第3章 集成门电路
- 格式:ppt
- 大小:8.89 MB
- 文档页数:88
第3章逻辑门电路3.1 概述逻辑门电路:用以实现基本和常用逻辑运算的电子电路。
简称门电路.用逻辑1和0 分别来表示电子电路中的高、低电平的逻辑赋值方式,称为正逻辑,目前在数字技术中,大都采用正逻辑工作;若用低、高电平来表示,则称为负逻辑。
本课程采用正逻辑。
获得高、低电平的基本方法:利用半导体开关元件的导通、截止(即开、关)两种工作状态.在数字集成电路的发展过程中,同时存在着两种类型器件的发展。
一种是由三极管组成的双极型集成电路,例如晶体管-晶体管逻辑电路(简称TTL电路)及射极耦合逻辑电路(简称ECL电路).另一种是由MOS管组成的单极型集成电路,例如N-MOS逻辑电路和互补MOS(简称COMS)逻辑电路。
3。
2 分立元件门电路3。
3.1二极管的开关特性3.2.2三极管的开关特性NPN型三极管截止、放大、饱和3种工作状态的特点工作状态截止放大饱和条件i B=0 0<i B<I BS i B>I BS工作特点偏置情况发射结反偏集电结反偏u BE〈0,u BC〈0发射结正偏集电结反偏u BE>0,u BC〈0发射结正偏集电结正偏u BE〉0,u BC〉集电极电流i C=0 i C=βi B i C=I CSce间电压u CE=V CC u CE=V CC-i C R cu CE=U CES=0.3Vce间等效电阻很大,相当开关断开可变很小,相当开关闭合3.2。
3二极管门电路1、二极管与门2、二极管或门u A u B u Y D1D20V 0V 0V 5V 5V 0V 5V 5V0V4。
3V4。
3V4.3V截止截止截止导通导通截止导通导通3。
2.4三极管非门3。
2。
5组合逻辑门电路1、与非门电路2、或非门电路3.3 集成逻辑门电路一、TTL与非门1、电路结构(1)抗饱和三极管作用:使三极管工作在浅饱和状态。
因为三极管饱和越深,其工作速度越慢,为了提高工作速度,需要采用抗饱和三极管。
构成:在普通三极管的基极B和集电极C之间并接了一个肖特基二极管(简称SBD)。
路。
简称门电路。
5V一、TTL 与非门图3-1 典型TTL 与非门电路3.2 TTL 集成门电路•数字集成电路中应用最广的为TTL 电路(Transister-Transister-Logic 的缩写)•由若干晶体三极管、二极管和电阻组成,TTL 集成电路有54/74系列 ①输出高电平UOH 和输出低电平UOL 。
•输出高电平U OH:至少有一个输入端接低电平时的输出电平。
•输出低电平U OL:输入全为高电平时的输出电平。
• 电压传输特性的截止区的输出电压UOH=3.6V,饱和区的输出电压UOL=0.3V。
一般产品规定U OH≥2.4V、U OL<0.4V时即为合格。
二、TTL与非门的特性参数③开门电平U ON 和关门电平U OFF 。
开门电平U ON 是保证输出电平达到额定低电平(0.3V )时,所允许输入高电平的最低值,表示使与非门开通的最小输入电平。
通常U ON =1.4V ,一般产品规定U ON ≤1.8V 。
关门电平U OFF 是保证输出电平为额定高电平(2.7V 左右)时,允许输入低电平的最大值,表示与非门关断所允许的最大输入电平。
通常U OFF ≈1V ,一般产品要求U OFF ≥0.8V 。
5). 扇入系数Ni和扇出系数N O 是指与非门的输入端数目。
扇入系数Ni是指与非门输出端连接同类门的个数。
反扇出系数NO映了与非门的带负载能力。
6)输入短路电流I IS 。
当与非门的一个输入端接地而其余输入端悬空时,流过接地输入端的电流称为输入短路电流。
7)8)平均功耗P 指在空载条件下工作时所消耗的电功率。
三、TTL门电路的改进 74LS系列 性能比较好的门电路应该是工作速度既快,功耗又小的门电路。
因此,通常用功耗和传输延迟时间的乘积(简称功耗—延迟积或pd积)来评价门电路性能的优劣。
74LS系列又称低功耗肖特基系列。
74LS系列是功耗延迟积较小的系列(一般t pd<5 ns,功耗仅有2 mW) 并得到广泛应用。
