2、类比分析的基本方法
- 格式:ppt
- 大小:54.00 KB
- 文档页数:1
财务分析的基本方法有哪些财务分析的方法有很多种,主要包括趋势分析法、比率分析法、因素分析法。
下面店铺就和你来认识财务分析的基本方法。
财务分析的基本方法:因素分析法因素分析法也称因素替换法、连环替代法,它是用来确定几个相互联系的因素对分析对象一一综合财务指标或经济指标的影响程度的一种分析方法。
采用这种方法的出发点在于,当有若干因素对分析对象发生影响作用时,假定其他各个因素都无变化,顺序确定每一个因素单独变化所产生的影响。
财务分析的基本方法:趋势分析法趋势分析法又称水平分析法,是将两期或连续数期财务报告中相同指标进行对比,确定其增减变动的方向、数额和幅度,以说明企业财务状况和经营成果的变动趋势的一种方法。
趋势分析法的具体运用主要有以下三种方式:1、重要财务指标的比较它是将不同时期财务报告中的相同指标或比率进行比较,直接观察其增减变动情况及变动幅度,考察其发展趋势,预测其发展前景。
对不同时期财务指标的比较,可以有两种方法:(1)定基动态比率。
它是以某一时期的数额为固定的基期数额而计算出来的动态比率。
其计算公式为:定基动态比率=分析期数额÷固定基期数额(2)环比动态比率。
它是以每一分析期的前期数额为基期数额而计算出来的动态比率。
其计算公式为:环比动态比率=分析期数额÷前期数额2、会计报表的比较会计报表的比较是将连续数期的会计报表的金额并列起来,比较其相同指标的增减变动金额和幅度,据以判断企业财务状况和经营成果发展变化的一种方法。
3、会计报表项目构成的比较这是在会计报表比较的基础上发展而来的。
它是以会计报表中的某个总体指标作为100%,再计算出其各组成项目占该总体指标的百分比,从而来比较各个项目百分比的增减变动,以此来判断有关财务活动的变化趋势。
但在采用趋势分析法时,必须注意以下问题:(1)用于进行对比的各个时期的指标,在计算口径上必须一致;(2)剔除偶发性项目的影响,使作为分析的数据能反映正常的经营状况;(3)应用例外原则,应对某项有显著变动的指标作重点分析,研究其产生的原因,以便采取对策,趋利避害。
类比方法在数学解题中的应用陕西咸阳武功绿野高中 712203 王少华 康娟娟在高中数学学习过程中,类比的方法技巧经常出现在各种练习和考题中,它不仅仅提高了学生的学习效率及灵活性,而且为人类研究其他各类学科的问题提供了非常有参考价值的思路方法。
比如说梯形面积公式()()221n n a a n S n d d h S +=+=项和与等差数列前下上梯形无论从形式上还是推导方法技巧上都有惊人的相似之处,平面向量基本定理及坐标运算与空间向量基本定理及坐标运算一直到N 维柯西不等式的证明,三角形面积由平行四边形的推导,和三棱锥体积由三棱柱拆分求得等,都给人以某种遐思;林林总总的各种习题枚不胜举,下面结合自己在教学中的心得体会和搜集到的题目加以说明,以便帮助广大同学和各位同仁共勉。
一,类比在数列中的应用例1, 等差数列有如下性质:若{}n a 是等差数列,则数列na a ab nn +∙∙∙++=21是等差数列,类比上述性质:若{}n a 是正项等比数列,则,则数列=n b 也是等比数列。
分析:由等差数列和的性质自然联想到等比数列积的性质评注:本题也可看作“算术平均数”到“几何平均数” 推广,考查的是知识的迁移能力例2, (1)设数列{}n a ,若()N n n n a a n n ∈≥=++,1,21,求证:{}{}122,-n n a a 是等差数列;(2)设数列{}n a ,若,21nn n a a =⋅+()N n n ∈≥,1,类比上述性质你能得到什么类似的结论,并证明你的结论。
