第07讲 函数模型及其应用
- 格式:doc
- 大小:414.50 KB
- 文档页数:13
函数模型及其应用1.几类函数模型2.三种函数模型的性质概念方法微思考请用框图概括解函数应用题的一般步骤. 提示 解函数应用题的步骤题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)某种商品进价为每件100元,按进价增加10%出售,后因库存积压降价,若按九折出售,则每件还能获利.( × )(2)函数y =2x 的函数值比y =x 2的函数值大.( × ) (3)不存在x 0,使0xa <x n 0<log a x 0.( × )(4)“指数爆炸”是指数型函数y =a ·b x +c (a ≠0,b >0,b ≠1)增长速度越来越快的形象比喻.( × )题组二 教材改编2.某工厂一年中各月份的收入、支出情况的统计图如图所示,则下列说法中错误的是( )A.收入最高值与收入最低值的比是3∶1B.结余最高的月份是7月C.1至2月份的收入的变化率与4至5月份的收入的变化率相同D.前6个月的平均收入为40万元 答案 D解析 由题图可知,收入最高值为90万元,收入最低值为30万元,其比是3∶1,故A 正确;由题图可知,7月份的结余最高,为80-20=60(万元),故B 正确;由题图可知,1至2月份的收入的变化率与4至5月份的收入的变化率相同,故C 正确;由题图可知,前6个月的平均收入为16×(40+60+30+30+50+60)=45(万元),故D 错误.3.生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品x 万件时的生产成本为C (x )=12x 2+2x +20(万元).一万件售价为20万元,为获取更大利润,该企业一个月应生产该商品数量为 万件. 答案 18解析 利润L (x )=20x -C (x )=-12(x -18)2+142,当x =18时,L (x )有最大值.4.用长度为24的材料围一矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为 . 答案 3解析 设隔墙的长度为x (0<x <6),矩形面积为y , 则y =x ×24-4x2=2x (6-x )=-2(x -3)2+18,∴当x =3时,y 最大.5.一枚炮弹被发射后,其升空高度h 与时间t 的函数关系为h =130t -5t 2,则该函数的定义域是 . 答案 [0,26]解析 令h ≥0,解得0≤t ≤26,故所求定义域为[0,26]. 题组三 易错自纠6.某市生产总值连续两年持续增加.第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为 . 答案(p +1)(q +1)-1解析 设年平均增长率为x ,则(1+x )2=(1+p )(1+q ), ∴x =(1+p )(1+q )-1.7.已知某种动物繁殖量y (只)与时间x (年)的关系为y =a log 3(x +1),设这种动物第2年有100只,到第8年它们发展到 只. 答案 200解析 由题意知100=a log 3(2+1),∴a =100, ∴y =100log 3(x +1).当x =8时,y =100log 39=200.题型一 用函数图像刻画变化过程1.高为H ,满缸水量为V 的鱼缸的轴截面如图所示,其底部破了一个小洞,满缸水从洞中流出,若鱼缸水深为h 时水的体积为v ,则函数v =f (h )的大致图像是( )答案 B解析v=f(h)是增函数,且曲线的斜率应该是先变大后变小,故选B.2.设甲、乙两地的距离为a(a>0),小王骑自行车匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y和其所用的时间x的函数图像为()答案 D解析y为“小王从出发到返回原地所经过的路程”而不是位移,故排除A,C.又因为小王在乙地休息10分钟,故排除B,故选D.3.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程.下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油量最多C.甲车以80千米/时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/时,相同条件下,在该市用丙车比用乙车更省油答案 D解析根据图像所给数据,逐个验证选项.根据图像知,当行驶速度大于40千米/时时,消耗1升汽油,乙车最多行驶里程大于5千米,故选项A错;以相同速度行驶时,甲车燃油效率最高,因此以相同速度行驶相同路程时,甲车消耗汽油最少,故选项B错;甲车以80千米/时的速度行驶时燃油效率为10千米/升,行驶1小时,里程为80千米,消耗8升汽油,故选项C 错;最高限速80千米/时,丙车的燃油效率比乙车高,因此相同条件下,在该市用丙车比用乙车更省油,故选项D 对. 思维升华 判断函数图像与实际问题变化过程相吻合的两种方法(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图像. (2)验证法:根据实际问题中两变量的变化快慢等特点,结合图像的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案. 题型二 已知函数模型的实际问题例1 (1)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足函数关系p =at 2+bt +c (a ,b ,c 是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为 分钟.答案 3.75解析 根据图表,把(t ,p )的三组数据(3,0.7),(4,0.8),(5,0.5)分别代入函数关系式, 联立方程组得⎩⎪⎨⎪⎧0.7=9a +3b +c ,0.8=16a +4b +c ,0.5=25a +5b +c ,消去c 化简得⎩⎪⎨⎪⎧7a +b =0.1,9a +b =-0.3,解得⎩⎪⎨⎪⎧a =-0.2,b =1.5,c =-2.所以p =-0.2t 2+1.5t -2=-15⎝⎛⎭⎫t 2-152t +22516+4516-2=-15⎝⎛⎭⎫t -1542+1316,所以当t =154=3.75时,p 取得最大值,即最佳加工时间为3.75分钟.(2)某商场从生产厂家以每件20元的价格购进一批商品,若该商品零售价定为p 元,销售量为Q 件,则销售量Q (单位:件)与零售价p (单位:元)有如下关系:Q =8 300-170p -p 2,则最大毛利润为(毛利润=销售收入-进货支出)( ) A.30元 B.60元 C.28 000元 D.23 000元答案 D解析设毛利润为L(p)元,则由题意知L(p)=pQ-20Q=Q(p-20)=(8 300-170p-p2)(p-20)=-p3-150p2+11 700p-166 000,所以L′(p)=-3p2-300p+11 700.令L′(p)=0,解得p=30或p=-130(舍去).当p∈(0,30)时,L′(p)>0,当p∈(30,+∞)时,L′(p)<0,故L(p)在p=30时取得极大值,即最大值,且最大值为L(30)=23 000.思维升华求解所给函数模型解决实际问题的关注点(1)认清所给函数模型,弄清哪些量为待定系数.(2)根据已知利用待定系数法,确定模型中的待定系数.(3)利用该模型求解实际问题.跟踪训练1(1)拟定甲、乙两地通话m分钟的电话费(单位:元)由f(m)=1.06(0.5[m]+1)给出,其中m>0,[m]是不超过m的最大整数(如[3]=3,[3.7]=3,[3.1]=3),则甲、乙两地通话6.5分钟的电话费为元.答案 4.24解析∵m=6.5,∴[m]=6,则f(6.5)=1.06×(0.5×6+1)=4.24.(2)某工厂生产某种产品固定成本为2 000万元,并且每生产一单位产品,成本增加10万元.又知总收入K是单位产品数Q的函数,K(Q)=40Q-120Q2,则总利润L(Q)的最大值是万元. 答案 2 500解析L(Q)=40Q-120Q 2-10Q-2 000=-120Q2+30Q-2 000=-120(Q-300)2+2 500.则当Q=300时,L(Q)的最大值为2 500万元.题型三构建函数模型的实际问题命题点1构造一次函数、二次函数模型例2(1)某航空公司规定,乘飞机所携带行李的质量x(kg)与其运费y(元)之间的关系由如图所示的一次函数图像确定,那么乘客可免费携带行李的质量最大为kg.答案 19解析 由图像可求得一次函数的解析式为y =30x -570,令30x -570=0,解得x =19. (2)在某种新型材料的研制中,实验人员获得了下列一组实验数据,现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是( )A.y =2x -2B.y =12(x 2-1)C.y =log 2xD.y =12log x答案 B解析 由题中表可知函数在(0,+∞)上是增函数,且y 的变化随x 的增大而增大的越来越快,分析选项可知B 符合,故选B.