高考数学-函数y=Asin(ψx+φ)的图象
- 格式:doc
- 大小:146.50 KB
- 文档页数:5
函数y =Asin(ωx+φ)的图象与性质1.用五点法画y =A sin(ωx +φ)一个周期内的简图时,要找五个关键点,如下表所示.x -φω-φω+π2ωπ-φω3π2ω-φω 2π-φωωx +φ 0 π2π 3π2 2π y =A sin(ωx +φ)A-A2.函数y =A sin(ωx +φ)的有关概念y =A sin(ωx +φ)(A >0,ω>0),x ∈[0,+∞)表示一个振动量时振幅 周期 频率 相位 初相A T =2πω f =1T =ω2πωx +φ φ3.函数y =sin x 的图象经变换得到y =A sin(ωx +φ)的图象的两种途径强化训练1.判断下列结论正误(在括号内打“√”或“×”)(1)将函数y =3sin 2x 的图象左移π4个单位长度后所得图象的解析式是y =3sin ⎝ ⎛⎭⎪⎫2x +π4.( )(2)利用图象变换作图时“先平移,后伸缩”与“先伸缩,后平移”中平移的长度一致.( )(3)函数y =A cos(ωx +φ)的最小正周期为T ,那么函数图象的两个相邻对称中心之间的距离为T2.( )(4)由图象求解析式时,振幅A 的大小是由一个周期内图象中最高点的值与最低点的值确定的.( )2.(必修4P56T3改编)y =2sin ⎝ ⎛⎭⎪⎫12x -π3的振幅、频率和初相分别为( )A.2,4π,π3B.2,14π,π3C.2,14π,-π3D.2,4π,-π33.(必修4P62例4改编)某地农业监测部门统计发现:该地区近几年的生猪收购价格每四个月会重复出现.下表是今年前四个月的统计情况:月份x 1 2 3 4 收购价格y (元/斤)6765选用一个正弦型函数来近似描述收购价格(元/斤)与相应月份之间的函数关系为________________________.4.(2019·北京通州区模拟)函数y =2cos ⎝⎛⎭⎪⎫2x +π6的部分图象是( )5.(2016·全国Ⅰ卷)若将函数y =2sin ⎝ ⎛⎭⎪⎫2x +π6的图象向右平移14个周期后,所得图象对应的函数为( ) A.y =2sin ⎝ ⎛⎭⎪⎫2x +π4 B.y =2sin ⎝ ⎛⎭⎪⎫2x +π3 C.y =2sin ⎝ ⎛⎭⎪⎫2x -π4 D.y =2sin ⎝ ⎛⎭⎪⎫2x -π36.(2018·济南模拟改编)y =cos(x +1)图象上相邻的最高点和最低点之间的距离是________.考点一 函数y =A sin(ωx +φ)的图象及变换【例1】 某同学用“五点法”画函数f (x )=A sin(ωx +φ) ⎝ ⎛⎭⎪⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)请将上表数据补充完整,并直接写出函数f (x )的解析式;(2)将y =f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y =g (x )的图象.若y =g (x )图象的一个对称中心为⎝ ⎛⎭⎪⎫5π12,0,求θ的最小值.【训练1】 (1)(2017·全国Ⅰ卷)已知曲线C 1:y =cos x ,C 2:y =sin ⎝ ⎛⎭⎪⎫2x +2π3,则下面结论正确的是( ) A.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C.把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D.把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2(2)(2018·青岛调研)若把函数y =sin ⎝ ⎛⎭⎪⎫ωx -π6的图象向左平移π3个单位长度,所得到的图象与函数y =cos ωx 的图象重合,则ω的一个可能取值是( )A.2B.32C.23D.12考点二 求函数y =A sin(ωx +φ)的解析式【例2】 (1)(一题多解)函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π)的部分图象如图所示,则函数f (x )的解析式为________.(2)(2019·长郡中学、衡阳八中联考)函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的部分图象如图所示,已知A ⎝⎛⎭⎪⎫5π12,1,B ⎝ ⎛⎭⎪⎫11π12,-1,则f (x )图象的对称中心为( )A.⎝ ⎛⎭⎪⎫k π2+5π6,0(k ∈Z)B.⎝ ⎛⎭⎪⎫k π+5π6,0(k ∈Z)C.⎝ ⎛⎭⎪⎫k π2+π6,0(k ∈Z)D.⎝ ⎛⎭⎪⎫k π+π6,0(k ∈Z)【训练2】 (1)(2019·衡水中学一模)已知函数f (x )=-2cos ωx (ω>0)的图象向左平移φ⎝ ⎛⎭⎪⎫0<φ<π2个单位,所得的部分函数图象如图所示,则φ的值为( )A.π6 B.5π6 C.