数学分析练习及解答07-2-2
- 格式:doc
- 大小:301.50 KB
- 文档页数:4
习 题 15.2 含参变量的反常积分1. 证明下列含参变量反常积分在指定区间上一致收敛: (1)⎰∞++022cos dx yx xy ,0>≥a y ; (2)⎰∞+-+02sin dx e x x xαα,00αα≤≤; (3)⎰∞+04cos sin xdx x x α,b a ≤≤α。
解 (1)因为≤+22cos yx xy 221a x +,而 ⎰∞++0221dx a x 收敛,所以由Weierstrass 判别法,⎰∞++022cos dx yx xy在),[+∞a 上一致收敛。
(2)12sin 0≤⎰A xdx ,即0sin 2Axdx ⎰关于],0[0αα∈一致有界;αα+-x e x关于x 单调,且由xx e x 1≤+-αα,可知当+∞→x 时,αα+-x e x 关于],0[0αα∈一致趋于零。
于是由Dirichlet 判别法,可知⎰∞+-+02sin dx e x x xαα在],0[0αα∈上一致收敛。
(3)由分部积分法,4421cos sin cos cos 4AA x x x xdx d xx αα+∞+∞=-⎰⎰ 444223cos cos 1sin cos 1cos cos 442A A Ax x x x x x dx dx x x x αααα+∞+∞+∞=---⎰⎰, 其中22cos cos 1Ax x x Aα+∞≤; 再由224),max(cos sin x b a xx x ≤αα及3341cos cos xx x x ≤α,可得到 422max(,)sin cos 1max(,)AAa b x x dx a b dx x x Aαα+∞+∞≤=⎰⎰与4332cos cos 112AA x x dx dx x x A α+∞+∞≤=⎰⎰。
当+∞→A 时,上述三式关于α在],[b a 上一致趋于零,所以原积分关于α在],[b a 上一致收敛。
2.说明下列含参变量反常积分在指定区间上非一致收敛:(1)⎰∞++02)1(sin dx x x x αα,+∞<<α0; (2)⎰101sin 1dx x x α,20<<α。
(二十一)数学分析期终考试题一 叙述题:(每小题5分,共15分) 1 开集和闭集2 函数项级数的逐项求导定理3 Riemann 可积的充分必要条件 二 计算题:(每小题7分,共35分)1、⎰-9131dx x x2、求)0()(222b a b b y x ≤<=-+绕x 轴旋转而成的几何体的体积3、求幂级数n n n x n ∑∞=+12)11(的收敛半径和收敛域4、11lim 22220-+++→→y x y x y x5、22),,(yz xy x z y x f ++=,l 为从点P 0(2,-1,2)到点(-1,1,2)的方向, 求f l (P 0) 三 讨论与验证题:(每小题10分,共30分)1、已知⎪⎩⎪⎨⎧==≠+++=0,0001sin )(),(222222y x y x y x y x y x f ,验证函数的偏导数在原点不连续,但它在该点可微2、讨论级数∑∞=-+12211ln n n n 的敛散性。
3、讨论函数项级数]1,1[)1(11-∈+-∑∞=+x n x n x n n n 的一致收敛性。
四 证明题:(每小题10分,共20分)1 若⎰+∞adx x f )(收敛,且f (x )在[a ,+∞)上一致连续函数,则有0)(lim =+∞→x f x2 设二元函数),(y x f 在开集2R D ⊂内对于变量x 是连续的,对于变量y 满足Lipschitz 条件:''''''),(),(y y L y x f y x f -≤-其中L D y x y x ,),(),,('''∈为常数证明),(y x f 在D 内连续。
参考答案一、1、若集合S 中的每个点都是它的内点,则称集合S 为开集;若集合S 中包含了它的所有的聚点,则称集合S 为闭集。
2 设函数项级数∑∞=1)(n n x u 满足(1)),2,1)(( =n x u n 在[a ,b]连续可导a)∑∞=1)(n nx u在[a ,b]点态收敛于)(x Sb)∑∞=1')(n x un在[a ,b]一致收敛于)(x σ则)(x S =∑∞=1)(n n x u 在[a ,b] 可导,且∑∑∞=∞==11)()(n n n n x u dxdx u dx d3、有界函数)(x f 在[a ,b]上可积的充分必要条件是,对于任意分法,当0)(max 1→∆=≤≤i ni x λ时Darboux 大和与Darboux 小和的极限相等二、1、令31x t -=(2分)7468)1(31233913-=--=-⎰⎰-dt t t dx x x (5分) 2、222221,x a b y x a b y --=-+=,(2分)所求的体积为:b a dx y y aa 2222212)(ππ=-⎰-(5分) 3、解:由于e n n n n n n nn 1])111(1))111()11(lim[(11=++⨯+++++∞→收敛半径为e 1(4分),当e x 1=时,)(01)1()1()11(2∞→≠→±+n e n n n n ,所以收敛域为)1,1(ee - (3分)4、2)11(lim )11)(11()11)((lim11lim2200222222220222200=+++=+++-++++++=-+++→→→→→→y x y x y x y x y x y x y x y x y x y x (7分)5、解: 设极坐标方程为4)2,1,2(.0)2,1,2(,2)2,1,2(-=-=-=-z y x f f f (4分)136)2,1,2(=-l f (3分)三、1、解、⎪⎩⎪⎨⎧=+≠+++-+=000)1c o s 11(s i n 22222222222y x y x yx y x y x x f x (4分)由于22221c o s 1yx y x ++当趋于(0,0)无极限。
1、平面点集{}22(,)|01E x y x y =<+<的内部为 ,边界为 . 解 {}{}222222int (,)|01,(,)|01E x y x y E x y x y x y =<+<∂=+=+=或2、平面点集11,,E n m n m ⎧⎫⎛⎫=⎨⎬ ⎪⎝⎭⎩⎭为整数的聚点集为 .解 {}11,00,(0,0)n m n m ⎧⎫⎧⎫⎛⎫⎛⎫⎨⎬⎨⎬⎪ ⎪⎝⎭⎝⎭⎩⎭⎩⎭为整数为整数3、设(,)ln 1f x y x y=--,则函数(,)f x y 的定义域为 .解(){}222,014x y xy y x <+<≤且4、设2222),(y x y x y x f +-=则00limlim (,)x y f x y →→= ,),(lim lim 00y x f x y →→= .解 222200000limlim (,)limlim lim11x y x y x x y f x y x y →→→→→-===+()222200000limlim (,)limlim lim 11y x y x x x y f x y x y →→→→→-==-=-+ 5、函数1(,)sin sin f x y x y =的间断点集为 .解(){},,,x y x k y l k l ππ==∈Z 或二、选择题1、函数f x y x y (,)=-+-1122的定义域是( D ) A 、闭区域 B 、开区域 C 、开集 D 、闭集解 f x y x y (,)=-+-1122的定义域是(){},1,1E x y x y =≤≥E 是闭集但不具有连通性,故不是闭区域.2、函数y x z -=的定义域是( C )A 、有界开集B 、有界闭集C 、无界闭集D 、无界开集 解 y x z -=的定义域是(){}2,0E x y y x =≤≤E 是无界闭集.3、以下说法中正确的是( A )A 、开区域必为开集B 、闭区域必为有界闭集C 、开集必为开区域D 、闭集必为闭区域 4、下列命题中正确的是( A )A 、如果二重极限,累次极限均存在,则它们相等;B 、如果累次极限存在,则二重极限必存在;C 、如果二重极限不存在,则累次极限也不存在;D 、如果二重极限存在,则累次极限一定存在.A 、有界点列2}{R P n ⊂必存在收敛的子列;B 、二元函数),(y x f 在D 上关于x ,y 均连续,则),(y x f 在D 上连续;C 、函数),(y x f 在有界区域D 上连续,则),(y x f 在D 上有界;D 、函数),(y x f 定义在点集2R D ⊂上,D P ∈0,且0P 是D 的孤立点,则f 在0P 处连续.三、用ε-δ定义证明22200lim 0.x y x yx y →→=+ 证明 由于当(,)(0,0)x y ≠时2222||0||22x y x y x x x y xy -≤=≤+ 故0,,(,):0|0|,0|0|,x y x y εδεδδ∀>∃=∀<-<<-<有2220||x yx x y ε-≤<+故22200lim 0.x y x yx y →→=+ 四、求下列极限1、222200lim x y x y x y →→+解 当(,)(0,0)x y 时222222222x y y x x x y x y ,而200lim 0x y x →→=所以222200lim 0x y xy x y →→=+. 2、2200x y →→解 因为22222222222211111111x y x y x yx y xyx y所以222222000limlim11211x x y y x y x y xy.1、设xy e z =,则z x ∂=∂ ,z y∂=∂ . 解,xy xy z zye xe x y∂∂==∂∂ 2、设000000(,)0,(,)4,(,)5x y f x y f x y f x y ''===,则000(,)limx f x x y x ∆→+∆=∆ ,000(,)lim y f x y y y∆→+∆=∆ .解 0000000000(,)(,)(,)limlim (,)4x x x f x x y f x x y f x y f x y x x∆→∆→+∆+∆-'===∆∆ 0000000000(,)(,)(,)limlim (,)5y y y f x y y f x y y f x y f x y y y∆→∆→+∆+∆-'===∆∆ 3、设ln 1x z y ⎛⎫=+ ⎪⎝⎭,则(1,1)dz = .解 21111,()11z z x x x x x y x y y y y x y y y ⎛⎫∂∂=⋅==⋅-=- ⎪∂+∂+⎝⎭++ (1,1)(1,1)11,22z z x y ∂∂∴==-∂∂ (1,1)111()222dz dx dy dx dy ∴=-=- 4、设2sin()z x y =,则dz = .解2222cos(),cos()z zxy x y x x y x y∂∂==∂∂ ()22222cos()cos()cos()2dz xy x y dx x x y dy x x y ydx xdy ∴=+=+ 5、求曲面arctany z x 在点⎪⎭⎫⎝⎛4,1,1π处的切平面方程为 ,法线方程 .