函数的概念与图像4单调性
- 格式:docx
- 大小:44.81 KB
- 文档页数:3
函数与图像的基本概念与性质一、函数的概念与性质1.函数的定义:函数是两个非空数集A、B之间的对应关系,记作f:A→B。
2.函数的性质:(1)一一对应:对于集合A中的任意一个元素,在集合B中都有唯一的元素与之对应。
(2)自变量与因变量:在函数f中,集合A称为函数的定义域,集合B称为函数的值域。
对于定义域中的任意一个元素x,在值域中都有唯一的元素y与之对应,称为函数值。
(3)函数的单调性:若对于定义域中的任意两个元素x1、x2,当x1<x2时,都有f(x1)<f(x2),则称函数f在定义域上为增函数;若对于定义域中的任意两个元素x1、x2,当x1<x2时,都有f(x1)>f(x2),则称函数f在定义域上为减函数。
3.函数的分类:(1)线性函数:形如f(x)=ax+b(a、b为常数,a≠0)的函数。
(2)二次函数:形如f(x)=ax²+bx+c(a、b、c为常数,a≠0)的函数。
(3)分段函数:形如f(x)={g1(x), x∈D1}{g2(x), x∈D2}的函数,其中D1、D2为定义域的子集,且D1∩D2=∅。
二、图像的概念与性质1.函数图像的定义:函数图像是指在平面直角坐标系中,根据函数的定义,将函数的定义域内的每一个点(x, f(x))连接起来形成的图形。
2.函数图像的性质:(1)单调性:增函数的图像呈上升趋势,减函数的图像呈下降趋势。
(2)奇偶性:若函数f(-x)=-f(x),则称函数f为奇函数;若函数f(-x)=f(x),则称函数f为偶函数。
奇函数的图像关于原点对称,偶函数的图像关于y轴对称。
(3)周期性:若函数f(x+T)=f(x),则称函数f为周期函数,T为函数的周期。
周期函数的图像具有周期性。
(4)拐点:函数图像在拐点处,曲线的斜率发生改变。
三、函数与图像的关系1.函数与图像的相互转化:通过函数的解析式,可以在平面直角坐标系中绘制出函数的图像;同时,根据函数图像的形状,可以反推出函数的解析式。
函数的单调性知识点函数的单调性是数学分析中的一个重要概念,用来描述函数在定义域上的增减特性。
具体而言,一个函数可以是严格递增的、递增的、严格递减的或递减的。
函数的单调性具有广泛的应用,在求解极值、解方程、绘制函数图像等问题中起到重要的作用。
本文将介绍函数的单调性的概念、判定方法以及一些常见的单调函数。
一、函数的单调性概念函数的单调性是指函数在定义域上的增减变化规律。
具体而言,一个函数在某个区间上单调递增,意味着随着自变量的增大,函数的取值也随之增大;而在单调递减的区间上,函数的取值随着自变量的增大而减小。
二、函数单调性的判定方法1. 导数法导数是函数单调性判定的重要工具之一。
对于可导函数,函数在某个区间上单调递增的充要条件是导数恒大于等于零;函数在某个区间上单调递减的充要条件是导数恒小于等于零。
2. 一阶差分法对于分段连续的函数,可以通过一阶差分的正负来判断函数的单调性。
若一阶差分恒大于零,则函数在该区间上单调递增;若一阶差分恒小于零,则函数在该区间上单调递减。
3. 二阶导数法对于二次可导函数,函数在某个区间上的单调性可以通过二阶导数的正负来判断。
若二阶导数恒大于零,则函数在该区间上单调递增;若二阶导数恒小于零,则函数在该区间上单调递减。
三、常见的单调函数1. 线性函数线性函数是最简单的单调函数,其定义域为实数集,函数的图像为一条直线。
线性函数在整个定义域上均为单调递增或单调递减。
2. 指数函数指数函数为形如 f(x) = a^x (a>0, a≠1)的函数,指数函数在定义域上分为两类:当a>1时,函数为单调递增函数;当0<a<1时,函数为单调递减函数。
3. 对数函数对数函数为形如 f(x) = loga(x) (a>0, a≠1)的函数。
当0<a<1时,对数函数为单调递增函数;当a>1时,对数函数为单调递减函数。
4. 幂函数幂函数为形如 f(x) = x^a (a为常数)的函数。
函数 - 函数的概念和图像一、函数的概念和图像● 定义总结1. 函数的定义设,A B 是非空的数集,如果按某种对应法则f ,对于集合A 中的每一个...元素x ,在集合B 中都有唯一..的元素y ,和它对应,这样的对应叫做A 到B 的一个函数,通常记为(),y A f x x =∈.其中,所有的输入值x 所组成的集合A 叫做函数()y f x =的定义域,与输入值x 对应的所有的输出值y 所组成的集合B 称为函数的值域. 1. 函数的图像将自变量的一个值0x 作为横坐标,相应的函数值()0f x 作为纵坐标,就得到坐标平面上的一个点()()00,x f x ,当自变量取遍..函数定义域A 中的每一个值时,就得到一系列这样的点,所有这些点组成的集合为()(){},x f x x A ∈,所有这些点组成的图形就是函数()y f x =的图象.● 知识归纳1. 相同函数的判断关键点:定义域、不等式.