π12 D.5π12(2)(2019·山东省重点中学质检)已知函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,|φ|<π2,ω>0的图象的一部分如图所示,则f (x )图象的对称轴方程是________.考点三 y =A sin(ωx +φ)图象与性质的应用 角度1 三角函数模型的应用【例3-1】 如图,某大风车的半径为2米,每12秒旋转一周,它的最低点O 离地面1米,点O 在地面上的射影为A .风车圆周上一点M 从最低点O 开始,逆时针方向旋转40秒后到达P 点,则点P 到地面的距离是________米.角度2 三角函数性质与图象的综合应用【例3-2】 已知函数f (x )=2sin ωx cos ωx +23sin 2ωx -3(ω>0)的最小正周期为π. (1)求函数f (x )的单调递增区间;(2)将函数f (x )的图象向左平移π6个单位,再向上平移1个单位,得到函数y =g (x )的图象,若y =g (x )在[0,b ](b >0)上至少含有10个零点,求b 的最小值.【训练3】 (1)某城市一年中12个月的平均气温与月份的关系可近似地用函数y =a +A cos ⎣⎢⎡⎦⎥⎤π6(x -6)(x =1,2,3,…,12)来表示,已知6月份的月平均气温最高为28 ℃,12月份的月平均气温最低为18 ℃,则10月份的平均气温为________℃.(2)已知函数f (x )=5sin x cos x -53cos 2x +523(其中x ∈R),求:①函数f (x )的最小正周期; ②函数f (x )的单调区间; ③函数f (x )图象的对称轴和对称中心.类型1 三角函数的周期T 与ω的关系【例1】 为了使函数y =sin ωx (ω>0)在区间[0,1]上至少出现50次最大值,则ω的最小值为( ) A.98π B.1972π C.1992π D.100π类型2 三角函数的单调性与ω的关系【例2】 若函数f (x )=sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω的取值范围是( )A.0≤ω≤23B.0≤ω≤32C.23≤ω≤3D.32≤ω≤3类型3 三角函数对称性、最值与ω的关系【例3】 (1)(2019·枣庄模拟)已知f (x )=sin ωx -cos ωx ⎝ ⎛⎭⎪⎫ω>23,若函数f (x )图象的任何一条对称轴与x 轴交点的横坐标都不属于区间(π,2π),则ω的取值范围是________.(结果用区间表示)(2)已知函数f (x )=2sin ωx 在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值为-2,则ω的取值范围是________.【基础巩固题组】 一、选择题1.函数y =A sin(ωx +φ)的部分图象如图所示,则( )A.y =2sin ⎝ ⎛⎭⎪⎫2x -π6B.y =2sin ⎝ ⎛⎭⎪⎫2x -π3C.y =2sin ⎝ ⎛⎭⎪⎫x +π6D.y =2sin ⎝⎛⎭⎪⎫x +π3 2.(2019·杭州期中)将函数y =sin ⎝ ⎛⎭⎪⎫x +φ2·cos ⎝ ⎛⎭⎪⎫x +φ2的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的取值不可能是( )A.-3π4B.-π4C.π4D.5π43.(2019·咸阳模拟)已知点P (32,-332)是函数y =A sin(ωx +φ)(ω>0)图象上的一个最低点,M ,N 是与点P 相邻的两个最高点,若∠MPN =60°,则该函数的最小正周期是( ) A.3 B.4 C.5 D.64.(2018·天津卷)将函数y =sin ⎝⎛⎭⎪⎫2x +π5的图象向右平移π10个单位长度,所得图象对应的函数( )A.在区间⎣⎢⎡⎦⎥⎤-π4,π4上单调递增B.在区间⎣⎢⎡⎦⎥⎤-π4,0上单调递减C.在区间⎣⎢⎡⎦⎥⎤π4,π2上单调递增D.在区间⎣⎢⎡⎦⎥⎤π2,π上单调递减5.(2019·张家界模拟)将函数f (x )=3sin 2x -cos 2x 的图象向左平移t (t >0)个单位后,得到函数g (x )的图象,若g (x )=g ⎝ ⎛⎭⎪⎫π12-x ,则实数t 的最小值为( )A.5π24B.7π24C.5π12D.7π12二、填空题6.将函数y =sin x 的图象上所有的点向右平移π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是________________.7.(2018·沈阳质检)函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,则f ⎝ ⎛⎭⎪⎫π4=________.8.已知f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π3(ω>0),f ⎝ ⎛⎭⎪⎫π6=f ⎝ ⎛⎭⎪⎫π3,且f (x )在区间⎝ ⎛⎭⎪⎫π6,π3上有最小值,无最大值,则ω=____________________________________.