实验二 无约束最优化
- 格式:doc
- 大小:116.00 KB
- 文档页数:6
牛顿法无约束最优化证明牛顿法是一种常用的非线性优化方法,它通过逐步逼近最优解来求解无约束最优化问题。
本文将介绍牛顿法的数学原理及其证明过程。
首先,我们考虑一个无约束的最优化问题,即:min f(x)其中,f(x)为目标函数,x为优化变量。
我们的目标是找到一个x,使得f(x)最小。
牛顿法的基本思想是通过求解目标函数的局部二次近似来逐步逼近最优解。
具体来说,我们首先选取一个初始点x0,然后利用目标函数的一、二阶导数信息,计算出目标函数在x0处的局部二次近似:f(x) ≈ f(x0) + f(x0)·(x-x0) + 1/2(x-x0)T·H(x0)·(x-x0) 其中,f(x0)为目标函数在x0处的梯度,H(x0)为目标函数在x0处的黑塞矩阵。
我们将局部二次近似表示为:Q(x) = f(x0) + f(x0)·(x-x0) + 1/2(x-x0)T·H(x0)·(x-x0) 然后,我们将Q(x)的导数置为零,得到如下方程:H(x0)·(x-x0) = -f(x0)接着,我们解出上述方程的解x1,将x1作为新的近似点,重复上述步骤,迭代求解,直到收敛于最优解。
接下来,我们来证明牛顿法的收敛性。
我们假设目标函数f(x)满足如下条件:1. f(x)是二次可微的凸函数。
2. H(x)是正定的。
在这种情况下,我们可以证明牛顿法是线性收敛的。
具体来说,设xk为牛顿法第k次迭代的近似解,x*为最优解,则有:f(xk+1) - f(x*) ≤ C·(f(xk) - f(x*))2其中,C>0是一个常数。
这个式子表明,每次迭代后,算法的误差都会平方级别的减小。
证明过程比较复杂,需要利用函数的泰勒展开式、中值定理等工具。
具体证明过程可以参考相关数学文献。
综上所述,牛顿法是一种有效的无约束最优化方法,其收敛速度较快,但需要满足一定的条件才能保证收敛性。
实验二、 无约束最优化【实验目的】1.了解无约束最优化方法的一些基本概念。
2.熟悉掌握用相关的命令来求解无约束最优化问题。
【实验内容】把题目和相应的完整命令写在实验报告上。
1:无约束最优化问题实际上是什么问题?求这类问题的最优解的基本思路是什么?2:求()5x f x e x =-在区间[1,2]内的极小值点和极小值。
3:已知22212312123(,,)3sin f x x x x x x x x =+-。
(1) 求123(,,)f x x x 在点(1,1,0)-附近的极小值;(2) 求123(,,)f x x x 在点(1,1,0)-附近的极小值点和极小值,要求优化算法用高斯-牛顿法,搜索方向用拟牛顿法的DFP 公式。
【相关知识说明】无约束最优化是指在没有约束条件下,求多变量实值函数极值。
无约束最优化问题的数学表达式为12min (),(,,,)n n f x x x x x R =∈。
一般f 为非线性函数,x 是n 维实变量,实际上这是一个多元函数无条件极值问题。
由于求极大值问题,可以用添加负号的方式转化为求极小值问题,因此通常只讨论求极小值问题。
应该注意的是,极值问题的解,即极值点,都是局部最优解,全局最优解只能从局部最优解的比较中得到。
如何求解无约束最优化问题的最优解呢?一般是采用迭代法,即先选择一个初始点,再寻找该点处的下降方向(我们称为搜索方向),在该方向上求极小点,得到一个新的点,然后在新点处再寻找下降方向和在该方向上的求极小点,……,如此下去,最终得到最优解。
我们先来看求一元函数y=f(x)在[x1,x2]内的极小值的命令:说明:其中'fun'是函数f(x)的表达式,当然也可以是关于f(x)的函数M-文件名。
返回值x 是极小值点。
现在我们来回答问题1。
