空气预热器漏风率计算
- 格式:docx
- 大小:12.47 KB
- 文档页数:1
■机械设备2020年大型火力发电厂空预器漏风的防治与研究邢光渊(福建惠安泉惠发电有限责任公司,福建惠安362141)摘要回转式空预器受其结构特点的影响存在漏风现象,空预器漏风对机组的经济性和安全性产生负面澎响。
对空预器漏风的原因、危害和防治措施进行了深入的分析和研究,得出采用空预器密封回收装置降低空预器漏风率的方案,可达到锅炉节能降耗的目的。
关键词空预器;漏风;防治0引言空预器作为尾部烟气与送风之间的传热媒介,布置在锅炉烟道末端,是锅炉的重要辅助设备。
根据传热方式的不同,空预器分为管式空预器和回转式空预器,大型火力发电厂一般采用回转式空预器。
回转式空预器正常运行时,烟气和空气交替流过蓄热元件进行热量交换,由于动静间隙的客观存在,漏风现象不可避免。
受空预器漏风的影响,锅炉效率降低、厂用电率升高,机组整体的经济性下降,同时由于排烟温度降低还加重了空预器冷段的低温腐蚀。
如何降低空预器漏风成为锅炉运行中的一大重要课题,本文通过对空预器漏风原理、危害、测量及治理等几个方面的分析和介绍,寻求治理空预器漏风的最佳方法。
1回转式空预器漏风的原理回转式(容克式)空预器结构紧凑、金属耗量小,被国内大型火力发电厂广泛采用。
目前,国内600MW及以上机组主要采用容克式三分仓空预器,即将空预器分为一、二次风和烟气三个通流截面。
受回转式空预器结构特点和工作原理的影响,正常运行时,空预器始终存在漏风现象。
回转式空预器漏风主要分为宜接漏风和携带漏风两大类。
1.1直接漏风直接漏风又称为间隙漏风。
回转式空预器属于转动机械,空预器内的转子和静止的壳体部分存在一定的间隙,由于流经空预器的一、二次风和烟气之间均存在压差,压力高的空气通过间隙向压力低的烟气区泄漏,或者压力高的一次风向压力低的二次风测泄漏,这种通过空预器动静间隙产生的漏风称为间隙漏风。
间隙漏风量的计算公式:式中:厶为漏风的通流截面积,△片为风烟侧的压差为泄漏空气的密度总为指该间隙的阻力系数,g为重力加速度。
锅炉负荷与空预器漏风率成反⽐原因
锅炉负荷与空预器漏风率成反⽐原因
主要是低负荷相对于⾼负荷⼀次风、⼆次风漏到烟⽓侧的风占烟⽓总量要⾼,所以漏风率增⼤。
可以看出空预器在⾼负荷时漏风率较低负荷⼩。
理论说明如下:
空预器漏风:
直接漏风量:由密封⽚两端压差引起的空⽓泄漏量
携带漏风量:转⼦旋转时模数仓格中携带的部分空⽓量
空预器直接漏风量公式:
K:系数 F:间隙⾯积ρ:⽓体密度(基本不变)△P:空⽓与烟⽓差压
漏风率=(直接漏风量+携带漏风量)/总风量*0.9
直接漏风量计算:
假设:F不变满负荷△P取7000pa低负荷△P取4500pa
则G满=K*F*83.66 G低=K*F*67.08
Q满=1800t/h Q低=1200t/h
携带漏风量:与空预器仓室⾯积有关,认为不变
满负荷漏风率=83.66*K*F/1800*0.9
低负荷漏风率=67.08*K*F/1200*0.9 低负荷漏风率=1.2*满负荷漏风率。
基于空气预热器漏风率偏差的排烟温度影响研究基于空气预热器漏风率偏差的排烟温度影响研究李西雷(内蒙古大唐国际托克托发电有限责任公司,内蒙古托克托010206)目前,我国火力发电仍然是我国电力厂的主要模式,而空气预热器则是与锅炉密不可分的一个元器件。
空气预热器,该装置主要是利用锅炉等装置的排烟热量对其进行预热的一种换热器设备。
该设备的作用是降低锅炉等设备的排烟温度,提高热效率,使燃料便于燃烧且保障燃烧稳定,提高燃料效率。
当空气预热器的漏风率出现偏差时,对排烟温度与锅炉效率的影响较大,本文通过对空气预热器不同部位的漏风率变化对换热影响的机理,探析漏风率变化对排烟温度与锅炉效率的影响。
标签:空气预热器漏风率排烟温度影响前言在各种不同的空气预热器中,三分仓回转式空气预热器被广泛应用于电厂锅炉中,三分仓主要包含有一次风侧、二次风侧与烟气侧,漏风现象多发生在一次风向烟气侧泄露与二次风向烟气侧泄露,其漏风率变化对锅炉排烟温度与锅炉热效率的影响较大,准确定量空气预热器不同部位漏风率变化对排烟温度的影响,能够提高空气预热器的日常运行维护与检修,保障锅炉热效率的准确计算,保障了锅炉机组节能潜力的挖掘[1]。