三、解答题9.某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24). (1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差.10.已知函数f (x )=3sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2≤φ<π2的图象关于直线x =π3对称,且图象上相邻最高点的距离为π.(1)求f ⎝ ⎛⎭⎪⎫π4的值; (2)将函数y =f (x )的图象向右平移π12个单位后,得到y =g (x )的图象,求g (x )的单调递减区间.11.(2019·天津和平区调研)已知x =π12是函数f (x )=3sin(2x +φ)+cos(2x +φ)(0<φ<π)图象的一条对称轴,将函数f (x )的图象向右平移3π4个单位长度后得到函数g (x )的图象,则函数g (x )在⎣⎢⎡⎦⎥⎤-π4,π6上的最小值为( )A.-2B.-1C.- 2D.- 312.函数f (x )=220sin 100πx -220sin ⎝ ⎛⎭⎪⎫100πx +2π3,且已知对任意x ∈R,有f (x 1)≤f (x )≤f (x 2)恒成立,则|x 2-x 1|的最小值为( ) A.50π B.1100π C.1100D.44013.(2019·广东省际名校联考)将函数f (x )=1-23·cos 2x -(sin x -cos x )2的图象向左平移π3个单位,得到函数y =g (x )的图象,若x ∈⎣⎢⎡⎦⎥⎤-π2,π2,则函数g (x )的单调递增区间是________.14.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示.(1)求函数f (x )的解析式;(2)将函数y =f (x )的图象上各点的纵坐标保持不变,横坐标缩短到原来的12倍,再把所得的函数图象向左平移π6个单位长度,得到函数y =g (x )的图象,求函数g (x )在区间⎣⎢⎡⎦⎥⎤0,π8上的最小值.15.(多填题)已知函数f (x )=23sinωx2cosωx2+2cos2ωx2-1(ω>0)的最小正周期为π,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,方程f (x )=m 恰有两个不同的实数解x 1,x 2,则x 1+x 2=________,f (x 1+x 2)=________.答 案 1.判断下列结论正误(在括号内打“√”或“×”) 【答案】 (1)× (2)× (3)√ (4)√【解析】 (1)将函数y =3sin 2x 的图象向左平移π4个单位长度后所得图象的解析式是y =3cos 2x .(2)“先平移,后伸缩”的平移单位长度为|φ|,而“先伸缩,后平移”的平移单位长度为⎪⎪⎪⎪⎪⎪φω.故当ω≠1时平移的长度不相等.2. 【答案】 C【解析】 由题意知A =2,f =1T =ω2π=14π,初相为-π3.3. 【答案】 y =6-cos π2x【解析】 设y =A sin(ωx +φ)+B (A >0,ω>0), 由题意得A =1,B =6,T =4,因为T =2πω,所以ω=π2,所以y =sin ⎝ ⎛⎭⎪⎫π2x +φ+6.因为当x =2时,y =7,所以sin(π+φ)+6=7,即sin φ=-1,则φ=-π2+2k π(k ∈Z),可取φ=-π2. 所以y =sin ⎝ ⎛⎭⎪⎫π2x -π2+6=6-cos π2x .4. 【答案】 A【解析】 由y =2cos ⎝ ⎛⎭⎪⎫2x +π6可知,函数的最大值为2,故排除D ;又因为函数图象过点⎝ ⎛⎭⎪⎫π6,0,故排除B ;又因为函数图象过点⎝ ⎛⎭⎪⎫-π12,2,故排除C. 5. 【答案】 D【解析】 函数y =2sin ⎝ ⎛⎭⎪⎫2x +π6的周期为π,将函数y =2sin ⎝ ⎛⎭⎪⎫2x +π6的图象向右平移14个周期即π4个单位,所得函数为y =2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π4+π6=2sin ⎝ ⎛⎭⎪⎫2x -π3,故选D. 6. 【答案】π2+4【解析】 相邻最高点与最低点的纵坐标之差为2,横坐标之差恰为半个周期π,故它们之间的距离为π2+4.【例1】【答案】见解析【解析】(1)根据表中已知数据,解得A =5,ω=2,φ=-π6.数据补全如下表:且函数解析式为f (x )=5sin ⎝⎛⎭⎪⎫2x -π6. (2)由(1)知f (x )=5sin ⎝⎛⎭⎪⎫2x -π6, 得g (x )=5sin ⎝⎛⎭⎪⎫2x +2θ-π6. 因为函数y =sin x 图象的对称中心为(k π,0)(k ∈Z).令2x +2θ-π6=k π,k ∈Z,解得x =k π2+π12-θ(k ∈Z). 