(答案:{}{}122,-n n a a 是等比数列) 分析:由数列和的性质作差变形联想到等比数列作商变形评注:“和”对应“差”,“积”对应“商 ”,充分体现了辩证法思想,是类比的典范小结:等差数列往往表现为和的性质,等比数列往往表现为积的性质,二,类比在几何中的应用例3, 在平面几何里有勾股定理:设三角形ABC 中角A 为直角,则有三边长的等量关系:222BC AC =+AB ,拓展到空间,研究以A 为顶点的三棱锥A-BCD ,当三条侧棱AB,AC,AD 彼此相互垂直时,三个侧面的面积与低面BCD 面积的关系如何呢? 经过类比分析可以得出的结论应该是?(答案:2BCD 2ABD 22ABC S S S ∆∆∆∆=++ACD S )分析:由“线”到“面”,由“长度”到“面积”,从二维到三维空间是我们学习中最常见的类比方法评注:形式上的平方和不变例4, 已知三角形ABC 中三边长分别为a,b,c 内切球半径为r ,则三角形ABC 面积()r c b a s ++=21,请你在三棱锥中写出一个类似的结论?答案是:设三棱锥A-BCD 四个面的面积分别为r s s s s 内切球半径为4321,,,,则有等量关系()r S S S S V BCD A 432131+++=- 例5, 在平面几何里设三角形ABC 中角A 为直角,于是有直角三角形的射影定理BC,DC AC BC BD AB D D,BC AD 22⋅=⋅=⊥且是垂足,则于类似的在空间立体几何学习中,在四面体ABCD 或者说三棱锥A-BCD 中,若有已知条件为:在底面内,为垂足,且底面平面O O BCD AO ABC AD ,,⊥⊥则你能由此得到什么类似的结论呢?解答 :有结论为 BCDBOD ABD BCD COD ACD BCDBCO ABC S S S S S S S S S ∆∆∆∆∆∆∆∆∆⋅=⋅=⋅=222(证明从略)练习:1、等差数列{}n a 前n 项和为n S ,则232,,.....n n n n n S S S S S --成等差数列,类比得等比数列{}n a 前n 项和为n S ()0n S ≠,则232,,.....n n n n n S S S S S --2、矩形的一对角线长的平方和等于相邻边长平方和,那么长方体中有类似结论:例6, 在ABC t ∆R 中两直角边分别为a,b 斜边c 上的高为h ,则有结论:222111ba h +=如图,在正方体的一个角上截取三棱锥P-ABC,其中PO 爲棱锥的高,记2PO 1M =,记2221PB 1PA 1N PC ++=,那么M 与N 的大小关系为?答案:M=N三,类比法在向量中的应用在教材中平面向量一章有结论:“点P 在直线AB 上的充要条件是:对直线外任一点O 存在实数()st λλλ-+=1”,空间向量一章有结论:“点P 在ABC 面内的充要条件是:对空间任一点O 存在三个实数OC OB OA OP st 321321,,,λλλλλλ++=,其中三个实数满足条件:1321=++λλλ”练习1.当012,,a a a 成等差数列时,有01220a a a -+=;当0123,,,a a a a 成等差数列时,有0123330a a a a -+-=,当01234,,,,a a a a a 成等差数列时,有012344640a a a a a -+-+=由此归纳:当0123,,,a a a a ......n a 成等差数列时,有 (答案:()012012...10nn n n n n n C a C a C a C a -+++-=);类比得:当0123,,,a a a a ......n a 成等比数列时,有 (答案:()0121012...1n nnnn nC C C C na aa a --=)2.在等差数列{}n a 中,若100a =,则有等式:()121219......19,n n a a a a a a n n N *-++=++<∈成立,类比上述结论,相应的在等比数列{}n b 中,若91b =,则有等式 答案:()121217......17,n n b b b b b b n n N*-=<∈3.设等差数列{}n a 的前n 项和为n S ,则4841281612,,,S S S S S S S ---成等差数列。