基于此,笔者以多年工作经验对空气预热器实际运行中的漏风率对锅炉排烟温度的影响进行分析,并推导出空气预热器漏风率变化对锅炉排烟温度影响的计算公司,明确了空气预热器漏风率变化对排烟温度影响的机理。
一、回转式空气预热器的工作原理、漏风形成与漏风率计算1.空气预热器的工作原理本文主要探讨空气预热器漏风率偏差对排烟温度的影响,因回转式空气预热器对其影响较大,本文以该种空气预热器进行探讨。
回转式空气预热器即表示转动机械,又代表受热面,是一种蓄热式的空气预热器[2]。
该空气预热器利用空气与烟气交替流过金属受热面,以达到加热空气的目的,可分为受热面转动与风罩转动两种。
以某新建电厂锅炉空预器来讲,该空预器是受热面转动的三分仓预热器,将加工成波纹状的金属蓄热元件紧密放入圆筒形转子的扇形仓格内,转子由驱动装置带动,绕中心轴转动,转子内包含空气与烟气两种通道,且两种通道互通。
电厂公式1.正平衡供电煤耗:供电煤耗=标煤量/供电量=标煤量/(发电量-厂用电量)标煤量=原煤量×(入炉低位热值/标煤热值)反平衡供电煤耗供电煤耗=热耗率/(29.308×锅炉效率×管道效率)/(1-厂用电率)2、生产厂用电率生产厂用电率是指发电厂为发电所耗用的厂用电量与发电量的比率。
3、综合厂用电率综合厂用电量与发电量的比率:4.锅炉效率 % 锅炉总有效利用热量占单位时间内所消耗燃料的输入热量的百分比。
分正反平衡两种计算方法,一般火电厂采用反平衡计算法,我厂#9、10机组设计锅炉效率92.23%,实际运行在91%左右,锅炉效率1个百分点影响机组煤耗约3.5 g/kW.h5.排烟温度 ℃一般情况下排烟温度升高约5℃影响煤耗1g/kW.h6.空气预热器漏风率 %()%100%⨯=发电量发电用厂用电量发电厂用电率%发电量综合厂用电量综合厂用电率(%)=100⨯α分别为空气预热器出口、进口处烟气过量空气系数过量空气系数计算方法:21/(21-该处的氧量)空预器漏风对锅炉效率影响较小,它主要影响吸、送风机电耗7.飞灰可燃物 %飞灰1个百分点影响煤耗1.3 g/kW.h8.制粉单耗 (kWh/吨原煤)指制粉系统(磨煤机、排粉机、一次风机、给煤机、给粉机等)每磨制1吨原煤所消耗的电量。
制粉单耗=制粉系统耗电量/入炉原煤量9.制粉耗电率 %指统计期内制粉系统消耗的电量占机组发电量的百分比10、送、引风机单耗 (kWh/吨汽)指锅炉产生每吨蒸汽送、引风机消耗的电量。
送、引风机单耗=送、引风机耗电量/∑锅炉增发量送、引风机耗电率=送、引风机耗电量/∑发电量×10011、一次风机单耗 (kWh/吨煤)一次风机单耗=一次风机耗电量/∑入炉煤量90''"⨯-=αααL A12、汽轮发电机组热耗率 kj/kWh是指汽轮发电机组每发一千瓦时电量耗用的热量。
它反映汽轮发电机组热力循环的完善程度,是考核其性能的重要指标。
空预器漏风问题及实测数据
在锅炉的热损失中,排烟热损失是最大的一项,一般占
5%-12%。
同时,空气预热器漏风也会对排烟热损失产生影响,主要是由漏风率和排烟温度两个因素决定。
降低空气预热器的漏风率可以明显提升锅炉效率。
冷端和热端漏风系数的变化对锅炉效率的影响不同,需要分别研究。
在某300MW机组的数
据中,排烟热损失占所有热损失的92%左右,漏风率每降低1%,锅炉效率提升1%。
因此,减少漏风率可以降低排烟热损失,提高锅炉效率。
乙侧漏风率随着负荷的降低而增加。
据分析数据显示,漏风率与负荷呈负相关。
也就是说,负荷越低,漏风率越高。
因此,在实际操作中,我们需要注意控制负荷,以降低乙侧的漏风率。
另外,根据实际情况,对于明显漏风的设备,应及时维修或更换,以保证系统的正常运行。
总之,乙侧漏风率是影响系统效率的重要因素之一,我们需要认真对待并采取相应的措施来控制它。