解 2222,x yy xz z x y x y 11(1,1),(1,1)22x y z z故曲面arctan y z x 在点⎪⎭⎫⎝⎛4,1,1π处的切平面方程为11(1)(1)422z x y π-=--+-,即202x y z π-+-=法线方程为11411122z x y π---==--,即202204x y x z π+-=⎧⎪⎨--+=⎪⎩1、设),(y x f 在点(,)a b 处偏导数存在,则lim(,)(,)x f a x b f a x b x→+--0=( C )A 、(,)x f a b 'B 、(2,)x f a b 'C 、2(,)x f a b 'D 、1(,)2x f a b '解 [][]xb a f b x a f b a f b x a f x b x a f b x a f x x ),(),(),(),(lim ),(),(lim00----+=--+→→ [][]000(,)(,)(,)(,)lim (,)(,)(,)(,)lim lim (,)(,)2(,)x x x x x x f a x b f a b f a x b f a b xf a x b f a b f a x b f a b x x f a b f a b f a b →→→+----=+---=+-''=+'=2、设),(y x f 在点00(,)x y 处存在关于x 的偏导数,则00(,)(,)x y f x y x ∂=∂( A )A 、x y x f y x x f x ∆-∆+→∆),(),(lim00000 B 、xy x f y y x x f x ∆-∆+∆+→∆),(),(lim 00000C 、x y x x f x ∆∆+→∆),(lim 000D 、xy x x f y y x x f x ∆∆+-∆+∆+→∆),(),(lim 00000解 0000000(,)(,)(,)(,)limx x y f x x y f x y f x y x x∆→+∆-∂=∂∆ 3、函数f x y xy x y x y x y (,)=++≠+=⎧⎨⎪⎩⎪222222000在点(0,0)处有( D )A 、连续且偏导数存在B 、连续但偏导数不存在C 、不连续且偏导数不存在D 、不连续但偏导数存在 解 当(,)x y 沿y x =趋于(0,0)时22200001lim (,)lim (,)lim 2x x x y x f x y f x x x x →→→→===+ 当(,)x y 沿0y =趋于(0,0)时00lim (,)lim (,0)lim 00x x x y f x y f x →→→→===故00lim (,)x y f x y →→不存在,于是函数),(y x f 在点(0,0)处不连续.000(,0)(0,0)00(0,)(0,0)00limlim 0,lim lim 0x x y x f x f f y f x x y y∆→∆→∆→∆→∆--∆--====∆∆∆∆ (,)f x y ∴在原点存在偏导数且(0,0)0,(0,0)0x y f f ''==4、在点00(,)x y 处的某邻域内偏导数存在且连续是),(y x f 在该点可微的( B ) A 、必要条件 B 、充分条件 C 、充要条件 D 、无关条件解 P175定理25、下面命题正确的是( C )A 、若),(y x f 在00(,)x y 连续,则),(y x f 在00(,)x y 的两个偏导数存在;0000C 、若),(y x f 在00(,)x y 可微,则),(y x f 在00(,)x y 的两个偏导数存在; D 、若),(y x f 在00(,)x y 处的两个偏导数存在,则),(y x f 在00(,)x y 处可微.解 P172定理1 三、求解下列各题 1、求曲面xy z =上一点,使得曲面在该点的切平面平行于平面093=+++z y x ,并写出这切平面方程和法线方程.解 设所求的点为000(,,)x y z .由于,x y z y z x ''== 故000000(,),(,)x y z x y y z x y x ''==于是曲面xy z =在点000(,,)x y z 的切平面方程为 00000()()()0y x x x y y z z -+---=由已知切平面与平面093=+++z y x 平行,故001131y x -== 于是000003,1,3x y z x y =-=-==,故所求的点为(3,1,3)--.曲面在点(3,1,3)--的切平面方程为(3)3(1)(3)0x y z -+-+--=,即330x y z +++= 法线方程为313131x y z ++-==---,即1333y x z ++==- 2、讨论函数2222222,0(,)0,0x yx y f x y x y x y ⎧+≠⎪=+⎨⎪+=⎩在附近的连续性、偏导数的存在性及可微性.解2221(,)(0,0)02x y x y x x y ≠≤≤+当时,且001lim 02x y x →→=. 2220000lim (,)lim 0(0,0)x x y y x yf x y f x y →→→→∴===+(,)f x y ∴在点(0,0)的连续.0000(,0)(0,0)00(0,)(0,0)00lim lim 0,lim lim 0x x y y f x f f y f x x y y ∆→∆→∆→∆→∆--∆--====∆∆∆∆ (,)f x y ∴在点(0,0)存在偏导数且(0,0)(0,0)0x y f f ''==.[]()22223222(,)(0,0)(0,0)(0,0)x y x yf x y f f x f y z dzx yxyρ∆∆⎡⎤''∆∆--∆+∆∆-∆∆===∆+∆当(,)x y ∆∆沿y x ∆=∆趋于(0,0)时()23300222limlimlim x x y z dzx yxyρρ→∆→∆→∆→∆-∆∆===∆+∆ 当(,)x y ∆∆沿0y ∆=趋于(0,0)时()3300222limlimlim0x x y z dzx yx xyρρ→∆→∆→∆→∆-∆∆===∆∆+∆故极限()230222limx y x yxy∆→∆→∆∆∆+∆不存在,从而极限0limz dzρρ→∆-不存在,即(,)f x y 在点(0,0)不可微.1、2ln ,,32,u z x y x y u v v ===-求,.z zu v∂∂∂∂解 22ln 3z z x z y x y x u x u y u v y∂∂∂∂∂=⋅+⋅=+∂∂∂∂∂ 222ln 2z z x z y ux y x v x v y v v y∂∂∂∂∂=⋅+⋅=--∂∂∂∂∂ 2、,,x y u f y z ⎛⎫= ⎪⎝⎭求,,.u u ux y z ∂∂∂∂∂∂解 令,x y s t y z ==,则函数,,x y u f y z ⎛⎫= ⎪⎝⎭由函数(,),,x yu f s t s t y z ===复合而成,记12,u u f f s t∂∂==∂∂,则11222211,,.u u s u u s u t x u u t y f f f f x s x y y s y t y y z z t z z ∂∂∂∂∂∂∂∂∂∂∂=⋅==⋅+⋅=-+=⋅=-∂∂∂∂∂∂∂∂∂∂∂ 二、求下列函数在给定点沿给定方向的方向导数1、求22(,,)f x y z x xy z =-+在点0(1,0,1)P 沿(2,1,2)l =-的方向导数. 解 由于l 的方向余弦为212cos ,cos ,cos 333αβγ====-==()0000()22,()1,()22x y P z P P f P x y f P xf P z'''=-==-=-==所以()000212()cos ()cos ()cos 123333x y z f f P f P f P l αβγ∂⎛⎫++⋅+-⋅-+⋅= ⎪∂⎝⎭==2 2、求u xyz =在点(5,1,2)A 处沿到点(9,4,14)B 的方向AB 上的方向导数. 解 由于(4,3,12)AB =,故它的方向余弦为4312cos ,cos ,cos 131313αβγ====()2,()10,()5x y Az A A f A yz f A zxf A xy '''======所以000431298()cos ()cos ()cos 10513131313x y z f f P f P f P l αβγ∂++⋅+⋅+⋅=∂==21、如果 ,则有0000(,)(,)xyyx f x y f x y ''''=. 解 如果函数(,)f x y 在点00(,)P x y 的某邻域G 内存在二个混合偏导数(,)xy f x y ''与(,)yx f x y '',并且它们在点00(,)P x y 连续,则0000(,)(,)xyyx f x y f x y ''''=. 2、设24z x y =,则2zx y ∂=∂∂ .解 2432,8z z xy xy x x y∂∂==∂∂∂ 3、二元函数xy y x y x f ++=),(在点)2,1(的泰勒公式为 .解 222221,1,0,1,0,0(2)n m n m f f f f f fy x n m x y x x y y x y+∂∂∂∂∂∂=+=+====+>∂∂∂∂∂∂∂∂22()(1,2)3,(1,2)2,(1,2)0,(1,2)1,(1,2)0,(1,2)0(2)m nm n x y xy x y x y f f f f f f n m +''''''''∴======+> (,)f x y x y xy ∴=++在点)2,1(的泰勒公式为 (,)f x y x y xy =++1(1,2)(1,2)(1)(1,2)(2)1!x y f f x f y ''⎡⎤=+-+-⎣⎦ 22221(1,2)(1)2(1,2)(1)(2)(1,2)(2)2!xy x y f x f x y f y ⎡⎤''''''+-+--+-⎣⎦ 53(1)2(2)(1)(2)x y x y =+-+-+--4、函数22(,)4()f x y x y x y =---在稳定点 处取得极大值,且极大值是 .解 令(,)420(,)420xy f x y x f x y y ⎧'=-=⎪⎨'=--=⎪⎩得稳定点(2,2)-.由于22(,)2,(,)0,(,)2xy xyf x y f x y f x y ''''''=-==-222(2,2)20,(2,2)0,(2,2)2,40xy x y A f B f C f B AC ''''''=-=-<=-==-=-∆=-=-<故函数22(,)4()f x y x y x y =---在稳定点(2,2)-取得极大值,且极大值是(2,2)8f -=.5、设),(),(00y x y x f z 在=存在偏导数,且在),(00y x 处取得极值,则必有 .解 0000(,)0(,)0x y f x y f x y '=⎧⎨'=⎩二、选择题1、二元函数3322339z x y x y x =+++-在点M 处取得极小值,则点M 的坐标是( A )A 、(1,0)B 、(1,2)C 、(-3,0)D 、(-3,2) 解 令22(,)3690(,)360xy f x y x x f x y y y ⎧'=+-=⎪⎨'=+=⎪⎩得稳定点(1,0),(3,0),(1,2),(3,2)----.由于22(,)66,(,)0,(,)66xy xyf x y x f x y f x y y ''''''=+==+在点(1,0),2120,0,6,720A B C B AC =>==∆=-=-<在点(3,0)-,212,0,6,720A B C B AC =-==∆=-=> 在点(1,2)-,212,0,6,720A B C B AC ===-∆=-=>在点(3,2)--,2120,0,6,720A B C B AC =-<==-∆=-=-<故函数339z x y x y x =+++-在点(1,2)-,(3,0)-不取得极值,在点(1,0)取得极小值, 在点(3,2)--取得极大值.2、二元函数2222),(22+-+-=x y xy x y x f 的极小值点是( C )A 、(-1,-1)B 、(0,0)C 、(1,1)D 、(2,2) 解 令(,)4220(,)220xy f x y x y f x y y x ⎧'=--=⎪⎨'=-=⎪⎩得稳定点(1,1).