类比法类比是通过两个(或两类)对象的比较,找出它们在某一方面(特征、属性和关系)的类似点,从而把其中一对象的其他有关性质,移植到另一对象中去.因此,类比推理是从特殊到特殊的思维方法.在解析几何中,类比法是编制新命题、发现新定理以及开拓解题思路的重要方法. 解析几何的研究对象是直线、圆和圆锥曲线,因此,在圆、椭圆、双曲线、抛物线之间相互类比,是类比推理的主要内容.例1 对圆x 2+y 2=r 2,由直径上的圆周角是直角出发,可得:若AB 是⊙O 的直径,M是⊙O 上一点(异于A 、B),则1-=⋅BM AM k k 。
那么对椭圆12222=+b y a x 和双曲线12222=-by a x 是否有类似的结论?标分别为(x 1,y 1)、(-x 1,-y 1),又设点M(x 0,y 0)是这个椭圆上一点,且x 0≠±x 1,则以上两式相减,得于是①、②两式就是椭圆、双曲线与圆类似的结论.【解说】 (1)与圆类似,连结圆锥曲线上两点的线段叫做圆锥曲线的弦,过有心曲线(椭圆、双曲线)中心的弦叫做有心曲线的直径;(2)因为抛物线不是有心曲线,所以抛物线没有与圆的这个性质相类似的结论.<a<b)类似的命题是什么?【分析】由习题1.1第5题,我们知道了椭圆这个命题的证明方法,用类似的方法,我们来寻找双曲线的有关命题.比较两个标准方由①+②,得于是,我们得到与椭圆类似的正确命题:习题1.对圆x2+y2=r2,由过弦AB(非直径)中点M的直径垂直于此(a >0,b >0)类似的结果是什么?并证明你的结论.<1),一直线顺次与它们相交于A 、B 、C 、D 四点,则|AB|=|CD|.双曲线类似的命题是什么?并加以证明.习题答案或提示1.若AB 是椭圆、双曲线的弦(非直径),M 是AB 的中点,则对一直线顺次与它们相交于A 、B 、C 、D 四点,则|AB|=|CD|.求异思维所谓求异思维是一种不依常规、寻求变异、从多方面探索答案的思维形式.求异思维又叫发散思维,它具有不落俗套、标新立异、不拘一格的特点.因此,用求异思维解题有利于培养思维的多向性、灵活性和独特性.在平面解析几何中,培养学生的求异思维能力,要注意以下几个方面. (一)变换思维方向解证解析几何习题,常常会出现“思路自然、运算麻烦”的局面,甚至会到“山穷水尽疑无路”的地步.这时,若能变换思维角度,多方位思考,多渠道辟径,就会超过思维障碍,呈现“柳暗花明又一村”的美景.例1 已知点A(1,-1)、B(7,2),以A 为圆心、8为半径作⊙A ,以B 为圆心,6为半径作⊙B ,求这两个圆外公切线交点P 的坐标.【分析】 如图1-4.解本题的自然思路是,先求出两条外公切线的方程,再解方程求出交点坐标.但这种解法是入手容易出手难,由于运算量过大,使思维陷入困境.如果能换一个角度思考,联想到公切线的交点在连心线上,即P 、A 、B 三点共线,且4386||||==PA PB (即两圆半径之比),那么便可用线段定比分点公式,使问题获得巧解.【解】 如图1-4,设M 、N 是一条外公切线与两个圆的切点,连结AB 、BP ,则A 、B 、P 三点共线,再连结AM 、BN ,则AM ⊥MP 、BN ⊥MP .∴ BN∥AM.设点P的坐标为(x,y),则由线段定比分点公式,得故点P的坐标为(25,11).例2 如图1-5,直线y=kx+b与圆x2+y2=1交于B、C两点,与双曲线x2-y2=1交于A、D两点,若B、C恰好是线段AD的三等分点,求k与b的值.【分析】如图1-5,解本题的自然思路是,由|AB|=|BC|=|CD|入手,先计算出|AB|、|BC|、|CD|(即用k、b表示),然后解方程组求得k、b的值.