空气预热器接触式密封技术改造技术简介北京华能达电力技术应用有限责任公司1.空气预热器情况和漏风原因分析 1.1空预器设备漏风原因回转式空预器漏风产生的主要原因是由于转子热态的“蘑菇型”变形造成的转子表面和扇形板表面的泄漏面积加大引起漏风量增加,另外由于转子长期运行产生径向椭圆变形造成轴向漏风增加。
根据具体情况,保持原有分仓和原有普通密封片,在格仓板部位加装接触式密封组件(“U”型弹簧片与特种非金属材料制成)来解决现有空预器径向漏风严重及密封件易腐蚀变形的问题。
施工范围为热端径向密封和轴向密封。
1.2转子变形量及漏风量计算转子热变形量主要取决于转子的半径和高度以及空气和烟气的进出口温度。
下面图形示出转子热变形的各个几何形状和变形量。
图1转子的冷态和热态情况图2转子热变形冷态热态冷空气热空气热烟气冷烟气δ下H0δ上D H x1.2.2漏风量计算国际上习惯于用单位时间内泄漏的气体质量G来表示漏风量,则这就是空气预热器漏风量的基本计算公式,式中△P为空气侧与烟气侧的压力差,公式中气体密度ρ是基本不变的,因此,影响漏风的主要因素是:漏风系数K;间隙面积F;空气侧与烟气侧之间的压力差△P。
根据达拉特电厂空预器的实际情况主要影响漏风率的因素是转子热变形以后将加大与密封框架的泄漏面积,所以有效减小泄漏面积将极好的控制回转空预器的漏风率。
2.空预器密封改造技术方案2.1改造前的准备工作转子找正是调整密封间隙的前提,是降低漏风率的基本条件之一。
如果转子垂直度差,就不能保证扇形板、弧形板在同一密封面上,三向(径向、轴向、旁路)密封间隙的调整更无从谈起。
测量转子垂直度有两种方法,一是通过径向隔板测量,二是通过导向轴端测量。
如果转子垂直度达不到要求,通过调整导向轴承箱上部的四个调节螺栓,使转子垂直度≤0.4mm/m,调定后,固定导向轴承箱。
通过调整扇形板吊杆或加减垫片,使扇形板外侧水平度两侧偏差小于0.5mm。
2.2密封改造实施方法采用接触式密封技术:扇形板位置固定。
循环流化床锅炉中回转式空气预热器腐蚀、漏风分析计算武世福;苏铁熊;张培华;王曙光【摘要】烟气酸露点与空预器漏风率的准确计算对于电站锅炉的设计及尾部受热面的布置都非常重要;现有文献对两者的理论计算与实测值偏差较大,造成排烟温度偏高.为了进一步提高锅炉能源利用率,要求对酸露点与空预器漏风率的确定更加精确.结合四分仓空预器在机组检修过程中存在的腐蚀、漏风问题,找出主要影响因素,对山西某电厂循环流化床(CFB)锅炉的烟气酸露点和空预器漏风率进行了计算,计算结果在锅炉实际运行中也得到了应用,并且可来指导空预器在锅炉实际运行过程中应该控制的运行参数,保证机组安全、经济运行.【期刊名称】《科学技术与工程》【年(卷),期】2015(015)005【总页数】5页(P108-112)【关键词】四分仓空预器;CFB锅炉;腐蚀;漏风;运行参数【作者】武世福;苏铁熊;张培华;王曙光【作者单位】中北大学机械与动力工程学院,太原030051;中北大学朔州校区,朔州036000;山西平朔煤矸石发电有限责任公司,朔州036003;中北大学机械与动力工程学院,太原030051【正文语种】中文【中图分类】TK223.34回转式空预器具有结构布置紧凑、受热面金属壁温较高、冷端腐蚀现象较轻等优点,近年来广泛被大容量锅炉所采用,成为大中型电站锅炉不可缺少的尾部换热设备,而漏风率是衡量其运行经济性的一项重要经济指标[1]。
针对循环流化床(CFB)锅炉的一、二次风风压较高,现大型CFB锅炉上基本均采用四分仓回转式空气预热器。
四风仓空预器采用三向密封结构,均采用预留间隙控制空预器漏风,相对于现应用的管式空气预热器与三分仓空气预热器漏风率来说,四分仓空预器漏风率最低。
试验报告表明:采用回转式空预器可以将漏风水平控制在6.5%以下,与煤粉锅炉的控制水平相当[2]。
然而实际运行中,漏风率大、低温腐蚀和堵灰、受热面磨损严重成为回转式空预器现亟待解决的主要问题,其漏风率通常为6%~15%,且在安装、制造工艺或者维护不理想的情况下可能会达到20%以上,直接影响到锅炉安全、经济运行。