由于22(,)4,(,)2,(,)2xy xyf x y f x y f x y ''''''==-=240,2,2,40A B C B AC =>=-=∆=-=-<故函数2222),(22+-+-=x y xy x y x f 在点(1,1)取得极小值. 3、关于二元函数下列论断①(,)f x y 在),(00y x 取得极值,则),(00y x 是(,)f x y 的稳定点;②),(00y x 是(,)f x y 的稳定点,则(,)f x y 在),(00y x 取得极值; ③(,)f x y 在),(00y x 不存在偏导数,则(,)f x y 在),(00y x 不会取得极值; ④)0,0(以xy z =为极小值点. 其中正确的个数是( A )A 、0B 、1C 、2D 、3解 ①错误:偏导数不存在的点也可能是极值点,例如z =在点(0,0)取得极小值,但点(0,0)不是稳定点.②错误:稳定点不一定是极值点,例如在第1题中,点(1,2)-是稳定点,但却不是极值点.③错误:偏导数不存在的点也可能是极值点,例如z =在点(0,0)的偏导数不存在,但点(0,0)是该函数的极小点.④错误: 令00xy z y z x ⎧'==⎪⎨'==⎪⎩得稳定点(0,0).由于22(,)0,(,)1,(,)0xy x y z x y z x y z x y ''''''=== 20,1,0,10A B C B AC ===∆=-=>故函数z xy =在点(0,0)不取得极值.4、如果点()00,x y 为(,)f x y 的极值点且()()0000,,,x y f x y f x y ''存在,则它是(,)f x y 的( B ) A 、最大值点 B 、稳定点 C 、连续点 D 、最小值点 解 P200定理35、下列命题中,正确的是( D )A 、设点00(,)P x y 为函数(,)f x y 的稳定点,则它一定是(,)f x y 极值点;B 、设点00(,)P x y 为函数(,)f x y 的极值点,则它一定是(,)f x y 稳定点;C 、设点00(,)P x y 为函数(,)f x y 的稳定点且0∆=,则它不是(,)f x y 极值点;D 、设点00(,)P x y 为函数(,)f x y 的稳定点且0∆>,则它不是(,)f x y 极值点. 解 P201定理4 三、求解下列各题 1、求函数333(0)z axyx y a的极值.解 令22330330x yz ay x z ax y得稳定点(0,0)和(,)a a . 226,3,6xy x y z x z a z y对于点(0,0),220,3,0,90A B a C B AC a 故点(0,0)不是极值点. 对于点(,)a a ,2260,3,6,270A a B a C a B AC a 故点(,)a a 是极大点,极大值为3(,)z a a a .2、在xy 平面上求一点,使它到三直线0,0x y ==及2160x y +-=的距离平方和最小. 解 设(,)x y 为平面上任一点,则它到三直线0,0x y ==及2160x y +-=的距离平方和为()222216(,)5x y S x y x y +-=++于是问题转化为求函数()222216(,)5x y S x y x y +-=++在2R 上的最小值.令22162054216205xyx y S x xy S y得(,)S x y 在2R 上的唯一稳定点816,55⎛⎫⎪⎝⎭.2212418,,555xy x y S S S 2124180,,,80555A B C B AC 故点816,55⎛⎫⎪⎝⎭是极小点.根据问题实际意义,函数(,)S x y 在2R 上一定存在最小值,而(,)S x y 在2R 上只有唯一一个极小点,故(,)S x y 在点816,55⎛⎫ ⎪⎝⎭取得最小值.即平面点816,55⎛⎫⎪⎝⎭到三直线0,0x y ==,2160x y +-=的距离平方和最小.1、设方程0sin 2=-+xy e y x 确定隐函数()y f x =,则dxdy= . 解法一 令2(,)sin x F x y y e xy =+-,则2(,),(,)cos 2x x y F x y e y F x y y xy ''=-=-于是22(,)(,)cos 2cos 2x x x x dy F x y e y y e dx F x y y xy y xy'--=-=-='-- 解法二 方程两边对x 求导得2cos 20x dy dy y e y xy dx dx ⎛⎫⋅+-+⋅= ⎪⎝⎭2cos 2xdy y e dx y xy-=- 2、设方程0z e xyz -=确定隐函数(,)z f x y =,则z x ∂=∂ ,zy∂=∂ . 解法一 令(,,)z F x y z e xyz =-,则(,,),(,,),(,,)z x y z F x y z yz F x y z xz F x y z e xy '''=-=-=- 于是(,,)(,,)(,,)(,,)x z z y zz z F x y z yz x F x y z e xyF x y z z xz y F x y z e xy'∂=-='∂-'∂=-='∂-解法二 方程两边分别对,x y 求偏导得00z z z z e y z x x x z z e x z y yy ∂∂⎧⎛⎫⋅-+⋅= ⎪⎪∂∂⎝⎭⎪⎨⎛⎫∂∂⎪⋅-+⋅= ⎪⎪∂∂⎝⎭⎩于是,z z z yz z xzx e xy y e xy∂∂==∂-∂-.3、设sin cos ,sin sin ,cos x r y r z r φθφθφ===,则(,,)(,,)x y z r θφ∂∂= .解2(,,)sin (,,)x y z r r φθφ∂=∂4、若函数组(,),(,)u u x y v v x y ==与(,),(,)x x s t y y s t ==均有连续的偏导数,且(,)(,)14,(,)(,)2u v x y x y s t ∂∂==∂∂,则(,)(,)u v s t ∂=∂ .解(,)(,)(,)142(,)(,)(,)2u v u v x y s t x y s t ∂∂∂=⋅=⨯=∂∂∂ 5、若函数组(,),(,)u u x y v v x y ==有连续的偏导数且(,)2(,)u v x y ∂=∂,则(,)(,)x y u v ∂=∂ .解(,)(,)2(,)x y u v u v ==∂∂∂ 二、选择题1、下列命题正确的是( D )A 、任何方程都可以确定一个隐函数;B 、任何方程所确定的隐函数是唯一的;C 、任何方程所确定的隐函数一定是初等函数;D 、如果一个方程在某点满足隐函数存在定理的条件,则它确定的隐函数是唯一的. 2、方程0sin 2=++xy y x 在原点(0,0)的某邻域内必可确定的隐函数形式为( A )A 、)(x f y =B 、)(y g x =C 、两种形式均可D 、无法确定 3、隐函数存在定理中的条件是隐函数存在的( A )A 、充分条件B 、必要条件C 、充要条件D 、无关条件4、方程组22201x y z x y z ++=⎧⎨++=⎩所确定的隐函数组()()x f z y g z =⎧⎨=⎩的导数为 ( B ) A 、,dx y z dy z xdz y x dz x y --=--= B 、,dx y z dy z x dz x y dz x y --==-- C 、,dx y z dy x z dz x y dz x y--==-- D 、,dx y z dy x z dz y x dz x y--==-- 解 方程两边分别对z 求导得102220dx dydz dzdx dy x y z dz dz ⎧++=⎪⎪⎨⎪⋅+⋅+=⎪⎩解方程得,dx y z dy z x dz x y dz x y--==--. 三、证明方程ln 1(0,1,1)xz xy z y e ++=在点的某领域内能确定隐函数(,),x x y z =并求,x x y z∂∂∂∂. 解 令(,,)ln 1,xz F x y z xy z y e =++-则(1) (,,),F x y z (,,),xz x F x y z y ze '=+(,,),y zF x y z x y'=+(,,)ln xz z F x y z y xe '=+都在(0,1,1)的某邻域内连续;(2) (0,1,1)0F =; (3) (0,1,1)20x F '=≠.故方程可确定隐函数(,)x f y z =.2(,,)(,,)y xz xzx z x F x y z x xy z yy y ze y yze F x y z +'∂+=-=-=-∂++' (,,)ln (,,)xzz xzx x F x y z y xe z y ze F x y z '∂+=-=-∂+'四、设方程组⎩⎨⎧=--=--0022xu v y yv u x 确定隐函数组(,),(,)u u x y v v x y ==,求,u vx x ∂∂∂∂. 解 方程组关于x 求偏导得12020u vu y x xv u v u x x x解此方程组得24u v uy x uv xy ,224v u xx xy uv1、二元函数(,)f x y xy =在条件1x y +=下的存在 (极小值/极大值),其极大(小)值为 .解 由2(1)f xy x x x x ==-=-,令120f x '=-=得稳定点12x =;又由于20f ''=-<,故函数在12x =取得极大值111,224f ⎛⎫= ⎪⎝⎭.2、平面曲线09)(233=-+xy y x 在点(2,1)处的切线方程为 ,法线方程为 . 解 令33(,)2()9F x y x y xy =+-,则22(,)69,(,)69x y F x y x y F x y y x ''=-=-22(,)69(,)69x y dy F x y x y dx F x y y x'-=-=-'- (2,1)54dy k dx ==- 故所求的切线方程为51(2)4y x -=--,即54140x y +-=.法线方程为41(2)5y x -=-,即4530x y --=.3、空间曲线23,,x t y t z t ===在点1t =处的切线方程为 ,法平面方程为 .解 由于21,2,3x y t z t '''===,则(1)1,(1)2,(1)3x y z '''===,故所求的切线方程为111123x y z ---== 法平面方程为(1)2(1)3(1)0x y z -+-+-=,即2360x y z ++-=.4、空间曲面236222x y z ++=在点()1,1,1P 处的切平面方程为 , 法线方程为 . 解 由于222(,,)236F x y z x y z =++-,则(,,)4,(,,)6,(,,)2x y z F x y z x F x y z y F x y z z '''=== (1,1,1)4,(1,1,1)6,(1,1,1)2x y z F F F '''===故所求的切平面方程为4(1)6(1)2(1)0x y z -+-+-=,即2360x y z ++-= 法线方程为111462x y z ---==,即11123x y z --==-. 5、曲面2132222=++z y x 在点 的切平面与平面460x y z ++=平行. 