由于函数y =g (x )的图象关于点⎝⎛⎭⎪⎫5π12,0成中心对称,所以令k π2+π12-θ=5π12(k ∈Z),解得θ=k π2-π3(k ∈Z). 由θ>0可知,当k =1时,θ取得最小值π6. 【训练1】【答案】 (1)D (2)A【解析】 (1)易知C 1:y =cos x =sin ⎝⎛⎭⎪⎫x +π2,把曲线C 1上的各点的横坐标缩短到原来的12倍,纵坐标不变,得到函数y =sin ⎝⎛⎭⎪⎫2x +π2的图象,再把所得函数的图象向左平移π12个单位长度,可得函数y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π12+π2=sin ⎝ ⎛⎭⎪⎫2x +2π3的图象,即曲线C 2,因此D 项正确. (2)y =sin ⎝⎛⎭⎪⎫ωx +ω3π-π6和函数y =cos ωx 的图象重合,可得ω3π-π6=π2+2k π,k ∈Z,则ω=6k +2,k ∈Z.∴2是ω的一个可能值.【例2】【答案】 (1)f (x )=2sin ⎝⎛⎭⎪⎫2x +π3 (2)C 【解析】 (1)由题图可知A =2,法一 T 4=7π12-π3=π4, 所以T =π,故ω=2,因此f (x )=2sin(2x +φ),又⎝ ⎛⎭⎪⎫π3,0对应五点法作图中的第三个点,因此2×π3+φ=π+2k π(k ∈Z),所以φ=π3+2k π(k ∈Z).又|φ|<π2,所以φ=π3.故f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3.法二 以⎝ ⎛⎭⎪⎫π3,0为第二个“零点”,⎝ ⎛⎭⎪⎫7π12,-2为最小值点,列方程组⎩⎪⎨⎪⎧ω·π3+φ=π,ω·7π12+φ=3π2,解得⎩⎪⎨⎪⎧ω=2,φ=π3,故f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3.(2)T =2⎝ ⎛⎭⎪⎫11π12-5π12=π=2πω,∴ω=2,因此f (x )=sin(2x +φ).由五点作图法知A ⎝ ⎛⎭⎪⎫5π12,1是第二点,得2×5π12+φ=π2,2×5π12+φ=π2+2k π(k ∈Z),所以φ=-π3+2k π(k ∈Z),又|φ|<π2,所以φ=-π3,∴f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3.由2x -π3=k π(k ∈Z),得x =k π2+π6(k ∈Z).∴f (x )图象的对称中心为⎝ ⎛⎭⎪⎫k π2+π6,0(k ∈Z).【训练2】【答案】 (1)C (2)x =k π2+π6(k ∈Z)【解析】 (1)由题图知,T =2⎝ ⎛⎭⎪⎫11π12-5π12=π,∴ω=2πT =2,∴f (x )=-2cos 2x ,∴f (x +φ)=-2cos(2x +2φ),则由图象知,f ⎝ ⎛⎭⎪⎫512π+φ=-2cos ⎝ ⎛⎭⎪⎫56π+2φ=2.∴5π6+2φ=2k π+π(k ∈Z),则φ=π12+k π(k ∈Z).又0<φ<π2,所以φ=π12.(2)由图象知A =2,又1=2sin(ω×0+φ),即sin φ=12, 又|φ|<π2,∴φ=π6. 又11π12×ω+π6=2π,∴ω=2, ∴f (x )=2sin ⎝⎛⎭⎪⎫2x +π6, 令2x +π6=π2+k π(k ∈Z),得x =k π2+π6(k ∈Z). ∴f (x )=2sin ⎝⎛⎭⎪⎫2x +π6的对称轴方程为x =k π2+π6(k ∈Z). 【例3-1】【答案】 4【解析】 以圆心O 1为原点,以水平方向为x 轴方向,以竖直方向为y 轴方向建立平面直角坐标系,则根据大风车的半径为2米,圆上最低点O 离地面1米,12秒转动一周,设∠OO 1P =θ,运动t (秒)后与地面的距离为f (t ),又周期T =12,所以θ=π6t , 则f (t )=3+2sin ⎝⎛⎭⎪⎫θ-π2=3-2cos π6t (t ≥0), 当t =40 s 时,f (t )=3-2cos ⎝ ⎛⎭⎪⎫π6×40=4. 【例3-2】【答案】见解析【解析】(1)f (x )=2sin ωx cos ωx +3(2sin 2ωx -1)=sin 2ωx -3cos 2ωx =2sin ⎝⎛⎭⎪⎫2ωx -π3. 由最小正周期为π,得ω=1,所以f (x )=2sin ⎝⎛⎭⎪⎫2x -π3, 由2k π-π2≤2x -π3≤2k π+π2(k ∈Z), 整理得k π-π12≤x ≤k π+5π12(k ∈Z),所以函数f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z). (2)将函数f (x )的图象向左平移π6个单位,再向上平移1个单位,得到y =2sin 2x +1的图象; 所以g (x )=2sin 2x +1.令g (x )=0,得x =k π+7π12或x =k π+11π12(k ∈Z), 所以在[0,π]上恰好有两个零点,若y =g (x )在[0,b ]上有10个零点,则b 不小于第10个零点的横坐标即可.