TTL集成门电路⼀、TTL集成门电路的结构1.总体结构所谓TTL就是transistor transistor logic,就是说是由晶体管和晶体管之间构成电路。
2. TTL集成门电路典型输⼊级形式1)⼆极管与门输⼊2)⼆极管或门输⼊3)单发射级输⼊跟随输⼊的同相关系钳位⼆极管VD:左下⾓并有⼆极管,既抑制输⼊端可能出现的负极性⼲扰脉冲,⼜可以防⽌输⼊电压为负时,VT的发射极电流过⼤,起保护作⽤。
电路中经常有⼲扰信号,当A端出现了⼀个⽐较⼤的负极性脉冲的⼲扰信号,假设有-20V,那么压降Vcc-(-20V)就有25V了,晶体管的发射结会烧坏。
然鹅并联⼆极管之后,由于⼆极管电阻很⼩会迅速导通,将A点电压钳位在-0.7V.4)多发射级输⼊3. TTL集成门电路典型中间级形式1)单变量分相器三极管基极输⼊,发射极和集电极作为输出。
A=0.3V,三极管截⽌,F1=Vcc=12V,F2=0V.A=3.0V,三极管导通,F2=3.0-0.7=2.3V;F1-F2范围是0.1~0.3V,F1是2.4~2.6V.F1称为反相输出端,F2称为同相输出端。
2)两个变量相或的分相器两个三极管的基极分别作为输⼊,发射极相连,集电极相连作为两个输出3)多个变量相或的分相器4. TTL集成门电路典型输出级形式1)图腾柱输出电路A’为⾼电平,A为低电平,VT1导通,VT2截⽌,Vo=A'-0.7-0.7为⾼电平;A 为⾼电平,A'为低电平,VT2导通,饱和导通,VT1截⽌,Vo是ce间压降,约为0.1~0.3V,为低电平;所以结论就是 —— 输出和A'(前提:A’是上⾯的变量)⼀致。
VD这个⼆极管作⽤,使得VT1⾄少要1.4V才能导通,保证了只有⼀管导通的可靠性,在下⾯TTL⾮门(反相器)那⾥还有说明。
2)图腾柱和复合管输出电路3)集电极开路(OC)门输出电路4)三态(TS)门输出电路⼆、⼏种典型的TTL集成复合门电路1. TTL⾮门(反相器)分析:由上⾯单个的分析(翻到上⾯回忆⼀下.......),输⼊级是跟随的,A是低电平,集电极输出低电平A;A是⾼电平,集电极输出⾼电平A。
常用集成门电路芯片及其应用引言集成门电路芯片是数字逻辑电路中常见的元件,它能够实现逻辑运算,如与、或、非、异或等。
本文将介绍一些常用的集成门电路芯片及其应用,帮助读者了解它们在数字电路设计中的重要性。
1. 与门(AND Gate)与门是最基本的逻辑门之一,它的输出只有在所有输入均为高电平(逻辑“1”)时才为高电平,否则为低电平(逻辑“0”)。
常见的与门芯片有 7408、7411 等。
应用示例与门可以用于实现以下功能: - 将两个信号进行逻辑与运算,用于控制两个信号的联合条件。
- 实现译码器和多路选择器等复杂逻辑功能。
2. 或门(OR Gate)或门是另一个基本的逻辑门,它的输出只要有任何一个输入为高电平时就为高电平。
常见的或门芯片有 7402、7432 等。
应用示例或门可以用于实现以下功能: - 多个输入信号的逻辑或运算。
- 组合多个信号的状态。
3. 非门(NOT Gate)非门是一个非常简单的逻辑门,它只有一个输入和一个输出。
输出为输入的逻辑反.应用示例非门可以用于实现以下功能: - 实现逻辑反转功能,将输入信号取反。
异或门是一种特殊的逻辑门,它的输出在所有输入中仅在奇数个输入为高电平时为高电平。
异或门常用于数据比较和校验等应用场景。
应用示例异或门可以用于实现以下功能: - 数据比较,判断两个数据是否相等。
- 错误校验,检测数据传输过程中的错误。
5. 与非门(NAND Gate)与非门是与门和非门的组合,它的输出为与门输出取反。
常见的与非门芯片有 7400、7404 等。
应用示例与非门可以用于实现以下功能: - 除了实现与门的功能外,还可以实现逻辑非门的功能。
或非门是或门和非门的组合,它的输出为或门输出取反。
常见的或非门芯片有 7402、7403 等。
应用示例或非门可以用于实现以下功能: - 除了实现或门的功能外,还可以实现逻辑非门的功能。
7. 三态门(Tri-state Gate)三态门是一种特殊的逻辑门,它的输出可以处于高电平、低电平或高阻态。