解 设所求的点为000(,,)x y z ,由于222(,,)2321F x y z x y z =++-,则(,,)2,(,,)4,(,,)6x y z F x y z x F x y z y F x y z z '''===000000000000(,,)2,(,,)4,(,,)6x y z F x y z x F x y z y F x y z z '''===0002220002461462321x y z x y z ⎧==⎪⎨⎪++=⎩ 解方程得000122x y z =⎧⎪=⎨⎪=⎩或000122x y z =-⎧⎪=-⎨⎪=-⎩,故所求的点为(1,2,2),(1,2,2)---.二、选择题1、在曲线23,,x t y t z t ==-=的所有切线中与平面24x y z ++=平行的切线( B )A 、只有一条B 、只有二条C 、至少有三条D 、不存在 解 设曲线在0t t =处的切线与平面24x y z ++=平行,由于21,2,3x y t z t '''==-= 则200000()1,()2,()3x t y t t z t t '''==-= 由已知可得2001430t t -+=于是013t =或01t =,故曲线上有两点的切线与平面24x y z ++=平行的点.2、曲线2226x y z x y z ⎧++=⎨++=⎩在点(1,2,1)M -处的切线平行于( C )A 、xoy 平面B 、yoz 平面C 、zox 平面D 、平面0x y z ++= 解 令22212(,,)6,(,,)F x y z x y z F x y z x y z =++-=++,则11122211122211122222(,)2(),11(,)22(,)2()11(,)22(,)2()11(,)F F x y x y F F x y F F x y x yF F y z y z F F y z F F y z yzF F z x F F z xz x F F z x z x∂∂∂∂∂===-∂∂∂∂∂∂∂∂∂∂===-∂∂∂∂∂∂∂∂∂∂===-∂∂∂∂∂ 121212(,)(,)(,)6,6,0(,)(,)(,)M M MF F F F F F x y y z z x ∂∂∂==-=∂∂∂故曲线在点(1,2,1)M -处的切线为121606x y z -+-==-,即202x z y +-=⎧⎨=-⎩ 该直线平行于xoz 平面.1、求表面积一定而体积最大的长方体.解 设长方体的长、宽、高分别为,,x y z ,表面积为20,a a则问题转换为求函数,,,f x y z xyz 在条件22xy yz xza 下的最大值.设()2,,,[2()]L x y z xyz xy yz xz a λλ=+++-,令()()()()220202020x y zL yz y z L xz x z L xy x y L xy yz xz a λλλλ'=++=⎧⎪'=++=⎪⎨'=++=⎪⎪'=++-=⎩ 解得.6ax y z根据问题实际意义,体积最大的长方体一定存在,且稳定点只有一个,故表面积一定的长方体中正方体的体积最大.2、求曲线2222222393x y z z x y在点(1,1,2)的切线与法平面方程. 解 设222222(,,)239,(,,)3F x y z x y z G x y z z x y ,在点(1,1,2)处有4,6,4x y z F F F ,6,2,4x y z G G G (,)(,)(,)32,40,28(,)(,)(,)F G F G F G y z z x x y所以切线的法向量为(8,10,7),切线方程为1128107x y z法平面方程为8(1)10(1)7(2)0x y z 或8107120x y z .1、=++⎰+∞0284x x dx.解 ()222000(2)1212lim lim arctan lim arctan 4822224822AA A A A dx d x x A x x x ππ+∞→+∞→+∞→+∞+++⎛⎫===-= ⎪++⎝⎭++⎰⎰ 2、20x xe dx +∞-=⎰= .解()()2222200111limlim lim 1222AA x x x A A A A xedx xedx e d x e +∞----→+∞→+∞→+∞==--=--=⎰⎰⎰3、无穷积分dxx p 1+∞⎰在 时收敛,在 时发散. 解 无穷积分dxxp 1+∞⎰在1p >时收敛,在1p ≤时发散(课本p263例3). 4、无穷积分1(,0)1mnxdx m n x ∞≥+⎰在 时收敛,在 时发散. 解 由于lim lim 111m n n mn nx x x x x x x -→+∞→+∞⋅==++,故无穷积分⎰∞≥+0)0,(1n m dx x x n m在1n m ->时收敛,在1n m -≤时发散.5、无穷积分1sin p xdx x +∞⎰在 时绝对收敛,在 时条件收敛. 解 无穷积分1sin pxdx x +∞⎰在1p >时绝对收敛,在1p ≤时条件收敛. 二、选择题1、f x dx ()-∞+∞⎰收敛是f x dx a()+∞⎰与f x dx a()-∞⎰都收敛的( B )A 、无关条件B 、充要条件C 、充分条件D 、必要条件解 如果f x dx ()-∞+∞⎰收敛,则f x dx a()+∞⎰与f x dx a()-∞⎰都收敛,反之也成立. 2、设()0f x >且⎰+∞)(dx x f 收敛,则e f x dx x -+∞⎰()0( C )A 、可能收敛B 、可能发散C 、一定收敛D 、一定发散解 当0x ≥时,()()xe f x f x -≤,而⎰+∞0)(dx x f 收敛,由比较判别法知e f x dx x -+∞⎰()0收敛.3、设)(x f 在[,)a +∞连续且c a <,则下列结论中错误的是( D )A 、如果 )(dx x f a ⎰+∞收敛,则 )(dx x f c ⎰+∞必收敛.B 、如果 )(dx x f a⎰+∞发散,则 )(dx x f c⎰+∞必发散.C 、 )(dx x f a ⎰+∞与 )(dx x f c⎰+∞同时收敛或同时发散.D 、 )(dx x f a⎰+∞收敛, )(dx x f c⎰+∞不一定收敛.解 ,A a ∀>由于)(x f 在[,)a +∞连续,故()x e f x -在[,],[,]a A a c 上连续从而在[,],[,]a A a c 上可积.又由于()()()Ac Ax x x aace f x dx e f x dx e f x dx ---=+⎰⎰⎰故lim ()()lim()x x x aacA A e f x dx e f x dx e f x dx ---→+∞→+∞=+⎰⎰⎰即 )(dx x f a⎰+∞与 )(dx x f c⎰+∞同时收敛或同时发散.4、设在[,)a +∞上恒有()()0f x g x ≥>,则( A ) A 、⎰+∞a dx x f )(收敛,⎰+∞a dx x g )(也收敛B 、()af x dx +∞⎰发散,()ag x dx +∞⎰也发散C 、⎰+∞adx x f )(和⎰+∞adx x g )(同敛散D 、无法判断解 由于0()()g x f x <≤,由比较判别法知当⎰+∞adx x f )(收敛时,⎰+∞adx x g )(也收敛(P270定理7).5、⎰∞+adx x f )(收敛是⎰∞+adx x f )(收敛的( B )A 、充分必要条件B 、充分条件C 、必要条件D 、既不是充分也不是必要条件解 由于无穷积分性质知,果⎰∞+adx x f )(收敛,则⎰∞+adx x f )(也收敛(P267推论2).但逆命题不成立.例如无穷积分sin a xdx x +∞⎰收敛,但无穷积分sin a x dx x+∞⎰发散(P275,例11).三、讨论下列无穷限积分的敛散性(1)+∞⎰(2) 0+∞⎰ (3) 31arctan 1x x dx x+∞+⎰ (4) 11x xdx e +∞-⎰ 解 (1) 由于434lim 1,1,13x x d λ→+∞==>=故无穷积分+∞⎰收敛.(2) 由于121lim 1,,1,12x x d λ→+∞==<= 故无穷积分+∞⎰.(3) 由于23arctan lim ,21,122x x x x d x ππλ→+∞⋅==>=+ 故无穷积分31arctan 1x xdx x +∞+⎰收敛. (4) 由于2lim 0,21,01x x xx d e λ→+∞⋅==>=- 故无穷积分11x x dx e +∞-⎰收敛,从而无穷积分11x xdx e +∞-⎰也收敛. 四、讨论下列广义积分的绝对收敛性和条件收敛性201dx x +0100x + 解 (1) 由于()22sgn sin 111x x x≤++,而2011dx x +∞+⎰收敛,故()20sgn sin 1x dx x +∞+⎰绝对收敛.(2) 令(),()cos 100f x g x x x ==+,由于()f x '= 故当100x >时,()0f x '<.于是()f x 在[100,)+∞上单调递减且lim ()lim0x x f x →+∞→+∞==又由于0()()cos sin A A F A g x dx xdx A ===⎰⎰,()1F A ≤,故由狄里克雷判别法知无穷积分⎰收敛.另一方面)1cos 212(100)2x x +=≥==+⎣⎦可证0⎰发散,而0⎰收敛,故0dx ⎰发散,原积分条件收敛. 五、证明题若无穷积分()af x dx +∞⎰绝对收敛,函数()x ϕ在[,)a +∞上有界,则无穷积分()()af x x dx ϕ+∞⎰收敛.证明 由于函数()x ϕ在[,)a +∞上有界,故0,[,)M x a ∃>∀∈+∞有()f x M ≤ 从而()()()f x x M f x ϕ≤ 由于无穷积分()af x dx +∞⎰绝对收敛,故()af x dx +∞⎰收敛.由比较判别法知,无穷积分()()af x x dx ϕ+∞⎰收敛.1、1=⎰.解 由于1lim x →=∞,故1x =为瑕点,由瑕积分定义知()11120000001lim lim 1lim 2x εεεεεε---→+→+→==--=-⎰⎰⎰0lim 11ε→+⎤=-=⎦2、10ln xdx =⎰= .解 由于0lim ln x x →+=-∞,故0x =为瑕点,由瑕积分定义知1111110000ln lim ln lim ln ln lim ln xdx xdx x x xd x x x dx εεεεεεεε→+→+→+⎡⎤⎡⎤==-=-⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰ []0lim ln (1)1εεεε→+=---=-3、 是积分0sin xdx xπ⎰的瑕点. 解0lim 1,lim sin sin x x x x x xπ→+→-==∞ x π∴=是积分0sin xdx xπ⎰的瑕点. 4、瑕积分10(0)q dxq x >⎰在 时收敛,在 时发散.解 瑕积分dxx q 01⎰在01q <<时收敛,在1q ≥时发散(P280例3).5、瑕积分201cos (0)m xdx m xπ->⎰在 时收敛,在 时发散. 解0x =是积分201cos (0)mxdx m x π->⎰的瑕点且 22001cos 1cos 1lim lim 2m m x x x x x x x -→+→+--⋅== ∴瑕积分201cos (0)mxdx m x π->⎰在03m <<时收敛,在3m ≥时发散.二、选择题1、瑕积分⎰-112xdx( D ) A 、收敛且其值为-2 B 、收敛且其值为2C 、收敛且其值为0D 、发散解 11122211001111lim lim 21dx dx dx x x x x x εεεεεεε----→+→+-⎡⎤⎡⎤⎛⎫=+=--=-=∞⎢⎥ ⎪⎢⎥⎣⎦⎝⎭⎢⎥⎣⎦⎰⎰⎰ 2、下列积分中不是瑕积分的是( B )A 、⎰e xx dx 1lnB 、⎰--12xdxC 、⎰-11x edx D 、⎰2cos πxdx解 ⎰e x x 1ln ,⎰-101x e ,⎰20cos x是瑕积分. 