例3. 一辆汽车在某段路程中的行驶速度与时间的关系如图 所示.
(1) 求图中阴影部分的面积, 并说明所求面积的实际含义; (2) 假设这辆汽车的里程表在汽车行驶这段路程前的读数为 2004 km, 试建立汽车行驶这段路程时汽车里程表读数 s km与 时间 t h 的函数解析式, 并作出相应的图象.
所示.
(1) 求图中阴影部分的面积, 并说明所求面积的实际含义;
(2) 假设这辆汽车的里程表在汽车行驶这段路程前的读数为
2004 km, 试建立汽车行驶这段路程时汽车里程表读数 s km与
时间 t h 的函数解析式, 并作出相应的图象.
s/km
解: (2) 列表表示:
2350
2300
[0, 1)
s[1=, 2)
y4 5 2.3107 1.4295 1.1407 1.0461 1.0151 1.005
关于 x 呈指数型函数变化的变量是 y2 y4.
分析: y1, y2, y3 都是 增函数, 增长速度最快的 是 y2, 所以 y2 最有可能 是指数型函数.
y4 是减函数, 画出 图象如图: y4 也可能是 指数形函数.
y
2048
y=2x
幂函数 y = x3
对数函数 y = log2x
x
5
8 10 11 1231
2x 32 256 1024 2048 1024
1000
x3 125 512 1000 1231
log2x 2.32 3 3.32 3.46 512
随着 x 的增大, 2x 的图象 几乎垂直向上, 增速很大.
口人增数(长1)率5如95(61精果确以50到6各030年.0人508702口41)增, 5用9长867马率尔的660萨6平2斯均6人5值164口作增为62长2我88模国型6这643建5一立时69我5期49国的这人60772