问题1:求()2sin x f x e x -=在区间[0,6]内的极小值点和极小值.命令如下f='2*exp(-x)*sin(x)';x=fminbnd(f,0,6) %极小值点fval=2*exp(-x)*sin(x) %对应x 的极小值大家得到的结果是什么呢?这些是一元函数求极值,那么怎么求多元函数的极值呢?可以用下面的最简形式的命令:如果还必须满足更苛刻的要求,可以用下面的命令说明:(1) 返回值中,x 是极小值点。
最优化方法实验报告Numerical Linear Algebra And ItsApplications学生所在学院:理学院学生所在班级:计算数学10-1学生姓名:甘纯指导教师:单锐教务处2013年5月实验三实验名称:无约束最优化方法的MATLAB实现实验时间: 2013年05月10日星期三实验成绩:一、实验目的:通过本次实验的学习,进一步熟悉掌握使用MATLAB软件,并能利用该软件进行无约束最优化方法的计算。
二、实验背景:(一)最速下降法1、算法原理最速下降法的搜索方向是目标函数的负梯度方向,最速下降法从目标函数的负梯度方向一直前进,直到到达目标函数的最低点。
2、算法步骤用最速下降法求无约束问题n R()min的算法步骤如下:xxf,a )给定初始点)0(x ,精度0>ε,并令k=0;b )计算搜索方向)()()(k k x f v -∇=,其中)()(k x f ∇表示函数)(x f 在点)(k x 处的梯度;c )若ε≤)(k v ,则停止计算;否则,从)(k x 出发,沿)(k v 进行一维搜索,即求k λ,使得)(min )()()(0)()(k k k k v x f v x f λλλ+=+≥; d )令1,)()()1(+=+=+k k v x x k k k k λ,转b )。
(二)牛顿法1、算法原理牛顿法是基于多元函数的泰勒展开而来的,它将)()]([-)(1)(2k k x f x f ∇∇-作为搜索方向,因此它的迭代公式可直接写出来:)()]([)(1)(2)()(k k k k x f x f x x ∇∇-=-2、算法步骤用牛顿法求无约束问题n R x x f ∈),(min 的算法步骤如下:a )给定初始点)0(x ,精度0>ε,并令k=0;b )若ε≤∇)()(k x f ,停止,极小点为)(k x ,否则转c );c )计算)()]([,)]([)(1)(2)(1)(2k k k k x f x f p x f ∇∇-=∇--令;d )令1,)()()1(+=+=+k k p x x k k k ,转b )。
第七节 变尺度法(拟牛顿法)变尺度法是无约束最优化方法发展过程中非常有影响的重要研究成果,它的基本思想是基于有很好收敛速度的牛顿法。
但又避免了计算二阶导数矩阵及其求逆计算,又比共轭梯度法有更好的收敛速度,被认为是求最优化问题的最有效的算法之一。
牛顿法的缺点:计算复杂(一阶、二阶偏导数)、对函数的性态要求高(对海赛矩阵要求、对初始点的选择要求) 一、变尺度法的基本原理 一)范数和尺度函数图象联系了函数和几何,表达两个数之间的变化关系,映射推广了函数的概念,使得自变量不再仅仅局限于一个数,也不再局限于一维,任何事物都可以拿来作映射,维数可以是任意维,传统的函数图象已无法直观地表达高维对象之间的映射关系,这就要求我们在观念中,把三维的几何空间推广到抽象的n 维空间。
由于映射的对象可以是任何事物,为了便于研究映射的性质以及数学表达,我们首先需要对映射的对象进行“量化”,取定一组“基”,确定事物在这组基下的坐标,事物同构于我们所熟悉的抽象几何空间中的点,事物的映射可以理解为从一个空间中的点到另一个空间的点的映射,而映射本身也是事物,自然也可以抽象为映射空间中的一个点。
范数是把一个事物映射到非负实数,且满足非负性、齐次性、三角不等式,符合以上定义的都可以称之为范数,所以,范数的具体形式有很多种(由内积定义可以导出范数,范数还也可以有其他定义,或其他方式导出)。
从一个线性空间到另一个线性空间的线性映射,可以用一个矩阵来表达,矩阵被看线性作映射,线性映射的性质可以通过研究矩阵的性质来获得。