所以b 的最小值为4π+11π12=59π12. 【训练3】【答案】 20.5【解析】 因为当x =6时,y =a +A =28;当x =12时,y =a -A =18,所以a =23,A =5,所以y =f (x )=23+5cos ⎣⎢⎡⎦⎥⎤π6(x -6), 所以当x =10时,f (10)=23+5cos ⎝ ⎛⎭⎪⎫π6×4 =23-5×12=20.5. 【答案】见解析【解析】①因为f (x )=52sin 2x -532(1+cos 2x )+532=5(12sin 2x -32cos 2x )=5sin ⎝⎛⎭⎪⎫2x -π3, 所以函数的最小正周期T =2π2=π. ②由2k π-π2≤2x -π3≤2k π+π2(k ∈Z), 得k π-π12≤x ≤k π+5π12(k ∈Z), 所以函数f (x )的递增区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z). 由2k π+π2≤2x -π3≤2k π+3π2(k ∈Z), 得k π+5π12≤x ≤k π+11π12(k ∈Z), 所以函数f (x )的递减区间为⎣⎢⎡⎦⎥⎤k π+5π12,k π+11π12(k ∈Z). ③由2x -π3=k π+π2(k ∈Z),得x =k π2+5π12(k ∈Z), 所以函数f (x )的对称轴方程为x =k π2+5π12(k ∈Z).由2x -π3=k π(k ∈Z),得x =k π2+π6(k ∈Z), 所以函数f (x )的对称中心为⎝⎛⎭⎪⎫k π2+π6,0(k ∈Z). 【例1】【答案】 B【解析】 由题意,至少出现50次最大值即至少需用4914个周期,所以1974T =1974·2πω≤1,所以ω≥1972π.【例2】【答案】 D【解析】 令π2+2k π≤ωx ≤32π+2k π(k ∈Z),得π2ω+2k πω≤x ≤3π2ω+2k πω,因为f (x )在⎣⎢⎡⎦⎥⎤π3,π2上单调递减,所以⎩⎪⎨⎪⎧π2ω+2k πω≤π3,π2≤3π2ω+2k πω,得6k +32≤ω≤4k +3. 又ω>0,所以k ≥0,又6k +32<4k +3,得0≤k <34,所以k =0. 故32≤ω≤3. 【例3】【答案】 (1)⎣⎢⎡⎦⎥⎤34,78 (2)⎩⎨⎧⎭⎬⎫ω|ω≤-2或ω≥32 【解析】 (1)f (x )=sin ωx -cos ωx =2sin ⎝⎛⎭⎪⎫ωx -π4, 令ωx -π4=π2+k π(k ∈Z),解得x =3π4ω+k πω(k ∈Z). 当k =0时,3π4ω≤π,即34≤ω, 当k =1时,3π4ω+πω≥2π,即ω≤78. 综上,34≤ω≤78. (2)显然ω≠0,分两种情况:若ω>0,当x ∈⎣⎢⎡⎦⎥⎤-π3,π4时,-π3ω≤ωx ≤π4ω. 因函数f (x )=2sin ωx 在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值为-2,所以-π3ω≤-π2,解得ω≥32. 若ω<0,当x ∈⎣⎢⎡⎦⎥⎤-π3,π4时,π4ω≤ωx ≤-π3ω, 因函数f (x )=2sin ωx 在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值为-2,所以π4ω≤-π2,解得ω≤-2. 综上所述,符合条件的实数ω≤-2或ω≥32. 【基础巩固题组】1. 【答案】 A【解析】 由题图可知,A =2,T =2⎣⎢⎡⎦⎥⎤π3-⎝ ⎛⎭⎪⎫-π6=π, 所以ω=2,由五点作图法知2×π3+φ=π2+2k π(k ∈Z), 所以φ=-π6,所以函数的解析式为y =2sin ⎝⎛⎭⎪⎫2x -π6. 2. 【答案】 B【解析】 将y =sin ⎝⎛⎭⎪⎫x +φ2cos ⎝ ⎛⎭⎪⎫x +φ2=12sin(2x +φ)的图象向左平移π8个单位后得到的图象对应的函数为y =12sin ⎝ ⎛⎭⎪⎫2x +π4+φ,由题意得π4+φ=k π+π2(k ∈Z),∴φ=k π+π4(k ∈Z),当k =-1,0,1时,φ的值分别为-3π4,π4,5π4,φ的取值不可能是-π4. 3. 【答案】 D【解析】 由P 是函数y =A sin(ωx +φ)(ω>0)图象上的一个最低点,M ,N 是与P 相邻的两个最高点,知|MP |=|NP |,又∠MPN =60°,所以△MPN 为等边三角形.由P (32,-332),得|MN |=2×3323×2=6. ∴该函数的最小正周期T =6.4. 【答案】 A【解析】 y =sin ⎝ ⎛⎭⎪⎫2x +π5=sin 2⎝ ⎛⎭⎪⎫x +π10,将其图象向右平移π10个单位长度,得到函数y =sin 2x 的图象.由2k π-π2≤2x ≤2k π+π2,k ∈Z,得k π-π4≤x ≤k π+π4,k ∈Z.令k =0,可知函数y =sin 2x 在区间⎣⎢⎡⎦⎥⎤-π4,π4上单调递增. 5. 