3、下列瑕积分中,发散的是(C )A 、0⎰B 、11211--⎰x dxC 、2211ln dx x x⎰D 、1⎰解 对于积分10sin dxx⎰,0x =为瑕点,由于 0lim 1sin xx →= 故瑕积分10sin dx x⎰收敛.对于积分11211--⎰xdx ,1x =±为瑕点且12111211lim(1)lim lim (1)limx x x x x x →-→→-+→--==+==故瑕积分010,-⎰⎰均收敛,故原积分收敛;对于积分2211ln dx x x⎰,1x =为瑕点且22222111111(1)2(1)2lim(1)lim lim lim lim 12ln 2ln ln ln 2ln ln 1x x x x x x x x x x x x x x x x x x x→+→-→-→-→----⋅=====+++故该积分发散;对于积分10⎰,0x =为瑕点且 121lim(0)1x x →--= 故该积分收敛.4、若瑕积分⎰badx x f )(收敛(a 为瑕点),则下列结论中成立的是( B )A 、()baf x dx ⎰收敛B 、⎰badx x f )(收敛C 、⎰badx x f )(2收敛D 、⎰badx x f )(2发散解 若瑕积分⎰badx x f )(收敛,则()b af x dx ⎰不一定收敛,例如1011sin dx x x⎰收敛,但111sin dx x x⎰发散(P287例10). 若瑕积分⎰b adx x f )(收敛,则⎰badx x f )(2可能收敛也可能发散,例如取()f x =,则瑕积分⎰b a dx x f )(收敛,⎰b a dxx f )(2发散;取()f x =,则瑕积分⎰b a dxx f )(收敛,⎰a dx x f )(2也收敛.5、当 ( A )时,广义积分10(0)1px dx p x <+⎰收敛. A 、 10p -<< B 、1-≤p C 、0<pD 、1-<p解 当0p <时,⎰+101dx x x p为瑕积分,0x =为瑕点且 001lim lim 111p px x x x x x -→+→+⋅==++ 故当1p -<时,即当10p -<<时,广义积分⎰+101dx x xp 收敛. 三、讨论下列假积分的敛散性(1) 302sin x dx x π⎰ (2) 1⎰ (3) 10ln 1x dx x -⎰ (4)130arctan 1xdx x -⎰解 (1)0x =为瑕点且123002sin sin lim (0)lim 1x x x xx xx →+→+-⋅==故该积分收敛.(2)0,1x =为瑕点,10.5100=+⎰⎰⎰,由于1200111lim (0)lim 0ln lim(1lim 1x x x x x x x →+→+→-→-==-==-于是积分0.50⎰收敛,而1⎰发散,故原积分发散.(3)由于01ln ln lim,lim 111x x x xx x→+→-=∞=---,故0x =为瑕点.又由于 1200ln lim(0)lim 01x x x x x →+→+-⋅==- 故积分10ln 1xdx x-⎰收敛. (4)1x =为瑕点.由于3211arctan arctan lim(1)lim 1112x x x x x x x x π→-→--⋅==-++ 故积分130arctan 1xdx x -⎰发散.1、⎰→100sin lim dy x xyx = . 解 11100000sin sin 1lim lim 2x x xy xy dy dy ydy x x →→===⎰⎰⎰ 2、=-⎰dx x xx a b 10ln .)0(>>a b 解 11100011lnln 11b a b b b y y a a a x x b dx dx x dy dy x dx dy x y a -+====++⎰⎰⎰⎰⎰⎰ 3、Γ函数与B 函数的关系为 .解 ()()(,)()p q B p q p q ΓΓ=Γ+4、12⎛⎫Γ ⎪⎝⎭= ,()1n Γ+=.解 12⎛⎫Γ= ⎪⎝⎭()1!n n Γ+=5、13,44B ⎛⎫= ⎪⎝⎭.解 由于()131313134444,134414444B ⎛⎫⎛⎫⎛⎫⎛⎫ΓΓΓΓ ⎪ ⎪ ⎪ ⎪⎛⎫⎛⎫⎛⎫⎝⎭⎝⎭⎝⎭⎝⎭===ΓΓ ⎪ ⎪ ⎪Γ⎛⎫⎝⎭⎝⎭⎝⎭Γ+ ⎪⎝⎭,又由余元公式有1344sin 4ππ⎛⎫⎛⎫ΓΓ== ⎪⎪⎝⎭⎝⎭故13,44B ⎛⎫= ⎪⎝⎭.二、选择题1、21ln()d xy dy dx ⎰=( )A 、0B 、x1C 、xD 、不存在解 []22221111111ln()ln()d d xy dy xy dy dy dy dx dx x x x ====⎰⎰⎰⎰ 2、⎰+∞-→022lim dy e y x x =( B )A 、2B 、41C 、21 D 、 4解 2[1,3],x yyx ee --∀∈≤,而无穷积分0y e dy +∞-⎰收敛,故含参变量无穷积分20x y edy +∞-⎰在{}(,)13,0R x y x y =≤≤≤<+∞上一致收敛.又由二元初等函数的连续性知2x y e -在R 上连续,故2240221lim lim 4x yx yy x x edy edy e dy +∞+∞+∞---→→===⎰⎰⎰3、2x edx +∞-=⎰( )A 、πB 、πC 、2πD 、2π 解 2x e dx +∞-=⎰(课本P316例13)4、22x x e dx +∞--∞=⎰( C )A 、πB 、πC 、2πD 、2π 解 由于被积分函数为偶函数,故222202x x x e dx x e dx +∞+∞---∞=⎰⎰,对积分220x x e dx +∞-⎰,令x=则2112220000111311222242x tt tx e dx te dt t e dt t e dt +∞+∞+∞+∞----⎛⎫⎛⎫=⋅===Γ=Γ= ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰⎰22x x e dx +∞--∞=⎰5、1122(1)n x dx --⎰=( C )A 、12n +⎛⎫Γ ⎪⎝⎭B 、11,22n B +⎛⎫⎪⎝⎭C 、111,222n B +⎛⎫ ⎪⎝⎭D 、112,22n B +⎛⎫⎪⎝⎭解令x =则1111111222220001111(1)(1)(1),2222n n n n x dx t t t dt B ----+⎛⎫-=-=-⋅= ⎪⎝⎭⎰⎰⎰三、证明下列含参量无穷积分在所指定的区间上一致收敛.(1) 0sin ,(0)tx e xdx a t a +∞-≤<+∞>⎰ (2) 230cos ,110t tx dx t x t +∞≤≤+⎰ 证明 (1) 由于sin ,tx ax e x e a t --≤≤<+∞而无穷积分0ax e dx +∞-⎰收敛,故含参变量积分0sin tx e xdx +∞-⎰在[,)a +∞上一致收敛.(2) 由于232cos 10,1101t tx t x t x ≤≤≤++而无穷积分2011dx x +∞+⎰收敛,故含参变量积分230cos t tx dx x t +∞+⎰在[1,10]上一致收敛. 四、用Γ函数和B 函数求下列积分.(1)⎰ (2)642sin cos x xdx π⎰解 (1)()()111220331113322422(1),22338x x dx B π⎛⎫⎛⎫⎛⎫⎛⎫ΓΓΓΓ ⎪ ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭⎝⎭=-==== ⎪ΓΓ⎝⎭⎰⎰(2) ()64207553113111753222222222sin cos ,22265!512x xdx B ππ⎛⎫⎛⎫⎛⎫⎛⎫ΓΓ⋅⋅⋅Γ⋅⋅⋅Γ ⎪ ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭⎝⎭====⎪Γ⎝⎭⎰1、2sin y xdy dx x ππππ-=⎰⎰.解 2000sin sin sin cos 2x y x x dy dx dx dy xdx x x xπππππππππ+-===-=⎰⎰⎰⎰⎰. 2、Ddxdy =⎰⎰ , 其中D 为椭圆19422=+y x 所围区域. 解Ddxdy ⎰⎰表示区域D 的面积,故6Ddxdy π=⎰⎰.3、()22Df x y dxdy '+=⎰⎰ , 其中D 为圆222x y R +=所围区域.解 作极坐标变换,则()()()()22222220012RR Df x y dxdy d f r rdr d f r d r ππθθ'''+==⎰⎰⎰⎰⎰⎰ ()()()()2221020f R f d f R f πθπ⎡⎤=-⎣⎦⎡⎤=-⎣⎦⎰4、将二重积分化为累次积分:221x y fdxdy +≤⎰⎰=.解 作极坐标变换,则()22211x y fdxdy d f r rdr πθ+≤=⎰⎰⎰⎰5、改变累次积分的顺序: ⎰⎰⎰⎰+2242220),(),(y x y dx y x f dy dx y x f dy = .解2422202122(,)(,)(,)y x y y xdy f x y dx dy f x y dx dx f x y dy +=⎰⎰⎰⎰⎰⎰二、选择题1、函数(,)f x y 在有界闭域D 上连续是二重积分(,)Df x y dxdy ⎰⎰存在的( B )A 、充要条件B 、充分条件C 、必要条件D 、无关条件解 连续一定可积,但可积不一定连续.2、设(,)f x y 是有界闭域222:a y x D ≤+上的连续函数,则201lim (,)a Df x y dxdy a π→⎰⎰=( B )A 、不存在B 、(0,0)fC 、(1,1)fD 、(1,0)f解 由积分中值定理知,(,)D ξη∃∈,使2(,)(,)(,)D Df x y dxdy f S a f ξηπξη=⋅=⎰⎰故 22200011lim(,)lim(,)lim (,)(0,0)a a a Df x y dxdy a f f f a a πξηξηππ→→→=⋅==⎰⎰.3、若(,)f x y 在区域{}41),(22≤+≤=y x y x D 上恒等于1,则二重积分f x y dxdy D(,)⎰⎰=( D )A 、0B 、πC 、2πD 、3π解22(,)213DDDf x y dxdy dxdy Sπππ===⋅-⋅=⎰⎰⎰⎰.4、设⎰⎰+=D dxdy y x I 22sin ,{}22224),(ππ≤+≤=y x y x D },则I =( B )A 、26πB 、26π-C 、0D 、6π-解 作极坐标变换,则2220sin 6DI d r rdr πππθπ===-⎰⎰⎰⎰5、设D 由曲线1,2,,4xy xy y x y x ====所围成,作坐标变换,yu xy v x==,则二重积分22Dx y dxdy ⎰⎰可化为( B )A 、24211du u dv⎰⎰B 、2241112u du dv v ⎰⎰ C 、42211du u dv ⎰⎰ D 、2421112u du dv v⎰⎰ 解 由于 2(,)1111(,)2(,)2(,)1x y u v y y xu v v x y xy x x∂====∂∂∂- 且坐标变换后积分区域为{}(,)12,14D u v u v '=≤≤≤≤,于是224221112Du x y dxdy du dv v =⎰⎰⎰⎰. 三、求解下列各题1、求2y De dxdy -⎰⎰,其中D 由直线1,y y x ==及x 轴围成.解 选择先对y 后对x 的积分次序,由于 {}(,)01,0D x y y x y =≤≤≤≤ 故()2222111110000011122yy y y y x dx e dy dy e dx ye dy e e e ----===-=-⎰⎰⎰⎰⎰2、求由曲面22222,2z x y z x y =+=+所围立体V 的体积. 解 V 在xy 平面上的投影区域为{}22(,)4D x y x y =+≤于是空间立体V 的体积为()2212DDV x y dxdy =-+⎰⎰作极坐标变换cos sin x r y r θθ=⎧⎨=⎩,则222223000011644233V d r dr d r dr ππππθθπ=-=-=⎰⎰⎰⎰3、求由曲线,,,(0,0)x y a x y b y x y x a b 所围的平面图形面积.解 作坐标变换u x yyv x =+⎧⎪⎨=⎪⎩,则。