【例1】判断下列各组函数中的两个函数是否为同一函数: (1)()()2221,21x x x g t t f t =+-=+-;(2)()(),f x x g x ==(3)()(),f x x g x ==;(4)()()24,22x f x g x x x -==+-;(5)()()2f x g x x ==+.2. 函数的图像及应用关键点:作图、识图、用图.【例2】下图中可以作为函数图像的是 .A B C D【例3】画出()223f x x x =-++的图象,并根据图像回答问题:(Ⅰ)比较()()()0,1,3f f f 的大小;(Ⅱ)若121x x <<,比较()1f x 与()2f x 的大小.3. 函数的定义域关键点:熟知各种基本函数的定义域,列不等式组求解; 【例4】求下列函数的定义域:(1)03x y +=(2)y =注意点:注意y =2y =. 4. 定义域的逆向问题关键点:已知函数定义域,求参数的值. 【例5】已知函数y =的定义域为[]3,6-,求,a b 的值.424232121132132142【例6】已知函数y =的定义域是R ,求实数k 的取值范围.5. 函数的值域常用方法:直接法、配方法、判别式法、反表示法、换元法、部分分式法、图象法. 【例7】求下列函数的值域:(1)3y =;(2)y =二、函数的表示方法● 定义总结1. 解析法、列表法、图象法;2. 分段函数对于自变量x 的不同的取值范围有不同的解析式.● 知识归纳1. 函数的解析式常用方法:待定系数法、换元法、整体代换法(换元注意范围......). 【例1】已知()f x 是二次函数,其图象的顶点是()1,3,且过原点,求()f x .【例2】(1)已知()3221f x x -=+,求()f x 的解析式; (2)已知21111f x x ⎛⎫+=- ⎪⎝⎭,求()f x 的解析式.2. 简单函数图像的作法关键点:化简,注意定义域;列表,描点,作图。
函数的概念与图象5 单调性
[知识要点]
1.会判断简单函数的单调性(1)直接法 (2)图象法
2.会用定义证明简单函数的单调性:(取值,作差,变形,定号,判断)
3.函数的单调性与单调区间的联系与区别
[简单练习]
1.画出下列函数图象,并写出单调区间:
⑴ ⑵
2.(1)判断在(0,+∞)上是增函数还是减函数。
(2)判断在( —∞,0)上是增函数还是减函数。
3.证明在定义域上是减函数。
4.下列函数中,在(0,2)上为增函数的是( )
A.y=
B. y=2x-1
C. y=1-x
D.y=
5.讨论函数的单调性。
6.函数y=
-1的单调 递 区间为 。
7.已知f(x)在区间[a,c]上单调递减,在区间[c,d]上单调递增,则f(x)在[a,d] 上最小值为 。
22+-=x y )0(1
≠=x x y 1)(2-=x x f x x x f 2)(2+-=x x f -=)(x 12)12(-x 3x y =x
1
8.填表已知函数f(x),的定义域是F ,函数g(x)的定义域是G ,且对于任意的,,试根据下表中所给的条件,用“增函数”、“减函数”、“不能确定”填空。
[巩固提高]
1.已知f (x )=(2kx+1x+1在(-,+)上是减函数,则( )
A.k >
B.k <
C.k >-
D. k <-
2.在区间(0,+∞)上不是增函数的是 ( )
A.y=2x+1
B.y=3 +1
C.y=
D. y=3+x +1
3.若函数f (x )=+2(a-1)x+2在区间(-,4)上为增函数,则实数a 的
取值范围是 ( )
A.a -3
B.a -3
C.a 3
D.a 3
4.如果函数f (x )是实数集R 上的增函数,a 是实数,则 ( ) A.f ()>f (a+1) B.f (a )< f (3a )
C.f (+a )>f ()
D.f (-1)<f ()
5. 若f(x)是R 上的增函数,对于实数a,b,若a+b >0,则有 ( )
A. f(a)+ f(b) >f(-a)+ f(-b)
B.f(a)+ f(b) <f(-a)+ f(-b)
C. f(a)- f(b) >f(-a)- f(-b)
D.f(a)- f(b) <f(-a)-f(-b)
6.函数y=的单调减区间为 。
7.函数y=+的增区间为 减区间为 。
G x ∈F x g ∈)(∞∞21212121
2x x 2
2x 2x ∞≤≥≤≥2a 2a 2a 2a 2a 11
+x 1+x x -2
8.定义域为R 的函数f (x )在区间( —∞,5)上单调递减,对注意实数t 都有,那么f (—1),f (9),f (13)的大小关系是 。
9.在区间上有最大值吗?有最小值吗?
10.若f (x )是定义在上的减函数,f (x-1)<f (-1),求x 的取值范围。
11.求函数y=-2 x +3x-1在[-2,1]上的最值。
12.求 上的最小值。
13.已知函数f(x)是R 上的增函数,且f(x +x) > f(a-x)对一切x ∈R 都成立,求实数a 的取值范围。
)5()5(t f t f -=+x y 1
=(]1,2--[]1,1-2x 2[]2,0,12)(2∈--=x ax x x f 2。