【答案】 B【解析】 由题意得,f (x )=2sin ⎝⎛⎭⎪⎫2x -π6, 则g (x )=2sin ⎝⎛⎭⎪⎫2x +2t -π6, 从而2sin ⎝ ⎛⎭⎪⎫2x +2t -π6=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π12-x +2t -π6=-2sin(2x -2t )=2sin(2x -2t +π),又t >0, 所以当2t -π6=-2t +π+2k π(k ∈Z)时,即t =7π24+k π2(k ∈Z),实数t min =724π.6. 【答案】 y =sin ⎝ ⎛⎭⎪⎫12x -π10―————————―→横坐标伸长到原来的2倍y =sin ⎝ ⎛⎭⎪⎫12x -π10.7. 【答案】 3【解析】 由图象可知A =2,34T =11π12-π6=3π4,∴T =π,∴ω=2.∵当x =π6时,函数f (x )取得最大值,∴2×π6+φ=π2+2k π(k ∈Z),∴φ=π6+2k π(k ∈Z),∵0<φ<π,∴φ=π6,∴f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6,则f ⎝ ⎛⎭⎪⎫π4=2sin ⎝ ⎛⎭⎪⎫π2+π6=2cos π6= 3.8. 【答案】 143【解析】 依题意,x =π6+π32=π4时,y 有最小值,∴sin ⎝ ⎛⎭⎪⎫π4·ω+π3=-1,∴π4ω+π3=2k π+3π2 (k ∈Z).∴ω=8k +143 (k ∈Z),因为f (x )在区间⎝ ⎛⎭⎪⎫π6,π3上有最小值,无最大值,所以π3-π4≤πω,即ω≤12,令k =0,得ω=143. 9. 【答案】见解析【解析】(1)f (8)=10-3cos ⎝ ⎛⎭⎪⎫π12×8-sin ⎝ ⎛⎭⎪⎫π12×8 =10-3cos 2π3-sin 2π3=10-3×⎝ ⎛⎭⎪⎫-12-32=10. 故实验室上午8时的温度为10 ℃.(2)因为f (t )=10-2(32cos π12t +12sin π12t ) =10-2sin ⎝ ⎛⎭⎪⎫π12t +π3, 又0≤t <24,所以π3≤π12t +π3<7π3,-1≤sin ⎝ ⎛⎭⎪⎫π12t +π3≤1. 当t =2时,sin ⎝ ⎛⎭⎪⎫π12t +π3=1; 当t =14时,sin ⎝ ⎛⎭⎪⎫π12t +π3=-1. 于是f (t )在[0,24)上取得最大值12,取得最小值8.故实验室这一天的最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃.10. 【答案】见解析【解析】(1)因为f (x )的图象上相邻最高点的距离为π,所以f (x )的最小正周期T =π,从而ω=2πT=2. 又f (x )的图象关于直线x =π3对称, 所以2×π3+φ=k π+π2(k ∈Z), 因为-π2≤φ<π2,所以k =0, 所以φ=π2-2π3=-π6,所以f (x )=3sin ⎝⎛⎭⎪⎫2x -π6, 则f ⎝ ⎛⎭⎪⎫π4=3sin ⎝⎛⎭⎪⎫2×π4-π6=3sin π3=32. (2)将f (x )的图象向右平移π12个单位后,得到f ⎝ ⎛⎭⎪⎫x -π12的图象, 所以g (x )=f ⎝ ⎛⎭⎪⎫x -π12=3sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12-π6=3sin ⎝ ⎛⎭⎪⎫2x -π3. 当2k π+π2≤2x -π3≤2k π+3π2(k ∈Z),即k π+5π12≤x ≤k π+11π12(k ∈Z)时,g (x )单调递减. 因此g (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π+5π12,k π+11π12(k ∈Z). 11. 【答案】 B【解析】 ∵x =π12是f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6+φ图象的一条对称轴,∴π3+φ=k π+π2(k ∈Z),即φ=k π+π6(k ∈Z). ∵0<φ<π,∴φ=π6,则f (x )=2sin ⎝⎛⎭⎪⎫2x +π3, ∴g (x )=-2sin ⎝ ⎛⎭⎪⎫2x -π6在⎣⎢⎡⎦⎥⎤-π4,π6上的最小值为g ⎝ ⎛⎭⎪⎫π6=-1. 12. 【答案】 C【解析】 f (x )=220sin 100πx -220sin ⎝⎛⎭⎪⎫100πx +2π3 =220⎣⎢⎡⎦⎥⎤sin 100πx -⎝⎛⎭⎪⎫sin 100πx ·cos 2π3+cos 100πx sin 2π3 =220⎝ ⎛⎭⎪⎫sin 100πx +12sin 100πx -32cos 100πx =2203⎝ ⎛⎭⎪⎫32sin 100πx -12cos 100πx =2203×sin ⎝ ⎛⎭⎪⎫100πx -π6, 则由对任意x ∈R,有f (x 1)≤f (x )≤f (x 2)恒成立得当x =x 2时,f (x )取得最大值,当x =x 1时,f (x )取得最小值,所以|x 2-x 1|的最小值为12T =12×2π100π=1100(T 为f (x )的最小正周期),故选C. 13. 