命题点2 构造指数函数、对数函数模型例3 一片森林原来面积为a ,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的22. (1)求每年砍伐面积的百分比;(2)到今年为止,该森林已砍伐了多少年? 解 (1)设每年降低的百分比为x (0<x <1), 则a (1-x )10=12a ,即(1-x )10=12,解得x =1-11012⎛⎫⎪⎝⎭. (2)设经过m 年剩余面积为原来的22, 则a (1-x )m =22a ,即1012m ⎛⎫ ⎪⎝⎭=1212⎛⎫ ⎪⎝⎭,即m 10=12,解得m =5. 故到今年为止,该森林已砍伐了5年. 引申探究若本例的条件不变,试计算:今后最多还能砍伐多少年? 解 设从今年开始,以后砍了n 年, 则n 年后剩余面积为22a (1-x )n . 令22a (1-x )n ≥14a ,即(1-x )n ≥24, 1012n ⎛⎫ ⎪⎝⎭≥3212⎛⎫⎪⎝⎭,即n 10≤32,解得n ≤15. 故今后最多还能砍伐15年. 命题点3 构造y =x +ax(a >0)型函数例4 (1)某汽车运输公司购买了一批豪华大客车投入营运,据市场分析,每辆客车营运的总利润y (万元)与营运年数x 的关系如图所示(抛物线的一段),则为使其营运年平均利润最大,每辆客车营运年数为.答案 5解析 根据图像求得y =-(x -6)2+11, ∴年平均利润yx=12-⎝⎛⎭⎫x +25x , ∵x +25x ≥10,当且仅当x =5时等号成立.∴要使平均利润最大,客车营运年数为5.(2)某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边夹角为60°(如图),考虑防洪堤坚固性及石块用料等因素,设计其横断面要求面积为9 3 平方米,且高度不低于 3 米.记防洪堤横断面的腰长为x 米,外周长(梯形的上底线段BC 与两腰长的和)为y 米.要使防洪堤的上面与两侧面的水泥用料最省(即横断面的外周长最小),则防洪堤的腰长x =米.答案 2 3解析 由题意可得BC =18x -x2(2≤x <6),∴y =18x +3x 2≥218x ×3x2=6 3. 当且仅当18x =3x2(2≤x <6),即x =23时等号成立.命题点4 构造分段函数模型例5 已知某公司生产某款手机的年固定成本为40万美元,每生产1万只还需另投入16万美元.设该公司一年内共生产该款手机x 万只并全部销售完,每万只的销售收入为R (x )万美元,且R (x )=⎩⎪⎨⎪⎧400-6x ,0<x ≤40,7 400x-40 000x 2,x >40.(1)写出年利润W (万美元)关于年产量x (万只)的函数解析式;(2)当年产量为多少万只时,该公司在该款手机的生产中所获得的年利润最大?并求出最大年利润.解 (1)当0<x ≤40时,W =xR (x )-(16x +40)=-6x 2+384x -40, 当x >40时,W =xR (x )-(16x +40)=-40 000x -16x +7 360.所以W =⎩⎪⎨⎪⎧-6x 2+384x -40,0<x ≤40,-40 000x -16x +7 360,x >40.(2)①当0<x ≤40时,W =-6(x -32)2+6 104, 所以W max =W (32)=6 104;②当x >40时,W =-40 000x -16x +7 360,由于40 000x+16x ≥240 000x×16x =1 600, 当且仅当40 000x =16x ,即x =50∈(40,+∞)时,取等号,所以W 取最大值5 760.综合①②,当年产量为32万只时,W 取最大值6 104万美元.思维升华 构建数学模型解决实际问题,要正确理解题意,分清条件和结论,理顺数量关系,将文字语言转化成数学语言,建立适当的函数模型,求解过程中不要忽略实际问题对变量的限制.跟踪训练2 (1)某化工厂生产一种溶液,按市场要求杂质含量不超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少13,至少应过滤 次才能达到市场要求.(参考数据:lg2≈0.301 0,lg 3≈0.477 1) 答案 8解析 设至少过滤n 次才能达到市场要求, 则2%⎝⎛⎭⎫1-13n ≤0.1%,即⎝⎛⎭⎫23n ≤120, 所以n lg 23≤-1-lg 2,所以n ≥7.39,所以n =8.(2)大学毕业生小赵想开一家服装专卖店,经过预算,该门面需要装修费为20 000元,每天需要房租、水电等费用100元,受经营信誉度、销售季节等因素的影响,专卖店销售总收益R (元)与门面经营天数x 的关系是R (x )=⎩⎪⎨⎪⎧400x -12x 2,0≤x ≤400,80 000,x >400,则当总利润最大时,该门面经营的天数是 . 答案 300解析 由题意,总利润y =⎩⎪⎨⎪⎧400x -12x 2-100x -20 000,0≤x ≤400,60 000-100x ,x >400, 当0≤x ≤400时,y =-12(x -300)2+25 000,所以当x =300时,y max =25 000; 当x >400时,y =60 000-100x <20 000.综上,当门面经营的天数为300时,总利润最大为25 000元.用数学模型求解实际问题数学抽象是指舍去事物的一切物理属性,得到数学研究对象的思维过程,主要包括从数量,图形关系中抽象出数学概念,并且用数学符号和术语予以表征.例 (1)调查表明,酒后驾驶是导致交通事故的主要原因,交通法规规定,驾驶员在驾驶机动车时血液中酒精含量不得超过0.2 mg /mL.某人喝酒后,其血液中酒精含量将上升到3 mg/mL ,在停止喝酒后,血液中酒精含量以每小时50%的速度减少,则至少经过 小时他才可以驾驶机动车.(精确到小时) 答案 4解析 设n 小时后他才可以驾驶机动车,由题意得3(1-0.5)n ≤0.2,即2n ≥15,故至少经过4小时他才可以驾驶机动车.(2)已知某房地产公司计划出租70套相同的公寓房.当每套房月租金定为3 000元时,这70套公寓房能全部租出去;当月租金每增加50元时(设月租金均为50元的整数倍),就会多一套房子不能出租.设已出租的每套房子每月需要公司花费100元的日常维修等费用(设没有出租的房子不需要花这些费用),则要使公司获得最大利润,每套房月租金应定为 元. 答案 3 300解析 设利润为y 元,租金定为3 000+50x (0≤x ≤70,x ∈N )元.则y =(3 000+50x )(70-x )-100(70-x )=(2 900+50x )(70-x )=50(58+x )(70-x )≤50⎝⎛⎭⎫58+x +70-x 22,当且仅当58+x =70-x ,即x =6时,等号成立,故每月租金定为3 000+300=3 300(元)时,公司获得最大利润.素养提升 例题中通过用字母表示变量,将酒后驾车时间抽象为不等式问题,将租房最大利润抽象为函数的最值问题.1.某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C 与时间t (年)的函数关系图像正确的是( )答案 A解析 前3年年产量的增长速度越来越快,说明呈高速增长,只有A ,C 图像符合要求,而后3年年产量保持不变,故选A.2.某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.注:“累计里程”指汽车从出厂开始累计行驶的路程. 在这段时间内,该车每100千米平均耗油量为( )A.6升B.8升C.10升D.12升 答案 B解析 5月1日到5月15日,汽车行驶了35 600-35 000=600(千米),实际耗油48升,所以该车每100千米平均耗油量为486=8(升).3.将进货单价为80元的商品按90元一个出售时,能卖出400个,已知这种商品每涨价1元,其销售量就要减少20个,为了赚得最大利润,每个售价应定为( ) A.85元 B.90元 C.95元 D.100元答案 C解析 设每个售价定为x 元,则利润y =(x -80)[400-(x -90)·20]=-20·[(x -95)2-225],∴当x =95时,y 最大.4.国家规定某行业征税如下:年收入在280万元及以下的税率为p %,超过280万元的部分按(p +2)%征税,有一公司的实际缴税比例为(p +0.25)%,则该公司的年收入是( ) A.560万元 B.420万元 C.350万元 D.320万元 答案 D解析 设该公司的年收入为x 万元(x >280), 则有280×p %+(x -280)(p +2)%x =(p +0.25)%,解得x =320.