《数学分析(下)》课程习题集一、计算题 1. 设f xyz z yxf u),,(222++=具有二阶连续偏导数,求xz u ∂∂∂2.2. 设f z yxf u ),(222++=具有二阶连续偏导数,求22xu ∂∂,.2yz u ∂∂∂3. 0)cos(=--+xyz z y x ,求yz xz ∂∂∂∂,.4. 已知),(yx x f z=,求yz xz ∂∂∂∂,.5. 已知),(),,(v u f xy y x f z+=可微,求yx z ∂∂∂2.6. 设.,dz yx y x z 求-+=7. 设),(z x f u =,而),(y x z 是由方程)(z y x z ϕ+=所确的函数,求du .8. 设)1,0(≠>=x x x zy,证明它满足方程z yzx xz y x 2ln 1=∂∂+∂∂.9. 设yxez=,证明它满足方程0=∂∂+∂∂yz yxz x.10. 已知zyxu= ,求yx u ∂∂∂2.11. 求曲面22yxz+=包含在圆柱x yx 222=+内部的那部分面积.12. 计算二重积分Dx d y ⎰⎰,其中积分区域为22{(,)|14}D x y x y=≤+≤.13. ⎰⎰-Dydxdy e2,其中D 是以点) 0 , 0 (、) 1 , 1 (和) 1 , 0 (为顶点的三角形域.14. 计算二重积分⎰⎰Ω+=dxdyy xI )(22,其中Ω是以a y a x y x y =+==,,和)0( 3>=a a y 为边的平行四边形.15. 把下列积分化为极坐标形式,并计算积分值:⎰⎰-+a xax dyy xdx2020222)(.16. 求级数11(1)nn n xn∞-=-∑的和函数.17. 求幂级数∑∞=+1)1(n nn n x的和函数.18. 求级数∑∞=+0)1(n nxn 的收敛域及和函数,并求∑∞=+021n nn 的和.19. 讨论∑∞=--11ln )1(n n nn 的收敛性.20. 判别级数∑∞=⋅1!2n nnnn 的收敛性.21.求幂级数11(1))2nnnn x ∞=--∑的收敛区间.22. 求幂级数∑∞=122n nnxn 的收敛区间.23. 计算nn nx n)1(21-∑∞=的收敛半径和收敛域.24. 求幂级数nn nx n∑∞=+12)11(的收敛半径和收敛域.25. 求下列幂级数的收敛区间:+⋅++⋅+⋅+⋅nn n xxxx 33332313322.二、 填空题26. 幂级数nn x n∑∞=11的收敛半径为( ).27. 设级数∑∞=053n nn ,则其和为( ).28. 设级数∑∞==14n n u ,则级数=-∑∞=1)2121(n nn u ( ).29. 当1<x 时,幂级数∑∞=+-013)1(n n n x的和函数为( ).30. 若∑∞=-1)1(n n u 收敛,则=∞→n n u lim ( ).31. 几何级数)0(11>∑∞=+a aqn n 当( )时收敛.32. 幂级数∑∞=+0!1n nxn n 的和函数为( ).33. 幂级数∑∞=12n n nx 的收敛域为( ).34. 幂级数∑∞=-12)1(n nn nn x的收敛域为( ).35.=)(x f x sin 的幂级数展开式为( ). 36. 级数∑∞=1n n u 发散的充分条件是( ).37. 设级数∑∞=+111n p n收敛,则p 的取值范围是( ).38. =∞→nnn nn !2lim( ).39.2xe-的幂级数展开式为( ).40. =>∞→nk n an lim1a 时,当( ).41. =→→yxy y x sin lim0( ).42. 二元函数1122-+=y xz的定义域为( ).43.=++→→22220)sin(limyxy x y x ( ).44.11lim22220-+++→→yx yx y x =( ).45.xyxy y x 11lim0-+→→=( ).46. 设22ln yxxy arctgz ++=,则=∂∂)1,1(xz ( ). 47. 设='+=)0,1(),32ln(),(y f xy x y x f 则( ).48. 设=++=)1,1(,1ln ),(22df y xy x f 则( ). 49. 设),(y x z z=是由方程yz x ln =确定的隐函数,则xz ∂∂=( ).50. 设xu yx euy∂∂=-则,sin在点(2,π1)处的值为( ).51. 函数xy yxz333-+=的极小值为( ).52. 若函数y xyax x y x f 22),(22+++=在点(1,-1)处取得极值,则常数=a ( ).53. 函数33812),(y xy xy x f +-=的极小值点为( ).54. 函数22)(4),(y x y x y x f ---=的极值为( ). 55. 函数y x yxy xy x f --++=2),(22的极值为( ).56. 设,),arctan(xe y xy z ==则=dxdz ( ).57. 设==dz ez xy则,sin ( ).58. 设=∂∂+∂∂+=yz yxz xy x z 则),ln(( ).59. 设='=)0,0(,),(x f xy y x f 则( ). 60.222zy x u ++=在(1,1,1)点的全微分为( ).61. 设)1ln(32z yx u+++=,则=∂∂+∂∂+∂∂)1,1,1()(zu yu xu ( ).62. 二重积分=+⎰⎰σd y xD)6(2( ), 其中D 是由1,,222===x x y x y 所围成的区域; 63. 若函数,)()(),()(1∑-=+-∞=n nn a x a x f r r a r a x f 为收敛半径),内能展开成幂级数(在则=k a ( ),且内任意可导;在),()(r a r a x f +-64. 设023=+-y xz z ,则)1,1,1(xz ∂∂=( ).65. =∞→2)!(limn nn n ( ). 66. 积分=⎰⎰-yydx edy022( ).67. 改变积分⎰⎰xedy y x f dxln 01),(的次序后所得积分为( ).68. =⎰⎰1210xyxdy edx ( ).69. 二重积分⎰⎰=+Dyx d eσ( ),其中D 是由x y ln =,x 轴,2=x 所围成的区域. 70. 已知D 是长方形域:,10;≤≤≤≤y b x a 且1)(=⎰⎰Ddxdy x yf ,则⎰badx x f )( =( ).71. ,1,≤≤y x D π:设则⎰⎰-Ddxdy y x )sin (=( ). 72. 设D :,1,3≤≤y x 则=+⎰⎰Dd y x x σ)(( ). 73. 设D :,20,0ππ≤≤≤≤y x 则=⎰⎰Dydxdyx cos sin ( ). 74. 设D 是由1,1,1,1=-==-=y y x x围成的矩形区域,则=⎰⎰Ddxdy ( ). 75. 设f 是连续函数而D :⎰⎰=+>≤+Ddxdy yxf y yx )(,0,12222则且( ). 三、单选题 (略)……答案一、计算题 1. 解:zu ∂∂=212xyf z f +,)2()2(22221212112yzfxfxy yfyzfxf z xz u ++++=∂∂∂.2. 解:令222z yx t++=,则)(t f u =,xu ∂∂=)(2t f x ',zu ∂∂=)(2t f z '.)(4)(2222t f xt f xu ''+'=∂∂,)(42t f yz yz u ''=∂∂∂.3. 解:1s in ()1s in (),.1s in ()1s in ()z y z x y z z x z x y z xx y x y z y x y x y z ∂+∂+==∂-∂-4. 解:x z ∂∂=yf f 121+,yz ∂∂=22yx f -.5. 解:xz ∂∂=yf f 21+yz ∂∂=x f f 21+,22122112)(xyff y x f f yx z ++++=∂∂∂.6. 解:2()()()()()x y x y d x y x y d x y d zd x y x y ⎛⎫+-+-+-== ⎪--⎝⎭2()()()()()x y d x d y x y d x d y x y -+-+-=-222()y d x x d yx y -+=-2222.()()y x d x d y x y x y =-+--7. 解:u u d u d x d y xy∂∂=+∂∂,()z x y z ϕ=+ (1)方程(1)两边对x 求导:1()z z y z x xϕ∂∂'=+∂∂,1.()1z xy z ϕ∂-∴='∂-方程(1)两边对y 求导:()(),z z z y z yyϕϕ∂∂'=+∂∂ ().()1z z yy z ϕϕ∂-∴='∂-而;()1zx f u f f z f x x zxy z ϕ∂∂∂∂=+⋅=-'∂∂∂∂-()();()1()1z z f z u f z z f yzyy z y z ϕϕϕϕ⋅∂∂∂-=⋅=⋅=-''∂∂∂--()().()1()1zz x f f z u u d u d x d y f d x d y xyy z y z ϕϕϕ⋅∂∂∴=+=--''∂∂--8. 解:1-=∂∂y yxxu ,x xyu yln =∂∂,z x xxyxyx yzx xz y x yy 2ln ln 1ln 11=+=∂∂+∂∂-.9. 解:yex z yx1=∂∂,2yx eyz yx-=∂∂,则012=-=∂∂+∂∂y x yeyxey z yxz xyxyx.10. 解:xu ∂∂=1-zyxzy ,=∂∂∂yx u 2121ln 1--+zyzyxzx y xz.11.解:由222z x y x⎧⎪=⎨+=⎪⎩ 消去z 得投影柱面:222x y x+=,在xoy 面上的投影区域为 22:2xy D x y x+≤2x y z z ==21122222222=++++=++∴yxy yxx zzyx所求面积为:2c o s 2002x yD Ax d yd d r πθθ==⎰⎰⎰⎰220c o s .d πθθ==12.解:由对称性,可只考虑第一象限部分,14DD =,Dx d y ⎰⎰=41D x d y ⎰⎰2201s in 44r d r d r rππθ==-⎰⎰.13. 解:dx edydxdy eyyDy⎰⎰⎰⎰--=10022ee eydy eyy210121221-=-==--⎰.14. 解:⎰⎰⎰⎰Ω-=+=+a ayay adx y xdydxdy y x34222214)()(.15. 解:在极坐标系下,半圆22xax y-=的方程变为⎰⎰==≤≤=2cos 204343,20,cos 2πθπθπθθa adr r d a r 原式.16. 