【答案】 ⎣⎢⎡⎦⎥⎤-5π12,π12 【解析】 ∵f (x )=1-23cos 2 x -(sin x -cos x )2=sin 2x -3cos 2x -3=2sin ⎝ ⎛⎭⎪⎫2x -π3-3, ∴g (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π3-π3-3=2sin ⎝ ⎛⎭⎪⎫2x +π3-3, 由-π2+2k π≤2x +π3≤π2+2k π(k ∈Z), 得-5π12+k π≤x ≤π12+k π(k ∈Z), ∵x ∈⎣⎢⎡⎦⎥⎤-π2,π2, ∴函数g (x )在⎣⎢⎡⎦⎥⎤-π2,π2上的单调递增区间是⎣⎢⎡⎦⎥⎤-5π12,π12.14. 【答案】见解析【解析】(1)设函数f (x )的最小正周期为T ,由题图可知A =1,T 2=2π3-π6=π2, 即T =π,所以π=2πω,解得ω=2, 所以f (x )=sin(2x +φ),又过点⎝ ⎛⎭⎪⎫π6,0, 由0=sin ⎝ ⎛⎭⎪⎫2×π6+φ可得π3+φ=2k π(k ∈Z), 则φ=2k π-π3(k ∈Z),因为|φ|<π2,所以φ=-π3, 故函数f (x )的解析式为f (x )=sin ⎝⎛⎭⎪⎫2x -π3. (2)根据条件得g (x )=sin ⎝⎛⎭⎪⎫4x +π3, 当x ∈⎣⎢⎡⎦⎥⎤0,π8时,4x +π3∈⎣⎢⎡⎦⎥⎤π3,5π6, 所以当x =π8时,g (x )取得最小值,且g (x )min =12. 15. 【答案】 π31 【解析】 函数f (x )=23sin ωx 2cos ωx 2+2cos 2ωx 2-1=3sin ωx +cos ωx =2sin ⎝⎛⎭⎪⎫ωx +π6. 由T =2πω=π,可得ω=2,∴f (x )=2sin ⎝⎛⎭⎪⎫2x +π6. ∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴π6≤2x +π6≤7π6,∴-1≤f (x )≤2. 画出f (x )的图象(图略),结合图象知x 1+x 2=π3, 则f (x 1+x 2)=f ⎝ ⎛⎭⎪⎫π3=2sin ⎝ ⎛⎭⎪⎫2π3+π6=2sin 5π6=1.。
第1页 共5页
课题:函数)sin(xAy的图象
教材:苏教版必修4第8章第3节第3课时
授课教师:广东省深圳市福田区益田中学 王丽娜
1、教学目标:
知识目标:
①理解三个参数A、ω、φ对函数)sin(xAy图象的影响;
②揭示函数)sin(xAy的图象与正弦曲线的变换关系。
能力目标:
①增强学生的作图能力;
②通过探究变换过程,使学生了解由简单到复杂,由特殊到一般的化归思想;
③在难点突破环节,培养学生全面分析、抽象、概括的能力。
情感目标:
在自主探究的过程中,培养学生勇于探索的精神和善于合作的意识。
2、教学重点、难点:
重点:由正弦曲线变换得到函数)sin(xAy的图象。
难点:当1ω时,函数
)sin(
11φxωAy与函数)sin(22
φxωAy
的图象关系。
关键:理解三个参数A、ω、φ对函数)sin(xAy图象的影响。
3、教学方法与手段:
教学方法:开放式探究、启发式引导、互动式讨论、反馈式评价
学习方法:自主探究、观察发现、合作交流、归纳总结。
教学手段:运用多媒体网络教学平台,构建学生自主探究的教学环境。
4、教学过程:
整个教学过程是“以问题为载体,以学生活动为主线”进行的。
(一)创设情境
动画演示: 《用沙摆演示简谐运动的图象》
【设计意图】采用《用沙摆演示简谐运动的图象》引出函数)sin(xAy的图
象,体现该函数图象与生活实际的紧密联系;通过展示函数图象在四个方面的用途,
体现函数图象在物理学上的重要性,激发学生研究该函数图象的兴趣。
第2页 共5页
同时,引出本节课的研究问题——函数)sin(xAy的图象与正弦曲线有什么
关系呢?
(二)建构数学
1、复习巩固;
评讲作业——作出函数)32sin(3xy在一个周期内的简图。
【设计意图】以作业讲评的方式复习巩固五点作图法,并以函数
)
3
2sin(3xy
作
为具体研究对象,那么这个函数图象,恰可作为后面变换结果的检验依据。
2、自主探究;
由正弦曲线如何变化得到函数)32sin(3xy的图象?
【设计意图】观察函数解析式
)
3
2sin(3xy
学生容易发现三个参数A、、都
发生了变化,根据已有的知识基础,他们很清楚需要进行怎样的三种变换。自然恰当
地提出本节的核心问题——三种变换能否任意排序呢?
① 问题提出:三种变换能否任意排序?
② 实验探究
通过精心制作的课件,结合我校数学活动室多媒体网络教学环境,我为学生提供
了这样的探究平台,在这个平台中我给出了正弦曲线一个周期内的图象,并用五点作
图法绘出了函数)32sin(3xy在一个周期内的图象;同时提供了三种变换的6种不同
排列方式;学生可以选择不同变换方式进行探究,观察所选变换方式得到的图象与五
点作图法绘出的图象是否重合,以此检验所选变换方式的正确性。
A、自主实验,形成初步结论.