故该公司的年收入为320万元.5.某大型民企为激励创新,计划逐年加大研发资金投入.若该民企2016年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该民企全年投入的研发资金开始超过200万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)( ) A.2017年 B.2018年 C.2019年 D.2020年 答案 D解析 设从2016年起,过了n (n ∈N +)年该民企全年投入的研发资金超过200万元,则130×(1+12%)n ≥200,则n ≥lg2013lg 1.12≈0.30-0.110.05=3.8,由题意取n =4,则n +2 016=2 020.故选D.6.某单位为鼓励职工节约用水,作出了以下规定:每位职工每月用水不超过10 m 3的,按每立方米m 元收费;用水超过10 m 3的,超过部分加倍收费.某职工某月缴水费16m 元,则该职工这个月实际用水为( ) A.13 m 3 B.14 m 3 C.18 m 3D.26 m 3答案 A解析 设该职工用水x m 3时,缴纳的水费为y 元,由题意得y =⎩⎪⎨⎪⎧mx ,0<x ≤10,10m +(x -10)·2m ,x >10,则10m +(x -10)·2m =16m ,解得x =13.7.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =e kx +b (e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0℃的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是 小时. 答案 24解析 由题意得⎩⎪⎨⎪⎧e b=192,e 22k +b =48,∴e 22k =48192=14,∴e 11k =12,∴x =33时,y =e 33k +b =(e 11k )3·e b =⎝⎛⎭⎫123·192=18×192=24(小时). 8.某人根据经验绘制了2018年春节前后,从12月21日至1月7日自己种植的西红柿的销售量y (千克)随时间x (天)变化的函数图像,如图所示,则此人在12月26日大约卖出了西红柿 千克.答案1909解析 前10天满足一次函数关系,设为y =kx +b (k ≠0),将点(1,10)和点(10,30)代入函数解析式得⎩⎪⎨⎪⎧10=k +b ,30=10k +b ,解得k =209,b =709,所以y =209x +709,则当x =6时,y =1909.9.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为 m.答案 20解析 设内接矩形另一边长为y m ,则由相似三角形性质可得x 40=40-y40,解得y =40-x ,所以面积S =x (40-x )=-x 2+40x =-(x -20)2+400(0<x <40), 所以当x =20时,S max =400.10.“好酒也怕巷子深”,许多著名品牌是通过广告宣传进入消费者视线的.已知某品牌商品广告销售的收入R 与广告费A 之间满足关系R =a A (a 为常数),广告效应为D =a A -A .那么精明的商人为了取得最大的广告效应,投入的广告费应为 .(用常数a 表示) 答案 14a 2解析 令t =A (t ≥0),则A =t 2, ∴D =at -t 2=-⎝⎛⎭⎫t -12a 2+14a 2, ∴当t =12a ,即A =14a 2时,D 取得最大值.11.某市用37辆汽车往灾区运送一批救灾物资,假设以v km/h 的速度直达灾区,已知某市到灾区公路线长400 km ,为了安全起见,两辆汽车的间距不得小于⎝⎛⎭⎫v202 km ,那么这批物资全部到达灾区的最少时间是 h.(车身长度不计) 答案 12解析 设全部物资到达灾区所需时间为t h ,由题意可知,t 相当于最后一辆车行驶了⎣⎡⎦⎤36×⎝⎛⎭⎫v 202+400 km 所用的时间,因此,t =36×⎝⎛⎭⎫v 202+400v ≥12, 当且仅当36v 400=400v ,即v =2003时取“=”.故这些汽车以2003km/h 的速度匀速行驶时,所需时间最少,最少时间为12 h.12.一艘轮船在匀速行驶过程中每小时的燃料费与速度v 的平方成正比,且比例系数为k ,除燃料费外其他费用为每小时96元.当速度为10海里/时时,每小时的燃料费是6元.若匀速行驶10海里,当这艘轮船的速度为 海里/时时,总费用最小. 答案 40解析 设每小时的总费用为y 元, 则y =k v 2+96,又当v =10时,k ×102=6,解得k =0.06,所以每小时的总费用y =0.06v 2+96, 匀速行驶10海里所用的时间为10v 小时,故总费用为W =10v y =10v (0.06v 2+96)=0.6v +960v ≥20.6v ×960v =48,当且仅当0.6v =960v , 即v =40时等号成立.故总费用最小时轮船的速度为40海里/时.13.商家通常依据“乐观系数准则”确定商品销售价格,即根据商品的最低销售限价a ,最高销售限价b (b >a )以及实数x (0<x <1)确定实际销售价格c =a +x (b -a ).这里,x 被称为乐观系数.经验表明,最佳乐观系数x 恰好使得(c -a )是(b -c )和(b -a )的等比中项.据此可得,最佳乐观系数x = . 答案5-12解析 由题意得x =c -ab -a ,(c -a )2=(b -c )(b -a ),∵b -c =(b -a )-(c -a ), ∴(c -a )2=(b -a )2-(b -a )(c -a ), 两边同除以(b -a )2,得x 2+x -1=0, 解得x =-1±52.∵0<x <1,∴x =5-12. 14.某书商为提高某套丛书的销售量,准备举办一场展销会.据市场调查,当每套丛书售价定为x 元时,销售量可达到(15-0.1x )万套.现出版社为配合该书商的活动,决定进行价格改革,将每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为30元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的利润=售价-供货价格,问:(1)每套丛书售价定为100元时,书商能获得的总利润是多少万元? (2)每套丛书售价定为多少元时,单套丛书的利润最大?解 (1)每套丛书售价定为100元时,销售量为15-0.1×100=5(万套),此时每套供货价格为30+105=32(元),书商所获得的总利润为5×(100-32)=340(万元).(2)每套丛书售价定为x 元时,由⎩⎪⎨⎪⎧15-0.1x >0,x >0, 解得0<x <150. 依题意,单套丛书利润 P =x -⎝⎛⎭⎫30+1015-0.1x=x -100150-x-30,所以P =-⎣⎡⎦⎤(150-x )+100150-x +120.因为0<x <150, 所以150-x >0, 则(150-x )+100150-x≥2(150-x )·100150-x=2×10=20,当且仅当150-x =100150-x,即x =140时等号成立,此时,P max=-20+120=100.所以每套丛书售价定为140元时,单套丛书的利润最大,最大值为100元.15.物体在常温下的温度变化可以用牛顿冷却规律来描述:设物体的初始温度是T 0,经过一定时间t (单位:min)后的温度是T ,则T -T a =(T 0-T a )12th⎛⎫⎪⎝⎭,其中T a 称为环境温度,h 称为半衰期.现有一杯用85 ℃热水冲的速溶咖啡,放在21 ℃的房间中,如果咖啡降到37 ℃需要16 min ,那么这杯咖啡要从37 ℃降到29 ℃,还需要 min. 答案 8解析 由题意知T a =21 ℃. 令T 0=85 ℃,T =37 ℃, 得37-21=(85-21)·1612h⎛⎫⎪⎝⎭,∴h =8. 令T 0=37 ℃,T =29 ℃,则29-21=(37-21)·812t ⎛⎫⎪⎝⎭,∴t =8. 16.某禁毒机构测定,某种毒品服用后每毫升血液中的含毒量y (微克)与时间t (小时)之间近似满足如图所示的曲线.(1)写出服用毒品后y 与t 之间的函数关系式;(2)据进一步测定,每毫升血液中含毒量不少于0.50微克时会有重度躁动状态,求服用毒品后重度躁动状态的持续时间.解 (1)由题中图像,设y =⎩⎪⎨⎪⎧kt ,0≤t ≤1,⎝⎛⎭⎫12t -a ,t >1.当t =1时,由y =4,得k =4; 由⎝⎛⎭⎫121-a=4,得a =3. 所以y =⎩⎪⎨⎪⎧4t ,0≤t ≤1,⎝⎛⎭⎫12t -3,t >1.(2)由y ≥0.50,得⎩⎪⎨⎪⎧0≤t ≤1,4t ≥0.50或⎩⎪⎨⎪⎧t >1,⎝⎛⎭⎫12t -3≥0.50,解得18≤t ≤4,因此服用毒品后重度躁动状态持续4-18=318(小时).。