平面解析几何中一个向量1,2()TX x x =的长度的定义:1/22212X x x =+它具有非负性、齐次性和三角不等式三个基本性质。
向量范数定义 一个从到的非负函数叫做上的向量范数,如果满足:(1) 正定性:对所有的有,而且当且仅当;(2) 齐次性:对所有的和有; (3) 三角不等式:对所有的有.向量x 与y 之间的距离可定义为的x-y 范数,即(,)d X Y X Y =-常用范数最常用的范数就是p-范数。
数学与计算科学学院实验报告
实验项目名称powell法求解无约束优化问题
所属课程名称最优化方法
实验类型算法编程
实验日期
班级
学号
姓名
成绩
附录1:源程序
附录2:实验报告填写说明
1.实验项目名称:要求与实验教学大纲一致。
2.实验目的:目的要明确,要抓住重点,符合实验教学大纲要求。
3.实验原理:简要说明本实验项目所涉及的理论知识。
4.实验环境:实验用的软、硬件环境。
5.实验方案(思路、步骤和方法等):这是实验报告极其重要的内容。
概括整个实验过程。
对于验证性实验,要写明依据何种原理、操作方法进行实验,要写明需要经过哪几个步骤来实现其操作。
对于设计性和综合性实验,在上述内容基础上还应该画出流程图、设计思路和设计方法,再配以相应的文字说明。
对于创新性实验,还应注明其创新点、特色。
6.实验过程(实验中涉及的记录、数据、分析):写明具体实验方案的具体实施步骤,包括实验过程中的记录、数据和相应的分析。
7.实验结论(结果):根据实验过程中得到的结果,做出结论。
8.实验小结:本次实验心得体会、思考和建议。
9.指导教师评语及成绩:指导教师依据学生的实际报告内容,给出本次实验报告的评价。
无约束最优化问题的求解算法和应用随着科技的发展和应用领域的扩大,无约束最优化问题已经越来越成为一种关注的研究领域。
在现实生活中,无约束最优化问题的求解可以应用在多个方面,比如金融、医学、机械工程等等。
然而,在实际应用中,我们往往需要利用已经发展的优秀算法进行求解。
本文将会介绍无约束最优化问题的求解算法及其应用。
一、无约束最优化问题的概念无约束最优化问题指的是在一定的条件下,通过调整某些变量来最大或最小化指定的目标函数。
这些变量的调整需遵守一定的限制条件,并且通过各种数值分析方法,比如数值解析和计算机数值算法等技术来求解这样的问题。
无约束最优化问题的数学形式一般为:$$ \min_{x \in \mathbb{R}^n} f(x) $$其中,$x \in \mathbb{R}^n$ 是 $n$ 维空间中的一个向量,$f(x)$ 则是目标函数,该函数需要满足一定的条件,比如连续、可微、凸等等。
当函数连续、可微的情况下,就能有效地应用求导法来求解这个问题。
二、基于梯度下降的算法在求解无约束最优化问题时,最常用的算法就是基于梯度下降的算法。
该算法通过沿着负梯度的方向一步步得逼近全局极小值。
算法的主要流程如下:1、初始化变量$x$,比如$x=0$;2、计算目标函数$ f(x)$ 的梯度 $\nabla f(x)$;3、计算下降方向 $p$,$p=-\nabla f(x)$;4、选择步长 $\alpha$,更新$x$ $x_{k+1} = x_{k} + \alpha p$;5、重复执行步骤2-4 进行更新,直到满足一定的终止条件为止。
这种方法的收敛性非常好,同时也比较容易实现。
在实际应用中,通常会将其与其他迭代方法组合使用,比如牛顿、拟牛顿等方法来提升其求解精度。
三、基于共轭梯度的算法基于梯度下降的算法虽然求解精度较好,但是当求解目标函数具有高度弱凸性质时,算法的收敛速度会相对较慢。
为了克服这类问题,研究人员往往会采用共轭梯度法。
实验二、 无约束最优化
【实验目的】
1.了解无约束最优化方法的一些基本概念。
2.熟悉掌握用相关的命令来求解无约束最优化问题。
【实验内容】
把题目和相应的完整命令写在实验报告上。
1:无约束最优化问题实际上是什么问题?求这类问题的最优解的基本思路是什么?