经过尝试、观察,有些学生所选变换方式得到的图象与五点作图法绘出图象重合;
有些学生所选变换方式得到的图象与五点作图法绘出图象不重合;
形成初步结论:“三种变换不可以任意排列”、“有的排列方式得到的图象与五点
法绘出图象不重合”。
B、深入探究,讨论分析;
请学生结合教学平台讨论以下两个问题:
第3页 共5页
问题1:得到不重合的图象的变换方式有什么共同点?
(共同点是先进行周期变换后进行平移变换,而且平移量过大。)
问题2:得到不重合图象的原因是三种变换顺序错了?还是变换中某个量错了?
(这与顺序无关,只要将平移量由3π改为6即可得到重合的图象。)
C、实验小结,形成结论;
顺序可任意改变;需要注意不同顺序中平移量的不同。先平移变换后周期变换时,
需向左平移3个单位;先周期变换后平移变换时,需向左平移6个单位而不是3个单
位。
③规律探究
问题3 :先周期变换后平移变换时,平移量为什么不是3,而是6?
(平移量变成6的主要原因在于2。)
(请学生继续尝试3和21的情况。鉴于教材不要求证明,由不完全归纳
法得出规律:先进行周期变换后进行平移变换时应该平移个单位。平移量是由
x
的改变量确定的。)
问题4 :为避免繁琐,直接平移个单位,采用怎样的顺序较好?
(先进行平移变换后进行周期变换比较好。)
3、规律总结
①由正弦曲线变换到函数)sin(xAy的图象需要进行三种变换,顺序可任意
改变;先平移变换后周期变换时平移个单位,先周期变换后平移变换时平移个单
位。
②常用变换顺序——先平移变换再周期变换后振幅变换(平移的量只与有关)。
(三)知识运用
巩固强化:
请准确叙述由正弦曲线变换得到下列函数图象的过程?
第4页 共5页
1、)34sin(21xy 2、)631sin(2xy
变式训练:
1、已知函数)324sin(51xy的图象为C,为了得到函数)324sin(2xy的图象,只需
把C的所有点( )
A、横坐标伸长到原来的10倍,纵坐标不变。 B、横坐标缩短到原来的101倍,
纵坐标不变。
C、纵坐标伸长到原来的10倍,横坐标不变。 D、纵坐标缩短到原来的101倍,
横坐标不变。
2、已知函数)324sin(51xy的图象为C,为了得到函数)32sin(51xy的图象,只需
把C的所有点( )
A、横坐标伸长到原来的4倍,纵坐标不变。 B、横坐标缩短到原来的41倍,
纵坐标不变。
C、纵坐标伸长到原来的4倍,横坐标不变。 D、纵坐标缩短到原来的41倍,
横坐标不变。
3、已知函数)324sin(51xy的图象为C,为了得到函数xy4sin51的图象,只需把C
的所有点( )
A、向左平移6个单位长度 B、向右平移6个单位长度
C、向左平移32个单位长度 D、向右平移32个单位长度
4、将正弦曲线上各点向左平移3个单位,再把横坐标伸长到原来的2倍,纵坐标不
变,则所得图象解析式为( )
A、)32sin(xy B、)62sin(xy C、)32sin(xy D、)32sin(xy
(四)归纳总结(师生共同归纳)
1、正弦曲线变换得到函数)sin(xAy的图象——顺序可任意,平移要注意;
常常是平移、周期再振
幅;
第5页 共5页
2、余弦曲线变换得到函数)cos(xAy的图象——作法全相同。
(五)巩固作业
感受·理解:
1、由正弦曲线经过怎样的变化可以得出下列函数的图象。
①)sin(6231xy ②)421cos(2πxy
思考·运用:
2、函数)(xfy的横坐标伸长到原来的两倍,再向左平移2π个单位,所得到的曲
线是xysin21的图象,试求函数)(xfy的解析式。
5、教学说明:
本节课是苏教版必修4第8章第3节第3课时;它是函数图象伸缩平移变换的特例,
是初等数学一般函数图象变换的基础,是高考的热点、难点;它是在完成了“正弦函
数、余弦函数的图象和性质,五点作图法,图象的三种基本变换”等内容的教学之后
进行的,主要揭示了由正弦曲线得到函数)sin(xAy的图象的一种思维过程。
按照传统方法解决这一问题,每一种变换方式,教师要手绘四条函数图象,彻底
解决这一问题,有6种情况,24条图象,这对教师的作图能力提出很高的要求;同时,
也要求学生有较强的理解能力,从静态的图片中去体会伸长和缩短的形变过程。
针对上述情况,我精心设计制作了教学课件,直观形象地展示形变过程。化抽象
为具体,由静到动,使学生真实体验“变”的过程。同时结合我校数学活动室的多媒
体网络教学环境,为学生构建自主探究与合作交流的平台。最终利用由特殊到一般的
化归思想,借助具体函数的结论归纳出一般函数的结论。