15 函数模型及其应用知识梳理1.几种常见的函数模型2.三种函数模型性质比较要点整合:理解解决实际应用问题的一般步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)求模:求解数学模型,得出数学结论;(4)还原:将数学问题还原为实际问题.以上过程用框图表示如下:题型一.函数模型的选择例 1.某研究所对人体在成长过程中,年龄与身高的关系进行研究,根据统计,某地区未成年人,从1岁到16岁的年龄x(岁)与身高y(米)的散点图如图,则该关系较适宜的函数模型为()A.y=ax+b B.y=a+log b xC.y=a·b x D.y=ax2+b解析:根据散点图可知,较适宜的函数模型为y=a+log b x,故选B.[答案] B选择函数模型的基本思想(1)根据数据描绘出散点图;(2)将散点根据趋势“连接”起来,得到大致走势图象;(3)根据图象与常见的基本函数的图象进行联想对比,选择最佳函数模型.但必须注意实际意义与基本图形的平移性相结合.变式1.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)的影响.根据近8年的年宣传费x i和年销售量y i(i=1,2,…,8)数据得到下面的散点图.则下列哪个作为年销售量y关于年宣传费x的函数模型最适合()A.y=ax+b B.y=a+b xC.y=a·b x D.y=ax2+bx+c解析:选B.根据散点图知,选择y=a+b x最适合,故选B.变式2.某地西红柿上市后,通过市场调查,得到西红柿种植成本Q(单位:元/100kg)与上市时间t(单位:天)的数据如下表:根据上表数据,Q与上市时间t的变化关系:Q=at+b,Q=at2+bt+c,Q=a·b t,Q=a·log b t.利用你选取的函数,求:(1)西红柿种植成本最低时的上市天数是__________;(2)最低种植成本是__________元/100kg.解析:∵随着时间的增加,种植成本先减少后增加,而且当t =60和t =180时种植成本相等,再结合题中给出的四种函数关系可知,种植成本与上市时间的变化关系应该用二次函数Q =at 2+bt +c ,即Q =a (t -120)2+m 描述,将表中数据代入可得⎩⎨⎧a (60-120)2+m =116,a (100-120)2+m =84,解得⎩⎨⎧a =0.01,m =80,∴Q =0.01(t -120)2+80,故当上市天数为120时,种植成本取到最低值80元/100kg. 答案:(1)120 (2)80题型二.函数模型的应用例2. 已知炮弹发射后的轨迹在方程y =kx -120(1+k 2)x 2(k >0)表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.[解] (1)在y =kx -120(1+k 2)x 2(k >0)中,令y =0,得kx -120(1+k 2)x 2=0. 由实际意义和题设条件知x >0,k >0.解以上关于x 的方程得x =20k 1+k 2=201k +k≤202=10,当且仅当k =1时取等号.所以炮的最大射程是10千米.(2)∵a >0,∴炮弹可以击中目标⇔存在k >0,使ka -120(1+k 2)a 2=3.2成立⇔关于k 的方程a 2k 2-20ak +a 2+64=0有正根,得⎩⎨⎧Δ=(-20a )2-4a 2(a 2+64)≥0,k 1+k 2=20a a 2>0,k 1k 2=a 2+64a 2>0,解得a ≤6.所以当a 不超过6千米时,炮弹可以击中它.已知函数模型求解实际问题的三个步骤(1)根据已经给出的实际问题的函数模型,分清自变量与函数表达式的实际意义,注意单位名称,并注意相关量之间的关系.(2)根据实际问题的需求,研究函数的单调性、最值等,从而得出实际问题的变化趋势和最优问题.(3)最后回归问题的结论.变式1.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =e kx +b (e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0 ℃的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是( )A .20小时B .22小时C .24小时D .26小时解析:选C.由已知条件,得192=e b ,所以b =ln 192.又因为48=e 22k +b =e 22k +ln 192=192e 22k =192(e 11k )2,所以e 11k =⎝⎛⎭⎫4819212=⎝⎛⎭⎫1412=12.设该食品在33 ℃的保鲜时间是t 小时,则t =e 33k +ln 192=192e 33k =192(e 11k )3=192×⎝⎛⎭⎫123=24.故选C. 变式2.某公司研发甲、乙两种新产品,根据市场调查预测,甲产品的利润与投资金额x (单位:万元)满足:f (x )=a ln x -bx +3(a ,b ∈R ,a ,b 为常数),且曲线y =f (x )与直线y =kx 在点(1,3)处相切;乙产品的利润与投资金额的算术平方根成正比,且其图象经过点(4,4).(1)分别求出甲、乙两种产品的利润与投资金额间的函数关系式;(2)已知该公司已筹集到40万元资金,并将全部投入甲、乙两种产品的研发,每种产品投资金额均不少于10万元.问怎样分配这40万元,才能使该公司获得最大利润?其最大利润约为多少万元?(参考数据:ln 10=2.303,ln 15=2.708,ln 20=2.996,ln 25=3.219,ln 30=3.401)解:(1)函数f (x )的定义域为(0,+∞)且f ′(x )=a x -b ,因为点(1,3)在直线y =kx 上,故有k =3,又曲线y =f (x )与直线y =3x 在点(1,3)处相切,故有⎩⎨⎧f ′(1)=a -b =3,f (1)=-b +3=3,得⎩⎨⎧a =3,b =0.则甲产品的利润与投资金额间的函数关系式为f (x )=3ln x +3(x >0).由题意设乙产品的利润与投资金额间的关系式为:g (x )=m x ,将点(4,4)代入上式,可得m =2,所以乙产品的利润与投资金额间的关系式为g (x )=2x (x >0).(2)设甲产品投资x 万元,则乙产品投资(40-x )万元,且x ∈[10,30],则公司所得利润为y =3ln x +3+240-x ,故有y ′=3x -140-x, 令y ′>0,解得10≤x <15,令y ′<0,解得15<x ≤30,所以x =15为函数的极大值点,也是函数的最大值,即当投入甲产品研发资金15万元,投入乙产品研发资金25万元时,公司获得利润最大.最大利润为21.124万元.题型三.建立函数模型解决实际问题例3. 围建一个面积为360 m 2的矩形场地,要求矩形场地的一面利用旧墙(需维修),其他三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2 m 的进出口,如图所示.已知旧墙的维修费用为45元/m ,新墙的造价为180元/m.设利用的旧墙长度为x m ,修建此矩形场地围墙的总费用为y 元.(1)将y 表示为x 的函数;(2)试确定x ,使修建此矩形场地围墙的总费用最少,并求出最少总费用.[解] (1)如图,设矩形中与旧墙垂直的边长为a m ,则y =45x +180(x -2)+180·2a =225x +360a -360.由已知得xa =360,得a =360x .所以y =225x +3602x -360(x >2).(2)因为x >2, 所以225x +3602x ≥2225×3602=10 800.所以y =225x +3602x -360≥10 440. 当且仅当225x =3602x 时,等号成立.即当x =24时,修建围墙的总费用最少,最少总费用是10 440元.(1)通过阅读、理解,明确问题讲的是什么,熟悉实际背景,为解题找出突破口.(2)将实际问题的文字语言转化为数学符号语言,用数学式子表达数学关系.(3)在构建数学模型时,对已知数学知识进行检索,从而认定或构建相关的数学模型. 变式1.某商场已按每件80元的成本购进某商品1 000件,根据市场预测,售价为每件100元时可全部售完,售价每提高1元销量就减少5件,若要获得最大利润,售价应定为每件__________元.解析:设售价提高x 元,获得的利润为y 元,则依题意得y =(1 000-5x )×(20+x )=-5x 2+900x +20 000=-5(x -90)2+60 500.∵0<1 000-5x ≤1 000,∴0≤x <200,故当x =90时,y max =60 500,此时售价为每件190元.答案:190变式2. 