解:11()(1)nn n xs x n∞-==-∑,显然(0)0s =.21()1,(11)1s x x x x x'=-+-=-<<+两边积分得0()ln (1)xs t d t x '=+⎰即()(0)ln (1)()ln (1),s x s x s x x -=+∴=+又1x =时,111(1)n n n∞-=-∑收敛,11(1)ln (1)(11)nn n xx x n∞-=-=+-<<∑.17. 解:令111()(1)1n n n n n n xxxS x n n nn ∞∞∞=====-++∑∑∑11111nn n n xxnxn +∞∞===-+∑∑,设11(),nn xS x n∞==∑121(),1n n xS x n +∞==+∑则1111(),1n n S x xx ∞-='==-∑101()ln (1).1xS x d x x x∴==---⎰21(),1nn xS x xx∞='==-∑20()l n (1).1x x S x d x x x x∴==----⎰1211()()()ln (1)[ln (1)]S x S x S x x x x xx∴=-=--++-11(1)ln (1).x x=+-- (1,0)(0,1x ∈- 即 11(1)ln (1),(1,0)(0,1)()0,0x x S x xx ⎧+--∈-⎪=⎨⎪=⎩.18. 解:令)(x f =∑∞=+0)1(n nxn ,则)(x f =∑∞=+0)1(n nxn ∑∞=+'=1)(n n x '⎪⎭⎫ ⎝⎛=∑∞=+01n n x .)1(112x x x -='⎪⎭⎫ ⎝⎛-=1<x 当1±=x 时,级数∑+±)1()1(n n发散,所以级数的收敛域)1,1(-, 令1-=x ,得4)21(211==+∑∞=f n n n.19. 解:∑∞=-1ln )1(n nnn 发散,令xx x f ln )(=,则当2e x >时,02ln 2)(<-='xxx x f ,从而)(x f 在),(2+∞e 上单减,故当9>n 时,数列⎭⎬⎫⎩⎨⎧n n ln 单调减少,又0ln lim =∞→n n n ,故∑∞=--11ln )1(n n n n 为 leibniz 级数,所以它条件收敛.20. 解:12)1(2lim !2)1()!1(2limlim111<=+=⋅⋅++⋅=∞→++∞→+∞→en n n nn n u u nn nnn n n nn n ,所以级数∑∞=⋅1!2n nnnn 收敛.21.解:11limlim22n n n na R a ρ+→∞→∞===∴=,即1122x -<收敛,(0,1)x ∈收敛 .当0x =时,级数为1n ∞=∑,当1x =时,级数为1nn ∞=∑(0,1).22. 解: 级数缺奇次幂的项,而 2(1)112(1)2limlim2n n n n nn n nu n xu n x+++→∞→∞+=⋅2211lim.22n n xxn→∞+==当211,2x <即x <时,级数收敛; 当211,2x>即x >,级数发散.收敛半径为R =又当x =±时,级数为1n n ∞=∑发散,故收敛区间为(23. 解:21212lim1=++∞→nn nn n ,∴收敛半径21=R ,当21=x 时,∑∞=-1)1(n nn收敛,当23=x时,∑∞=11n n发散,故收敛域为)23,21[.24. 解:由于en n nn nn nn 1])111(1))111()11(lim[(11=++⨯+++++∞→收敛半径为e1,当ex 1=时,)(01)1()1()11(2∞→≠→±+n e nnn n,所以收敛域为)1,1(ee -. 25. 解:313)1(3limlim11=+=+∞→+∞→n nn nn n n n a a ,R=3。
《数学分析(一)》题库及答案一.单项选择1、函数)(x f 的定义域为]2,1[-,则函数)1(+x f 的定义域为_______。
A .]1,2[-B .]2,1[-C .[0,3]D .[1,3]2、函数)(x f 在0x x →时极限存在,是)(x f 在0x 点处连续的_______。
A .充分但非必要条件B .必要但非充分条件C .充分必要条件D .既非充分又非必要条件3、设函数⎪⎪⎩⎪⎪⎨⎧>=<-=1,11,21,1)(x xx x x x f ,则=→)(lim 1x f x _______。
4、设⎪⎩⎪⎨⎧≥+<=0,10,sin )(x x x x x x f ,则=→)(lim 0x f x ________。
A .-1 B .0 C .1 D .不存在5、已知)1ln()(a x x f += )0(>x ,则=')1(f ________。
A .aB .2aC .21 D . 1 6、若在区间),(b a 内,函数)(x f 的一阶导数0)(<'x f ,二阶导数0)(>''x f ,则)(x f 在),(b a 内是________。
A .单调减少,曲线上凸B .单调增加,曲线上凸C .单调减少,曲线下凸D .单调增加,曲线下凸二、填空题1、函数)43cos(π+=xy 的周期为________。
2、=+∞→x x x)21(lim ________。
3、设x y 2sin =,则='''y ________。
4、设,2xe y =则y '''=_______。
5、设,)(lim 0A x x f x =→则=→xbx f x )(lim 0_______。
6、曲线xy 1=的渐近线是_______、_______。
三、判断对错1. 设函数在)(x f (a 、b )上连续,则在)(x f [ a 、b ] 上有界。
习 题 1-11.计算下列极限(1)lim x ax a a x x a→--, 0;a >解:原式lim[]x a a ax a a a x a x a x a→--=---=()|()|x a x a x a a x ==''- =1ln aa a a a a --⋅=(ln 1)a a a -(2)sin sin limsin()x a x ax a →--;解:原式sin sin lim x a x ax a→-=-(sin )'cos x a x a ===(3)2lim 2), 0;n n a →∞->解:原式2n =20[()']x x a ==2ln a = (4)1lim [(1)1]pn n n→∞+-,0;p >解:原式111(1)1lim ()|p p p x n n nx =→∞+-'===11p x px p -== (5)10100(1tan )(1sin )lim;sin x x x x→+-- 解:原式101000(1tan )1(1sin )1lim lim tan sin x x x x x x→→+---=--=990010(1)|10(1)|20t t t t ==+++=(6)1x →,,m n 为正整数;解:原式11lim1x x →=- 1111()'()'mx nx x x ===n m=2.设()f x 在0x 处二阶可导,计算00020()2()()lim h f x h f x f x h h→+-+-. 解:原式000()()lim 2h f x h f x h h →''+--=00000()()()()lim 2h f x h f x f x f x h h→''''+-+--=000000()()()()lim lim 22h h f x h f x f x h f x h h →→''''+---=+-00011()()()22f x f x f x ''''''=+=3.设0a >,()0f a >,()f a '存在,计算1ln ln ()lim[]()x a x a f x f a -→.解:1ln ln ()lim[]x a x a f x -→ln ()ln ()ln ln lim f x f a x ax a e --→=ln ()ln ()limln ln x a f x f a x a e→--=ln ()ln ()lim ln ln x af x f a x a x a x a e →----='()()f a a f a e=习 题 1-21.求下列极限 (1)lim x →+∞;解:原式lim 1)(1)]0x x x →+∞=+--= ,其中ξ在1x -与1x +之间(2)40cos(sin )cos lim sin x x xx→-;解:原式=40sin (sin )limx x x x ξ→--=30sin sin lim()()()x x x x x ξξξ→--⋅=16,其中ξ在x 与sin x 之间(3)lim x →+∞解:原式116611lim [(1)(1)]x x x x →+∞=+--56111lim (1)[(1)(1)]6x x x xξ-→+∞=⋅+⋅+--5611lim (1)33x ξ-→+∞=+= ,其中ξ在11x -与11x +之间 (4) 211lim (arctan arctan);1n n n n →+∞-+ 解:原式22111lim ()11n n n n ξ→+∞=-++ 1=,其中其中ξ在11n +与1n 之间 2.设()f x 在a 处可导,()0f a >,计算11()lim ()nn n n f a f a →∞⎡⎤+⎢⎥-⎣⎦.解:原式1111(ln ()ln ())lim (ln ()ln ())lim n n f a f a n f a f a n nn nn e e→∞+--+--→∞==11ln ()ln ()ln ()ln ()[lim lim ]11n n f a f a f a f a n n n ne→∞→∞+---+-=()()2()()()()f a f a f a f a f a f a ee'''+==习 题 1-31.求下列极限(1)0(1)1lim (1)1x x x λμ→+-+-,0;μ≠解:原式0limx x x λλμμ→==(2)0x →;解:02ln cos cos 2cos lim12x x x nxI x →-⋅⋅⋅=20ln cos ln cos 2ln cos 2lim x x x nx x→++⋅⋅⋅+=- 20cos 1cos 21cos 12lim x x x nx x →-+-+⋅⋅⋅+-=-22220(2)()lim x x x nx x →++⋅⋅⋅+=21ni i ==∑ (3)011lim)1xx x e →--(; 解:原式01lim (1)x x x e xx e →--=-201lim x x e x x →--=01lim 2x x e x→-=01lim 22x x x →== (4)112lim [(1)]xxx x x x →+∞+-;解:原式11ln(1)ln 2lim ()x x xxx x ee+→+∞=-21lim (ln(1)ln )x x x x x →+∞=+- 1lim ln(1)x x x→+∞=+1lim 1x xx→+∞== 2. 求下列极限 (1)2221cos ln cos limsin x x x x xe e x-→----;解:原式222201122lim12x x x x x →+==- (2)0ln()2sin lim sin(2tan 2)sin(tan 2)tan x x x e xx x x→++--;解:原式0ln(11)2sin lim sin(2tan 2)sin(tan 2)tan x x x e x x x x →++-+=--012sin limsin(2tan 2)sin(tan 2)tan x x x e xx x x→+-+=-- 02lim442x x x xx x x→++==--习 题 1-41.