一部分。
塑性力学的概念塑性力学是固体力学的一个分支,研究材料在超过其弹性极限后的变形和断裂行为。
相对于弹性力学,塑性力学更关注材料在较大的应力下的变形行为,以及这种变形和力学性质之间的关系。
塑性力学的研究对象主要是金属等金属合金材料和一些塑性较好的非金属材料,如塑料、橡胶等。
这些材料在加载后,会由于原子层间的相对位移和克服层间原子间的势垒而发生形变。
塑性变形是一种非弹性变形,在加载后会持续残留,并且不易恢复原状。
塑性力学的核心概念是塑性的本构关系。
本构关系描述了材料应力和应变之间的关系。
塑性变形的本构关系可以用应力-应变曲线来表示,也可以用应力函数、流动规律等方式来刻画。
塑性力学可以通过实验和理论分析来确定材料的本构关系,从而预测材料的力学行为。
在塑性力学中,有几个重要的概念需要了解。
首先是屈服点,屈服点是材料在加载过程中产生塑性变形的临界点。
当材料的应力达到一定值时,开始发生持久性的塑性变形。
屈服点的大小取决于材料本身的性质和所受到的加载条件。
其次是流动规律。
塑性变形是由于材料内部的位错运动引起的,而流动规律描述了位错运动的方式和速率。
流动规律是塑性力学的基础理论,可以通过实验和数学方法来研究。
接下来是材料的硬化行为。
在材料发生塑性变形后,材料的抵抗能力会增加,这被称为材料的硬化行为。
硬化行为是由于位错的增加和移动引起的。
硬化行为的研究对于材料的加工过程和强化方法具有重要意义。
最后是断裂行为。
塑性变形会导致材料的应力集中和损伤积累,最终可能导致材料的断裂。
研究材料的断裂行为对于安全工程和结构设计具有重要意义。
塑性力学的研究方法包括实验和理论分析两个方面。
实验可以通过材料的拉伸试验、压缩试验、剪切试验等来获取塑性力学的相关参数。
理论分析则通过建立数学模型和求解相应的方程来描述材料的力学行为。
总之,塑性力学是固体力学的一个重要分支,研究材料在超过弹性极限后的塑性变形和断裂行为。
在工程领域中,塑性力学的研究对于材料加工、结构设计和安全工程都具有重要意义。
塑性力学知识点总结塑性力学是一门研究材料在超过其弹性极限后的行为和变形特性的学科。
塑性力学的研究对象包括金属、塑料、土壤、岩石等各种材料。
本文将从材料的塑性变形、应力应变关系、本构关系、塑性失稳等方面对塑性力学的知识点进行总结。
1. 塑性变形材料在受到外力作用时,如果超过了其弹性极限,就会发生塑性变形。
塑性变形是指材料在受力情况下,沿着某一方向发生永久性位移的过程。
塑性变形的特点是在加载过程中出现应力和位移的不同步现象。
塑性变形的方式有很多种,例如屈曲、扭曲、剪切等。
2. 应力应变关系在塑性变形的过程中,材料的应力应变关系是很重要的。
塑性变形时,材料的应力应变关系是非线性的,而且还与材料的屈服强度、屈服点以及变形硬化等因素有关。
在材料受到加载后,应力随着应变的增加而逐渐增加,直到达到材料的屈服点,然后应力将继续增加,但是应变仍然保持在一个限定值内。
这个称为屈服强度。
在超过屈服强度之后,应力和应变的关系将进一步发生变化。
此时,材料的塑性变形将会明显增加。
3. 本构关系材料的本构关系是指材料在受力过程中,应力和应变之间的关系。
不同的材料具有不同的本构关系。
根据塑性力学的基本假设,通常用应力张量σij和应变张量εij来描述材料的本构关系。
一般情况下,塑性材料的本构关系是非线性的,并且还与材料的应变率、应力路径、温度、压力等参数有关。
4. 塑性失稳塑性失稳是指材料在受到外力作用时,由于材料内部的应力分布不均匀而导致的材料失稳破坏的过程。
当材料发生塑性失稳时,通常会出现局部的应力集中和应变集中现象。
这将会导致材料的局部破坏,并且会扩展到整个结构中。
塑性失稳的研究对于材料的设计和使用具有重要的意义。
5. 塑性加工塑性加工是通过外力作用使原材料发生塑性变形,以获得理想的形状和性能的过程。
塑性加工的方式有拉伸、压缩、弯曲、拉拔、冷拔、冷轧等。
塑性加工的重要性在于可以提高材料的抗拉强度、硬度、韧性和延展性等性能。