据气象中心观察和预测:发生于沿海M 地的台风一直向正南方向移动,其移动速度v (km/h)与时间t (h)的函数图象如图所示,过线段OC 上一点T (t ,0)作横轴的垂线l ,梯形OABC 在直线l 左侧部分的面积即t (h)内台风所经过的路程s (km).(1)当t =4时,求s 的值;(2)将s 随t 变化的规律用数学关系式表示出来;(3)若N 城位于M 地正南方向,且距M 地650 km ,试判断这场台风是否会侵袭到N 城,如果会,在台风发生后多长时间它将侵袭到N 城?如果不会,请说明理由.解:(1)由图象可知,直线OA 的方程是v =3t ,直线BC 的方程是v =-2t +70.当t =4时,v =12,所以s =12×4×12=24.(2)当0≤t ≤10时,s =12×t ×3t =32t 2;当10<t ≤20时,s =12×10×30+(t -10)×30=30t -150;当20<t ≤35时,s =150+300+12×(t -20)×(-2t +70+30)=-t 2+70t -550. 综上可知,s 随t 变化的规律是s =⎩⎪⎨⎪⎧32t 2,t ∈[0,10],30t -150,t ∈(10,20],-t 2+70t -550,t ∈(20,35].(3)当t ∈[0,10]时,s max =32×102=150<650,当t ∈(10,20]时,s max =30×20-150=450<650,当t ∈(20,35]时,令-t 2+70t -550=650,解得t =30或40(舍去),即在台风发生30 h 后将侵袭到N 城.。
要点梳理1.几类函数模型及其增长差异(1)几类函数模型(2) 三种增长型函数之间增长速度的比较①指数函数y=a x( a>1) 与幂函数y=x n( n>0)在区间(0 ,+∞) ,无论n 比a 大多少,尽管在x 的一定范围内a x会小于x n,但由于y=a x的增长速度快于y=x n的增长速度,因而总存在一个x0,当x>x0 时有②对数函数y=log a x ( a>1) 与幂函数y=x n( n>0)对数函数y=log a x ( a>1)的增长速度,不论 a 与n 值的大小如何总会慢于y=x n的增长速度,因而在定义域内总存在一个实数x0,使x>x0 时有__________ .由①②可以看出三种增长型的函数尽管均为增函数,但它们的增长速度不同,且不在同一个档次上,因此在(0 ,+∞)上,总会存在一个x0,使x>x0时有.2.解函数应用问题的步骤( 四步八字)2 审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;3 建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;4 求模:求解数学模型,得出数学结论;(4) 还原:将数学问题还原为实际问题的意义.以上过程用框图表示如下:注意:解决函数应用问题重点解决以下问题(1)阅读理解、整理数据:通过分析、画图、列表、归类等方法,快速弄清数据之间的关系,数据的单位等等;(2)建立函数模型:关键是正确选择自变量将问题的目标表示为这个变量的函数,建立函数的模型的过程主要是抓住某些量之间的相等关系列出函数式,注意不要忘记考察函数的定义域;(3)求解函数模型:主要是研究函数的单调性,求函数的值域、最大( 小) 值,计算函数的特殊值等,注意发挥函数图像的作用;(4)回答实际问题结果:将函数问题的结论还原成实际问题,结果明确表述出来.基础自测1.某物体一天中的温度T(单位:℃ ) 是时间t ( 单位:h) 的函数:T( t ) =t3-3t+60,t =0 表示中午12∶ 00,其后t 取正值,则下午___ 3 时的温度为.2.某工厂生产某种产品固定成本为 2 000 万元,并且每生产一单位产品,成本增加1210 万元.又知总收入K是单位产品数Q的函数,K(Q)=40Q-20Q2,则总利润L(Q) 的最大值是______ 万元.3.( 课本改编题) 某种储蓄按复利计算利息,若本金为 a 元,每期利率为r,存期是x ,本利和( 本金加利息) 为y 元,则本利和y 随存期x 变化的函数关系式是4.某公司租地建仓库,已知仓库每月占用费y1 与仓库到车站的距离成反比,而每月车载货物的运费y2与仓库到车站的距离成正比.据测算,如果在距离车站10 千米处建仓库,这两项费用y1,y2分别是2 万元和8 万元,那么要使这两项费用之和最小,仓库应建在离车站( )A.5 千米处B.4千米处 C .3 千米处D.2 千米处5.某企业第三年的产量比第一年的产量增长44%,若每年的平均增长率相同( 设为x) ,则以下结论正确的是( )A.x>22% B.x<22% C .x=22% D.x 的大小由第一年的产量确定题型分类题型一一次函数、二次函数模型1 某企业生产A,B 两种产品,根据市场调查与预测,A产品的利润与投资成正比,其关系如图1;B 产品的利润与投资的算术平方根成正比,其关系如图2(注:利润和投资单位:万元).(1)分别将A、B 两种产品的利润表示为投资的函数关系式;(2)已知该企业已筹集到18 万元资金,并将全部投入A,B 两种产品的生产.①若平均投入生产两种产品,可获得多少利润②问:如果你是厂长,怎样分配这18 万元投资,才能使该企业获得最大利润其最大利润约为多少万元探究提高(1) 在实际问题中,有很多问题的两变量之间的关系是一次函数模型,其增长特点是直线上升( 自变量的系数大于0) 或直线下降( 自变量的系数小于0) ,构建一次函数模型,利用一次函数的图像与单调性求解.(2)有些问题的两变量之间是二次函数关系,如面积问题、利润问题、产量问题等.构建二次函数模型,利用二次函数图像与单调性解决.(3)在解决二次函数的应用问题时,一定要注意定义域.变式训练1 用一根长为12 m的铝合金条做成一个“目”字形窗户的框架( 不计损耗) ,要使这个窗户通过的阳光最充足,则框架的高与宽应各为多少题型二分段函数模型2 为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,新上了把二氧化碳处理转化为一种可利用的化工产品的项目,经测算,该项目月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为13x 3-80x2+5 040 x,x∈ [120 ,144 ,y=且每处理一吨二氧化碳得到可利12x2-200x+80 000 ,x∈ [144 ,500] ,用的化工产品价值为200 元,若该项目不获利,国家将给予补偿.(1)当x∈ [200,300] 时,判断该项目能否获利如求出最大利润;如果不获利,果获利,则国家每月至少需要补贴多少元才能使该项目不亏损(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低探究提高本题的难点是函数模型是一个分段函数,由于月处理量在不同范围内,处理的成本对应的函数解析式也不同,故此类最值的求解必须先求出每个区间内的最值,然后将这些区间内的最值进行比较确定最值.变式训练2 某市居民自来水收费标准如下:每户每月用水不超过 4 吨时,每吨为元,当用水超过4 吨时,超过部分每吨元.某月甲、乙两户共交水费y 元,已知甲、乙两户该月用水量分别为5x, 3x(吨) .(1)求y 关于x 的函数;(2)若甲、乙两户该月共交水费元,分别求出甲、乙两户该月的用水量和水费.题型三指数函数、幂函数模型3 某城市现有人口总数为100 万人,如果年自然增长率为%,试解答以下问题:(1)写出该城市人口总数y(万人)与年份x(年)的函数关系式;(2)计算10 年以后该城市人口总数(精确到万人);(3)计算大约多少年以后,该城市人口将达到120 万人(精确到1 年);(4)如果20 年后该城市人口总数不超过120 万人,年自然增长率应该控制在多少(参考数据:≈, ≈,lg ≈,lg 2≈ 0 ,lg ≈,lg ≈ 9)探究提高此类增长率问题,在实际问题中常可以用指数函数模型y=N(1 +p)x(其中N 是基础数,p 为增长率,x 为时间)和幂函数模型y=a(1 +x)n(其中 a 为基础数,x 为增长率,n 为时间)的形式.解题时,往往用到对数运算,要注意与已知表格中给定的值对应求解.变式训练 3 已知某物体的温度θ (单位:摄氏度)随时间t (单位:分钟)的变化规律是:θ =m·2t+21-t(t ≥ 0,并且m>0).(1)如果m=2,求经过多少时间,物体的温度为5 摄氏度;(2)若物体的温度总不低于2 摄氏度,求m的取值范围.函数建模及函数应用问题的一般程序:第一步:审题——弄清题意,分清条件和结论,理顺数量关系;第二步:建模——将文字语言转化成数学语言,用数学知识建立相应的数学模型;第三步:求模——求解数学模型,得到数学结论;第四步:还原——将用数学方法得到的结论还原为实际问题的意义.第五步:反思回顾——对于数学模型得到的数学解,必须验证这个数学解对实际问题的合理性.方法与技巧解答数学应用题关键有两点:一是认真审题,读懂题意,理解问题的实际背景,将实际问题转化为数学问题;二是灵活运用数学知识和方法解答问题,得到数学问题中的解,再把结论转译成实际问题的答案.。