求下列极限(1)21lim (1sin )n n n n→∞-;解:原式2331111lim [1(())]3!n n n o n n n →∞=--+11lim((1))3!6n o →∞=+=(2)求33601lim sin x x e x x→--;解:原式3636336600()112lim lim 2x x x xx o x x e x x x →→++---=== (3)21lim[ln(1)]x x x x→∞-+;解:原式222111lim[(())]2x x x o x x x →∞=--+12=(4)21lim (1)x xx e x-→+∞+;解:原式211[ln(1)]2lim x x xx ee +--→∞==此题已换3.设()f x 在0x =处可导,(0)0f ≠,(0)0f '≠.若()(2)(0)af h bf h f +-在0h →时是比h 高阶的无穷小,试确定,a b 的值.解:因为 ()(0)(0)()f h f f h o h '=++,(2)(0)2(0)()f h f f h o h '=++ 所以00()(2)2(0)(1)(0)(2)(0)()0limlim h h af h bf h f a b f a b f o h h h→→'+-+-+++==从而 10a b +-= 20a b += 解得:2,1a b ==- 3.设()f x 在0x 处二阶可导,用泰勒公式求0002()2()()limh f x h f x f x h h →+-+-解:原式222200001000220''()''()()'()()2()()'()()2!2!limh f x f x f x f x h h o h f x f x f x h h o h h→+++-+-++=22201220''()()()lim h f x h o h o h h→++=0''()f x = 4. 设()f x 在0x =处可导,且20sin ()lim() 2.x x f x x x →+=求(0),(0)f f '和01()lim x f x x→+. 解 因为 2200sin ()sin ()2lim()lim x x x f x x xf x x x x→→+=+= []22()(0)(0)()limx x o x x f f x o x x→'++++=2220(1(0))(0)()lim x f x f x o x x →'+++=所以 1(0)0,(0)2f f '+==,即(0)1,(0)2f f '=-= 所以 01()l i mx f x x→+01(0)(0)()l i m x f f x o x x →'+++=02()l i m 2x x o x x →+==习 题 1-51. 计算下列极限(1) limn →∞解:原式limn →∞=2n ==(2)2212lim (1)nn n a a na a na+→∞+++⋅⋅⋅+> 解:原式21lim (1)nn n n na na n a ++→∞=--2lim (1)n n na n a →∞=--21a a=-2. 设lim n n a a →∞=,求 (1) 1222lim nn a a na n →∞+++ ;解:原式22lim (1)n n na n n →∞=--lim 212n n na a n →∞==- (2) 12lim 111n nna a a →∞+++ ,0,1,2,,.i a i n ≠=解:由于1211111lim lim n n n na a a n a a →∞→∞+++== , 所以12lim 111n nna a a a →∞=+++3.设2lim()0n n n x x -→∞-=,求lim n n x n →∞和1lim n n n x x n-→∞-.解:因为2lim()0n n n x x -→∞-=,所以222lim()0n n n x x -→∞-=且2121lim()0n n n x x +-→∞-=从而有stolz 定理2222limlim 022n n n n n x x xn -→∞→∞-==,且212121lim lim 0212n n n n n x x x n ++-→∞→∞-==+ 所以lim 0n n x n →∞=,111lim lim lim 01nn n n n n n x x x x n n n n n --→∞→∞→∞--=-=-4.设110x q <<,其中01q <≤,并且1(1)n n n x x qx +=-, 证明:1lim n n nx q→∞=.证明:因110x q<<,所以211211(1)111(1)()24qx qx x x qx q q q+-=-≤=<,所以210x q <<,用数学归纳法易证,10n x q <<。
数学分析竞赛试题及答案一、填空题(每题15分,共75分)1. 设函数 \( f(x) = \frac{\sin x}{x} \)(\( x \neq 0 \)),则 \( \lim_{x \to 0} f(x) \) 等于________。
答案:1解析:由洛必达法则,我们可以得到\[\lim_{x \to 0} f(x) = \lim_{x \to 0}\frac{\sin x}{x} = \lim_{x \to 0} \frac{\cosx}{1} = 1\]2. 设函数 \( f(x) = x^3 - 3x + 1 \),则方程\( f(x) = 0 \) 在区间 \( (0, 2) \) 内有________个实根。
答案:2解析:首先,求函数的一阶导数和二阶导数:\[f'(x) = 3x^2 - 3\]\[f''(x) = 6x\]由 \( f'(x) = 0 \) 得到 \( x = 1 \) 和 \( x = -1 \)。
由于 \( x = -1 \) 不在区间 \( (0, 2) \) 内,我们只需考虑 \( x = 1 \)。
计算 \( f(1) = -1 \),\( f(0) = 1 \) 和 \( f(2) = 3 \),由零点定理可知,在区间 \( (0, 1) \) 和 \( (1, 2) \) 内各有一个实根,故共有2个实根。
3. 设函数 \( f(x) \) 在区间 \( [a, b] \) 上连续,且满足 \( f(x) + f'(x) = 0 \),则 \( f(x) \) 在区间 \( [a, b] \) 内有________个极值点。
答案:0解析:由于 \( f(x) + f'(x) = 0 \),我们可以得到 \( f(x) = -f'(x) \)。
设 \( f(x) = C e^{-x} \),则 \( f'(x) = -C e^{-x} \),满足题意。
1
北京理工大学2007-2008第二学期
数学分析B综合练习(2)
专业_________班级____________姓名___________学号____________分数_________
一. 填空题 (每小题4分, 共40分)
1.设曲线L是上半圆周 xyx222,则Lxds_______.
2.设L是从点1 ,2A沿曲线22xy到点4 ,22B的弧段, 则
LdsxyI 1
_____________ ;dyyxdxxyIL 22 _____________ .
3.设L是从点 0, ,eeA沿曲线tttezteytex , sin , cos到点1 , 0 , 1B的弧段,
则Ldszyx 222 _____________ , zdzdyyxdxL _____________ .
4.设L为椭圆1422yx 的正向, 则 L 224 yxxdyydx_____________ .
5.设曲线积分dyyykxdxxyxIqp)5()4( 42L 4与路径L无关, 则p_______,
q
_______, k_______.
6.设L是圆周xyx222正向,则Lxdyydx___________.
7.设椭圆134:22yxL的周长为a,则Ldsyxxy)432(22___________.
8.设V是由平面1zyx与三个坐标面所围成的区域, 则VxyzdV_________.
9. 设为球面2222azyx在xOy平面的上方部分,则dSzyx)(222________.
10.若是球面2222azyx位于平面hz )0(ah上方部分,则
dS
z
1
_________.
二. 选择题 (每小题4分, 共20分)
1.设2222:azyxS)0(z,1S为S在第一卦限的部分,则下面等式中正确的是[ ]
(A)14SSxdSxdS; (B)14SSxdSydS;
2
(C)14SSxdSzdS; (D)14SSxyzdSxyzdS.
2.设曲线积分Lxydyxfydxexfcos)(sin])([与路径无关,其中)(xf具有一阶连续导数,
且0)0(f。则)(xf等于 [ ]
(A)2xxee; (B)2xxee; (C)12xxee; (D)21xxee.
3. 若为曲面)(222yxz在xOy面上方的部分,则dS[ ].
(A)rrdrrd022041; (B)2022041rdrrd;
(C)2022041rdrrd; (D)2022041drrd.
4. 曲面22yxz包含在圆柱xyx222内部的那部分面积S[ ].
(A)3; (B)2; (C)5; (D)22.
5. 设D是由直线2,2,2yxyx所围成的质量分布均匀(面密度为)的平面薄片,则D
关于x轴的转动惯量xI=[ ].
(A)3; (B)5; (C)4; (D)6.
三. (10分)计算Vdxdydzyxz22, 其中V是由球面2222zyx )0(z与抛物面
22
yxz
围成的区域.
四. (10分) 计算曲线积分LdyyxdxyyI,)1cos()(sin 其中L为半圆弧22xxy上
从点)0,0(O到点)1,1(A的一段.
五.(10分)设锥面22:yxzS )20(z上各点处的面密度等于该点到xOy面的距离.
(1)求S的质量; (2)求S的质心坐标.
六.(10分) 设VdxdydzzyxftF)()(222, 其中tzyxV222:, )(xf在),0[可导,
求50)(limttFt.
3
北京理工大学2007-2008第二学期
数学分析(B)综合练习(2)参考解答
一. 1. ; 2. )39(211I,2152I; 3. )1(3323e,21e;
4. ; 5. 6,2,3kqp; 6. 2; 7. a12;
8. 7201; 9. 42a; 10. haaln2.
二.
1.C; 2.B; 3.C; 4.B; 5. C.
三.
Vdxdydzyxz
22
2221022
0
zdzdd
dz222210222
10534)2(10422d
四.
BOABABOLdyyxdxyyI)1cos()(sin
OBBADdxdyydxdy0)1(cos
10)1(cos4dyy
11sin4
五. (1)
xyDSdxdyyxdSzM2
22
202202dd
3
216
(2) 0,0yx
SSdSzzMdSzyxzMz1),,(
1
xyDdxdyyxM2)(
1
22
)1,1(A
x
O
y
2
2xxy
1
B
D
4
2032021dd
M
2
3
质心 )23,0,0(
六. tdrrrfddtF022020sin)()(
tdrrrfd0220)(sin2
tdrrrf022)(4
,
50)(limttFt4
05)(limttFt
4
22
05)(4limtttft
2
2
05)(4limttft
0)0(0)0(5))0()((4lim220f
f
t
ftf
t
0)0(0)0()0(54f
ff
.