2:求()5x f x e x =-在区间[1,2]内的极小值点和极小值。
3:已知2221231212
3(,,)3sin f x x x x x x x x =+-。
(1) 求123(,,)f x x x 在点(1,1,0)-附近的极小值;
(2) 求123(,,)f x x x 在点(1,1,0)-附近的极小值点和极小值,要求优化算法用高斯-牛顿法,搜索方向用拟牛顿法的DFP 公式,以及给出函数计算次数。
【相关知识说明】
无约束最优化是指在没有约束条件下,求多变量实值函数极值。
无约束最优化问题的数学表达式为
12min (),(,,,)n n f x x x x x R =∈。
一般f 为非线性函数,x 是n 维实变量,实际上这是一个多元函数无条件极值问题。
由于求极大值问题,可以用添加负号的方式转化为求极
小值问题,因此通常只讨论求极小值问题。
应该注意的是,极值问题的解,即极值点,都是局部最优解,全局最优解只能从局部最优解的比较中得到。
如何求解无约束最优化问题的最优解呢?一般是采用迭代法,即先选择一个初始点,再寻找该点处的下降方向(我们称为搜索方向),在该方向上求极小点,得到一个新的点,然后在新点处再寻找下降方向和在该方向上的求极小点,……,如此下去,最终得到最优解。
我们先来看求一元函数y=f(x)在[x1,x2]内的极小值的命令:
说明:其中'fun'是函数f(x)的表达式,当然也可以是关于f(x)的函数M-文件名。
返回值x 是极小值点。
现在我们来回答问题1。
问题1:求()2sin x f x e x -=在区间[0,6]内的极小值点和极小值.
命令如下
f='2*exp(-x)*sin(x)';
x=fmin(f,0,6) %极小值点
fval=2*exp(-x)*sin(x) %对应x 的极小值
大家得到的结果是什么呢?
这些是一元函数求极值,那么怎么求多元函数的极值
呢?可以用下面的最简形式的命令:
如果还必须满足更苛刻的要求,可以用下面的命令
说明:(1) 返回值中,x 是极小值点。
如果需要相应的极小值,可以用fval=fun(x)即可。
(2) 这里'fun'必须是事先定义的函数M-文件,M-文件的定义方式看下面的例子。
(3) x0是迭代初值。
(4) options 是控制参数,它是一个有18个分量的向量,包括了在优化程序中要用到的各种参数,以便在计算最优值时控制精度要求、输出形式、搜索算法、迭代次数、步长等等。
例如分量options (6)是指明搜索方向的。
options 各分量的意义见篇末。
在使用options 前,可以根据要求对options 的某些分量进行赋值,否则options 会自动使用缺省值。
根据options 各分量的意义,我们来回答问题2。
问题2:已知2231212
12(,)4f x x x x x x =+-。
①求12(,)f x x 在点(1,2)附近的极小值;
②求12(,)f x x 在点(1,2)附近的极小值点和极小值,要求搜索方向为最速下降法,精度为610-,并给出函数计算次数.
首先,建立M-文件,文件名取函数名 myfun.m 。
function f=myfun(x)
f=4*x(1)^2+x(2)^2-x(1)^3*x(2)
对于第一问,比较简单,直接应用上面命令的最简形式即可,如下。
x0=[1,2]; %取点(1,2)为迭代初值
x=fminu('myfun',x0);
fval=myfun(x)
对于第二问,就要复杂很多了,要考虑参数options各个分量的取值。
命令如下
x0=[1,2];
opt(2)=1e-6; %设置自变量要求的精度
opt(3)=1e-6; %设置函数值要求的精度
opt(6)=2; %搜索算法用最速下降法
[x,opt]=fminu('myfun',x0,opt);
x
%参数options的值已返回给向量opt,因此
n=opt(10) %得到函数计算次数
fval=opt(8) %在极点x处的极小值
大家分别运行上面的命令,看看相应的答案是什么?
类似fminu,我们还有一个命令fmins,用法几乎一样,与fminu不同的仅有两点:(1)fmins使用的优化方法是单纯形法。
(2)'fun'可以是函数f(x)的表达式,当然也可以是关
于f(x)的函数M-文件名。
另外大家可以思考Rosebrock 函数
22212211(,)100()(1)f x x x x x =-+-。
试用不同算法(搜索方向和步长搜索)求最优极小值点和极小值。
初值为( 1.2,2)-。
参数options 各分量说明。