本课内容是函数的应用,它的本质就是我们学习过的函数做为模型在现实问题刻画过程中的基本操作过程和常见函数图象与性质在应用中的升华•本课内容是课本必修1中第三章的重点内容之一,课本中还渗透了函数拟合的基本思想,这也为后面高中的学习做了铺垫。
通过本节的学习,要使学生从中体会函数模型刻画现实问题的基本过程并体会函数在数学及其它地方的应用的广泛性,能初步运用函数的思想解决现实生活中的一些简单问题,函数模型本身就来源于现实,学生可以从理解知识升华到熟练应用知识,使他们能辩证地看待知识理解与知识应用间的关系,与所学的函数知识前后紧紧相扣,相辅相成【知识导图】教学过程」、导入【教学建议】导入是一节课必备的一个环节, 是为了激发学生的学习兴趣,帮助学生尽快进入学习状^态。
导入的方法很多,仅举两种方法:①情境导入,比如讲一个和本讲内容有关的生活现象;②温故知新,在知识体系中,从学生已有知识入手,揭示本节知识与旧知识的关系,帮学生建立知识网络。
二、知识讲解(考点对实解决题进行抽象题的解题过程际问题中量与量之间的关系,确定变量之间的主、被动关系,并用X、y分别表示问题中的变量;(2)建立函数模型:将变量y表示为x的函数,在中学数学内,我们建立的函数模型一般都是函数的解析式;(3 )求解函数模型:根据实际问题所需要解决的目标及函数式的结构特点正确选择函数知识求得函数模型的解,并还原为实际问题的解这些步骤用框图表示:间的关系,数据的单位等等;(2 )建立函数模型的能力:关键是正确选择自变量将问题的目标表示为这个变量的函数,建立函数的模型的过程主要是抓住某些量之间的相等关系列出函数式,注意不要忘记考察函数的定义域;(3)求解函数模型的能力:主要是研究函数的单调性,求函数的值域、最大(小)值,计算函数的特殊值等,注意发挥函数图象的作用。
类型一、用函精图象刻画变化过程例题1(1) 设甲、乙两地的距离为a(a>0),小王骑自行车以匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又以匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y和其所用的时间x的函数图象为()(2) 物价上涨是当前的主要话题,特别是菜价,我国某部门为尽快实现稳定菜价,提出四种绿色运输方案.据预测,这四种方案均能在规定的时间T内完成预测的运输任务Q,各种方案的运输总量Q与时间t的函数关系如图所示,在这四种方案中,运输效率(单位时间的运输量)逐步提高的是()答案与解析解析(1) y为“小王从出发到返回原地所经过的路程”而不是位移,故排除A, C;又因为小王在乙地休息10分钟,故排除B,故选D.(2)由运输效率(单位时间的运输量)逐步提高得,曲线上的点的切线斜率应该逐渐增大,故函数的图象应一直是下凹的,故选 B.【总结与反思】判断函数图象与实际问题变化过程相吻合的两种方法(1) 构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象.(2) 验证法:当根据题意不易建立函数模型时,则根据实际问题中两变量的变化快慢等特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.例题2 I某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图2—10中(1)的一条折线表示;西红柿的种植成本与上市时间的关系用图2—10中(2)的抛物线表示.图2—10(1)写出图中(1 )表示的市场售价与时间的函数关系式P= f (t);写出图中(2 )表示的种植成本与时间的函数关系式Q = g (t);(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(注:市场售价和种植成本的单位:元/102, kg ,时间单位:天)答案与解析f ( t )=严-兰200,、2t —300,200 ct 兰 300;(t - 150) 2+ 100, 0W W00.200(2)设t 时刻的纯收益为h (t ),则由题意得h (t ) = f (t ) - g (t ),—- t^-^175,^^<200,即 h ( t )“2002 2Lt 27t-1025,20^J< 300..200 2 2得区间[0, 200]上的最大值 100;1 2当 200v t<300 时,配方整理得 h (t )=—(t — 350) 2+ 100,所以,当 t = 300 时,h200(t )取得区间(200, 300] 上的最大值 87.5.综上,由100> 87. 5可知,h (t )在区间]0, 300] 上可以取得最大值 100,此时t = 50 , 即从二月一日开始的第 50天时,上市的西红柿纯收益最大.类型二已知函数模型的实际问题候鸟例题年都要随季节的变化而进行大规模的迁徙,研究某种鸟类的专家发现, 该种鸟类的飞行速度v (单位:m/s)与其耗氧量Q 之间的关系为v = a • blog 3Q(其中a 、b 是实数).据10统计,该种鸟类在静止的时候其耗氧量为 30个单位,而其耗氧量为90个单位时,其飞行速度为1 m/s.(1) 求出a 、b 的值;⑵若这种鸟类为赶路程,飞行的速度不能低于 2 m/s ,则其耗氧量至少要多少个单位?答案与解析(1)由题意可知,当这种鸟类静止时,它的速度为 0 m/s ,此时耗氧量为30个单位,故有a bg 30 = 0,10解:(1)由图(1)可得市场售价与时间的函数关系为由图(2)可得种植成本与时间的函数关系为当0W€00时,配方整理得h (t )=-1 200(t — 50) 2+ 100,所以,当 t = 50 时,h (t )取90即a+ b= 0;当耗氧量为90个单位时,速度为1 m/s,故a ■ blog3= 1,整理得a+ 2b10=1.3+ b= 0, a=—1,解方程组彳得*3+ 2b= 1, b= 1.Q 一、Q⑵ 由(1)知,v=—1 + log 3yo・所以要使飞行速度不低于 2 m/s,则有v>2,即一1 + log 3和》2,Q 即log 3^>3,解得Q>270.所以若这种鸟类为赶路程,飞行的速度不能低于 2 m/s,则其耗氧量至少要270个单位.【总结与反思】求解所给函数模型解决实际问题的关注点(1) 认清所给函数模型,弄清哪些量为待定系数.(2) 根据已知利用待定系数法,确定模型中的待定系数.⑶利用该模型求解实际问题.类型三构造函数模型的实际问题A B两地销售同一种品牌的汽车,在A地的销售利润(单位:万元)为y12=4.1 x —0.1 x,在B地的销售利润(单位:万元)为y2= 2x,其中x为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是()A. 10.5万元B. 11万元C. 43万元D. 43.025万元答案与解析解析设公司在A地销售该品牌的汽车x辆,则在B地销售该品牌的汽车(16 —x)辆,所以22 2 21 2 21 可得利润y= 4.1 x —0.1 x + 2(16 —x) =—0.1 x + 2.1 x + 32=—0.1( x —-^) + 0.1 X —+ 32.因为x€ [0,16],且x€ N,所以当x= 10或11时,总利润取得最大值43万元.例题2(1) 世界人口在过去40年翻了一番,则每年人口平均增长率约是(参考数据lg 2 : 0.3010,100.0075 : 1.017 )( )A. 1.5% B . 1.6% C . 1.7% D . 1.8%(2) 某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n次涨停(每次上涨10%),又经历了n次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为()A. 略有盈利B. 略有亏损C. 没有盈利也没有亏损D. 无法判断盈亏情况答案与解析答案⑴C (2)B40解析(1)设每年人口平均增长率为x,则(1 + X)= 2,两边取以10为底的对数,则40 lg(1+ x) = lg 2,所以lg(1 + x) ~0.007 5,所以100'007 5= 1 + X,得1 + x~ 1.017,所以x~ 1.7%.C⑵设该股民购进这支股票的价格为a元,贝U经历n次涨停后的价格为a(1 + 10%)n= a x 1.1 n元,经历n 次跌停后的价格为a x 1.1 n x(1 —10%)n= a x 1.1 n x0.9 n= a x(1.1 x0.9) n=0.99 n• a<a,故该股民这支股票略有亏损. B例题3某帀出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km按起步价付费);超过3 km但不超过8 km时,超过部分按每千米2.15元收费;超过8 km时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了km.答案与解析答案9解析设出租车行驶x km时,付费y元,9, 0<x<3,则y= 8 + 丄丨;〕x —v + 1, 3<x W8,v_8 + 2.15 x 5+ 2、号J x —8 + 1, x>8,由y= 22.6,解得x= 9.【总结与反思】构建数学模型解决实际问题,要正确理解题意,分清条件和结论,理顺数量关系,将文字语言转化成数学语言,建立适当的函数模型,求解过程中不要忽略实际问题对变量的限制.四、课堂运用1. 已基础方形ABCD勺边长为4,动点P从B点开始沿折线BCDA向A点运动.设点P运动的路程为x, △ ABP的面积为S,则函数S= f(x)的图象是()2. 某般空公司规定,乘飞机所携带行李的质量(kg)与其运费(元)由如图的一次函数图象确定,那么乘客可免费携带行李的质量最大为kg.3. 一个人喝了少量酒后,血液中的酒精含量迅速上升到 的酒精含量以每小时 25%的速度减少,为了保障交通安全,某地根据《道路交通安全法》规定:驾驶员血液中的酒精含量不得超过 0.09 mg/mL ,那么,此人至少经过 _______________ 小时才能开车.(精确到1小时)4. 某企业投入100万元购入一套设备,该设备每年的运转费用是 0.5万元,此外每年都要花 费一定的维护费,第一年的维护费为 2万元,由于设备老化,以后每年的维护费都比上一年 增加2万元•为使该设备年平均费用最低,该企业需要更新设备的年数为 ()A. 10 B • 11 C • 13 D • 21答案与解析1. 【答案】D【解析】依题意知当 0W x W4 时,f (x ) = 2x ;当 4<x W8 时,f (x ) = 8;当 8<x W 12 时,f (x ) = 24 — 2x , 观察四个选项知,选 D.2. 【答案】19【解析】由图象可求得一次函数的解析式为y = 30x — 570,令30x — 570= 0,解得x = 19.3. 【答案】(1)5【解析】设经过x 小时才能开车.x由题意得 0.3(1 — 25%) < 0.09 ,0.75 x < 0.3 , x > log 0.75 0.3 〜4.19.二 x 最小为 5. 4. 【答案】A【解析】设该企业需要更新设备的年数为 x ,设备年平均费用为y ,则x 年后的设备维护费用为 2 + 4 +…+ 2x = x (x + 1), 所以x 年的平均费用为100 + 0.5 x + x x + J. y = x100=x +v +1.5,A.巩固1.已知美国某手机品牌公司生产某款手机的年固定成本为40万美元,每生产1万部还需另投入16万美元.设公司一年内共生产该款手机x 万部并全部销售完,每万部的销售收入为0.3 mg/mL ,在停止喝酒后,血液中 由基本不等式得y =x + 型 + 1.5 >2x • ---- + 1.5V X=21.5,当且仅当 100即x = 10时取等号,所以选"400— 6x , 0<x w 40,(1) 写出年利润 W 万美元)关于年产量x (万部)的函数解析式;(2) 当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润.答案与解析__ 2—6x + 384x — 40, 0<x w 40, 1 答案(1) W= 40 000——16x + 7 360 , x >40.解析(1)当 0<x w 40 时,W xR (x ) — (16 x + 40)2=—6x + 384X — 40, [2 分]当 x >40 时,W xR (x ) — (16 x + 40)40 000 =— —16x + 7 360.x__ 2—6x + 384x — 40 , 0<x w 40,所以W 40 000J — x — 16x + 7 360 , x >40.2⑵①当 0<x w 40 时,W=— 6(x — 32) + 6 104 , 所以 Wax = W (32) = 6 104 ; [6 分] ②当 x >40 时,Wl=—40 000— 16x + 7 360 ,即x = 50€ (40,+^)时,取等号 所以W 取最大值为5 760.[10分] 综合①②知,当x = 32时,W 取得最大值6 104万元.拔高]1.用水清洗一堆蔬菜上残留的农药. 对用一定量的水清洗一次 的效果作如下假定:用1个单1位量的水可洗掉蔬菜上残留农药量的,用水越多洗掉的农药量也越多,但总还有农药残2留在蔬菜上.设用x 单位量的水清洗一次 以后,蔬菜上残留的农药量与本次清洗前残留的农Rx)万美兀,且 Rx) = * 7 400 x40 000,x >4°.(2) W 取得最大值6 104万元.由于40 000x+ 16x >240 000 .xx 16x = 1 600当且仅当40 000x16x ,药量之比为函数f (x).(1)试规定f ( 0)的值,并解释其实际意义;(2)试根据假定写出函数f (x)应该满足的条件和具有的性质;1(3)设f (x)= -,现有a (a> 0)单位量的水,可以清洗一次,也1 +x2可以把水平均分成2份后清洗两次,试问用哪种方案清洗后蔬菜上残留的农药量比较少?说明理由2. 有一个湖泊受污染,其湖水的容量为V立方米,每天流入湖的水量等于流出湖的水量。
函数模型及其应用考点要求1.函数的实际应用了解指数函数、对数函数以及幂函数的增长特征.知道直线上升、指数增长、对数增长等不同函数类型增长的含义.2.函数的综合应用三三种模型的增长差异在区间(0,+∞)上,尽管函数y=ax(a>1),y=logax(a>1)和y=xn(n>0)都是增函数,但它们的增长速度不同,而且不在同一个“档次”上.随着x的增大,y=ax(a>1)的增长速度越来越快,会超过并远远大于y=xn(n>0)的增长速度,而y=logax(a>1)的增长速度则会越来越慢.因此,总会存在一个x0,使得当x>x0时,有logax<xn<ax.易错点1.易忽视实际问题的自变量的取值范围,需合理确定函数的定义域.2.注意问题反馈.在解决函数模型后,必须验证这个数学结果对实际问题的合理性.函数模型意义一方面是利用已知的模型解决问题;另一方面是恰当建立函数模型,并利用所得函数模型解释有关现象,对某些发展趋势进行预测,解函数应用题的一般步骤:(1)、阅读,审题;深入理解关键字句,为便于数据的处理可用表格(或图形)外理数据,便于寻数据关系。
(2)、建模:将问题简单化、符号化,尽量借鉴标准形式,建立数学关系式。
(3)、合理求解纯数学问题:根据建立的数学模型,选择合适的数学方法,设计合理的运算途径,求出问题的解,要特别注意变量范围的限制及其他约束条件。
(4)、解释关回答实际问题:将数学的问题的答案还原为实际问题的答案,在这以前要检验,既要检验所求得的结果是否适合数学模型,又要评判所得结果是否符合实际问题的要求。
题型一运用指数模型求解1.某工厂去年十二月的产值为a,已知月平均增长率为p,则今年十二月的月产值较去年同期增长的倍数是( )A.(1+p)12-1B.(1+p)12C.(1+p)11D.12p【解析】今年十二月产值为a(1+p)12,去年十二月产值为a,故比去年增长了[(1+p)12-1]a,故选A.2.某汽车销售公司在AB两地销售同一种品牌的车在A地的销售利润(单位:万元)为y1=4.1x-0.1x2在B地的销售利润(单位:万元)为y2=2x其中x为销售量(单位:辆).若该公司在两地共销售16辆这种品牌的车则能获得的最大总利润是( )A.10.5万元B.11万元C.43万元D.43.025万元[解析]依题意设在A地销售x辆车则在B地销售(16-x)辆车所以总利润y=4.1x-0.1x2+2(16-x)=-0.1x2+2.1x+32=-0.1(x-10.5)2+0.1×10.52+32因为x∈[016]且x∈N 所以当x=10或11时ymax=43.故选C.3.(2015·广州模拟)在某个物理实验中,测量得变量x和变量y的几组数据,如下表:某科研小组研究发现:一棵水果树的产量w(单位:百千克)与肥料费用x(单位:百元)满足如下关系式:此外还需要投入其他成本(如施肥的人工费等)2x百元.已知这种水果的市场售价为16元/千克(即16百元/百千克)且市场需求始终供不应求.记该棵水果树获得的利润为L(x)(单位:百元).(1)求L(x)的函数表达式.(2)当投入的肥料费用为多少时该棵水果树获得的利润最大?最大利润是多少?分段函数模型问题求解的三个关注点(1)实际问题中有些变量间的关系不能用同一个关系式给出,而是由几个不同的关系式构成,应构建分段函数模型求解.(2)构造分段函数时,做到分段合理、不重不漏.(3)分段函数的最值是各段的最大(最小)者的最大者(最小者).题型三指数、对数函数模型1.大西洋鲑鱼每年都要逆流而上游回产地产卵.记鲑鱼的游速为vm/s鲑鱼的耗氧量的单位数为x 研究中发现v与log3(x/100)x>100成正比且当x=300时v=1/2.(1)求出v关于x的函数解析式.(2)计算一条鲑鱼的游速是3/2m/s时耗氧量的单位数.(3)当鲑鱼的游速增加1m/s时其耗氧量是原来的几倍?2.将甲桶中的aL水缓慢注入空桶乙中tmin后甲桶中剩余的水量符合指数衰减曲线y=aent.假设过5min后甲桶和乙桶中的水量相等若再过mmin后甲桶中的水只有a/4L则m的值为( )A.5B.8C.9D.10。
第 1 页 共 13 页 普通高中课程标准实验教科书—数学 [人教版] 高三新数学第一轮复习教案(讲座7)—函数模型及其应用 一.课标要求: 1.利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义; 2.收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。 二.命题走向 函数应用问题是高考的热点,高考对应用题的考察即考小题又考大题,而且分值呈上升的趋势。高考中重视对环境保护及数学课外的的综合性应用题等的考察。出于“立意”和创设情景的需要,函数试题设置问题的角度和方式也不断创新,重视函数思想的考察,加大函数应用题、探索题、开放题和信息题的考察力度,从而使高考考题显得新颖、生动和灵活。 预测2007年的高考,将再现其独特的考察作用,而函数类应用题,是考察的重点,因而要认真准备应用题型、探索型和综合题型,加大训练力度,重视关于函数的数学建模问题,学会用数学和方法寻求规律找出解题策略。 (1)题型多以大题出现,以实际问题为背景,通过解决数学问题的过程,解释问题; (2)题目涉及的函数多以基本初等函数为载体,通过它们的性质(单调性、极值和最值等)来解释生活现象,主要涉计经济、环保、能源、健康等社会现象。 三.要点精讲 1.解决实际问题的解题过程 (1)对实际问题进行抽象概括:研究实际问题中量与量之间的关系,确定变量之间的主、被动关系,并用x、y分别表示问题中的变量; (2)建立函数模型:将变量y表示为x的函数,在中学数学内,我们建立的函数模型一般都是函数的解析式; (3)求解函数模型:根据实际问题所需要解决的目标及函数式的结构特点正确选择函数知识求得函数模型的解,并还原为实际问题的解. 这些步骤用框图表示:
实际问题 函数模型
实际问题的解 函数模型的解
抽象概括 还原说明 运用函数性质 第 2 页 共 13 页
2.解决函数应用问题应着重培养下面一些能力: (1)阅读理解、整理数据的能力:通过分析、画图、列表、归类等方法,快速弄清数据之间的关系,数据的单位等等; (2)建立函数模型的能力:关键是正确选择自变量将问题的目标表示为这个变量的函数,建立函数的模型的过程主要是抓住某些量之间的相等关系列出函数式,注意不要忘记考察函数的定义域; (3)求解函数模型的能力:主要是研究函数的单调性,求函数的值域、最大(小)值,计算函数的特殊值等,注意发挥函数图象的作用。 四.典例解析
题型1:正比例、反比例和一次函数型 例1.某地区1995年底沙漠面积为95万公顷,为了解该地区沙漠面积的变化情况,进行了连续5年的观测,并将每年年底的观测结果记录如下表。根据此表所给的信息进行预测:(1)如果不采取任何措施,那么到2010年底,该地区的沙漠面积将大约变为多少万公顷;(2)如果从2000年底后采取植树造林等措施,每年改造0.6万公顷沙漠,那么到哪一年年底该地区沙漠面积减少到90万公顷?
观测时间 1996年底 1997年底 1998年底 1999年底 2000年底
该地区沙漠比原有面积增加数(万公顷) 0.2000 0.4000 0.6001 0.7999 1.0001
解析:(1)由表观察知,沙漠面积增加数y与年份数x之间的关系图象近似地为一次函数y=kx+b的图象。 将x=1,y=0.2与x=2,y=0.4,代入y=kx+b, 求得k=0.2,b=0, 所以y=0.2x(x∈N)。 因为原有沙漠面积为95万公顷,则到2010年底沙漠面积大约为 95+0.5×15=98(万公顷)。 (2)设从1996年算起,第x年年底该地区沙漠面积能减少到90万公顷,由题意得 95+0.2x-0.6(x-5)=90, 解得x=20(年)。 故到2015年年底,该地区沙漠面积减少到90万公顷。 第 3 页 共 13 页
点评:初中我们学习过的正比例、反比例和一元一次函数的定义和基本性质,我们要牢固掌握。特别是题目中出现的“成正比例”、“成反比例”等条件要应用好。
例2.(2006安徽理21)(已知函数fx在R上有定义,对任何实数0a和任何实数x,都有faxafx (Ⅰ)证明00f;
(Ⅱ)证明,0,0kxxfxhxx 其中k和h均为常数; 证明(Ⅰ)令0x,则00faf,∵0a,∴00f。 (Ⅱ)①令xa,∵0a,∴0x,则2fxxfx。 假设0x时,()fxkx()kR,则22fxkx,而2xfxxkxkx,∴2fxxfx
,即()fxkx成立。
②令xa,∵0a,∴0x,2fxxfx 假设0x时,()fxhx()hR,则22fxhx,而2xfxxhxhx,∴2fxxfx,即()fxhx成立。∴
,0,0kxxfxhxx
成立。
点评:该题应用了正比例函数的数字特征,从而使问题得到简化。而不是一味的向函数求值方面靠拢。 题型2:二次函数型 例3.一辆中型客车的营运总利润y(单位:万元)与营运年数x(x∈N)的变化关系如表所示,则客车的运输年数为()时该客车的年平均利润最大。 (A)4 (B)5 (C)6 (D)7
x年 4 6 8 „
cbxaxy2(万元) 7 11 7 „
解析:表中已给出了二次函数模型 cbxaxy2,
由表中数据知,二次函数的图象上存在三点(4,7),(6,11),(8,7),则 第 4 页 共 13 页
.887,6611,447222cbacbacba
。 解得a=-1,b=12,c=-25,
即25122xxy。
而取“=”的条件为xx25, 即x=5,故选(B)。 点评:一元二次函数是高中数学函数中最重要的一个模型,解决此类问题要充分利用二次函数的结论和性质,解决好实际问题。 例4.行驶中的汽车,在刹车后由于惯性的作用,要继续向前滑行一段距离后才会停下,这段距离叫刹车距离。为测定某种型号汽车的刹车性能,对这种型号的汽车在国道公路上进行测试,测试所得数据如下表。在一次由这种型号的汽车发生的交通事故中,测得刹车距离为15.13m,问汽车在刹车时的速度是多少?
刹车时车速v/km/h 15 30 40 50 60 80 刹车距离s/m 1.23 7.30 12.2 18.40 25.80 44.40
解析:所求问题就变为根据上表数据,建立描述v与s之间关系的数学模型的问题。此模型不能由表格中的数据直接看出,因此,以刹车时车速v为横轴,以刹车距离s为纵轴建立直角坐标系。根据表中的数据作散点图,可看出应选择二次函数作拟合函数。
假设变量v与s之间有如下关系式:cbvavs2,因为车速为0时,刹车距离也为0,所以二次曲线的图象应通过原点(0,0)。再在散点图中任意选取两点A(30,7.30),B(80,44.40)代入,解出a、b、c于是
vvs0563.00062.02。(代入其他数据有偏差是许可的)
将s=15.13代入得 第 5 页 共 13 页
vv0563.00062.013.152,
解得v≈45.07。 所以,汽车在刹车时的速度是45.07km/h。 例5.(2003北京春,理、文21)某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元. (1)当每辆车的月租金定为3600元时,能租出多少辆车? (2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
解:(1)当每辆车的月租金定为3600元时,未租出的车辆数为:5030003600 =12,所以这时租出了88辆车. (2)设每辆车的月租金定为x元,则租赁公司的月收益为:f(x)=(100-503000x)
(x-150)-503000x×50,整理得:f(x)=-502x+162x-21000=-501(x-4050)2+307050.所以,当x=4050时,f(x)最大,其最大值为f(4050)=307050.即当每辆车的
月租金定为4050元时,租赁公司的月收益最大,最大收益为307050元. 点评:本题贴近生活。要求考生读懂题目,迅速准确建立数学模型,把实际问题转化为数学问题并加以解决。 题型3:分段函数型 例6.某集团公司在2000年斥巨资分三期兴建垃圾资源化处理工厂,如下表:
一期2000年投入 1亿元 兴建垃圾堆肥厂 年处理有机肥十多万吨 年综合收益 2千万元 二期2002年投入 4亿元 兴建垃圾焚烧发电一厂 年发电量1.3亿kw/h 年综合收益 4千万元 三期2004年投入 2亿元 兴建垃圾焚烧发电二厂 年发电量1.3亿kw/h 年综合收益 4千万元