但由于线段AB、CD的端点不在同一曲线上,从而上述解法运算相当麻烦.如果变换思考角度,由|AB|=|CD|出发,可得线段BC与AD的中点重合,进而可用韦达定理,列出k、b的一个关系式,再【解】如图1-5,把y=kx+b代入x2-y2=1中,整理,得(1+k2)x2+2bkx+b2-1=0①从而由韦达定理,得把y=kx+b代入x2-y2=1中,整理,得(1-k2)x2-2bkx-(b2+1)=0 ②∵ |AB|=|CD|,∴ AD与BC的中点重点.解之,得k=0或b=0.当k=0时,方程①化为x2=1-b2,(二)一题多解在解析几何中,进行一题多解训练是培养求异思维能力的一种极好形式.例3 已知直线l过坐标原点,抛物线C的顶点在原点,焦点在x轴正半轴上,若点A(-1,0)和点B(0,8)关于l的对称点都在C上,求直线l和抛物线C的方程.(1994年全国高考理科试题)【分析1】设直线l的方程为y=kx,抛物线C的方程为y2=2px(p>0),先求出A、B 关于l对称的点A′、B′的坐标(用k表示),再代入抛物线C的方程中,可得k、p的方程组,最后解方程组即可.【解法1】如图1-6.由已知可设抛物线C的方程为y2=2px(p>0).由于直线l不与两坐标轴重合,故可设l的方程为y=kx(k≠0).①设A′、B′分别是A、B关于l的对称点,则由 A′A⊥l可得直线AA′的方程为将①、②联立,解得线段AA′的中点M的坐标为分别把A′、B′的坐标代入抛物线C的方程中,得由③÷④,消去p,整理,得k2-k-1=0.⑤又由④知k>0.⑥【分析2】如图1-7,设直线l的倾斜角为α,则l的斜率为用α的三角函数表示点A′、B′的坐标,再把这些坐标用k表示,以下同解法1.l的斜率为k.∵ |OA′|=|OA|=1,|OB′|=|OB|=8,∠xOA′=-(π-2α),∴由三角函数的定义,得A′的坐标为x A=|OA′|cos∠xOA′=-cos2α,y A=|OA′|sin∠xOA′=-sin2α以下同解法1,从略.又|OB′|=8,|OA′|=1,从而此题可设极坐标方程去解.【解法3】如图1-7,以O为极点,Ox为极轴建立极坐标系,把x=ρcosθ代入方程y2=2px(p>0)中,得抛物线的坐标方程为由已知可设点B′的极坐标为(8,α)、A′的极坐标为(1,∵直线l平分∠BOB′,=8,OA′⊥OB′列出p、t1、t2的方程组,进而去求解.∵ |OA′|=|OA|=1,|OB′|=|OB|=8,又由OA′⊥OB′,得k OA·k OB=-1,【分析5】如图1-7,由于|OA′|=1,|OB′|=8,∠A′【解法5】如图1-7.把直角坐标系视为复平面,设点A′得点B′对应的复数为(x1+y1i)8i=-8y1+8x1i.∴点A′、B′的坐标为(x1,y1)、(-8y1,8x1).把它们分别代入抛物线C的方程y2=2px(p>0)中,得即k OA'=-2,又|OA′|=1,以下同解法4,从略.【分析6】本题也可以把抛物线的参数方程与复数法结合起来去解.数乘法的几何意义,得由复数相等的条件,得消去p,解得t2=2.从而B′的坐标为(8p,4p).∵线段BB′的中点C的坐标为(4p,2p+4),【分析7】在解法5中,利用复数乘法的几何意义,发现了A′、B′坐标之间的关系式,从而获得简解.如图1-8,点B′与点A′的坐标关系也可用平面几何法得到.【解法7】如图1-8,作A′C⊥Ox于C,B′D⊥Ox于D.设A′、B′的坐标分别为(x1,y1)、(x2,y2).∵∠B′OD+∠A′OC=90°,∴ Rt△A′CO∽Rt△ODB′.又|OA′|=1,|OB′|=8,∴ |OD|=8|A′C|,|B′D|=8|OC|.于是x2=-8y1,y2=8x1.以下同解法5,从略.【解说】本例给出了七种解法.解法1是本题的一般解法,它的关键是求点A、B 关于l的对称点的坐标.解法2是三角法,它法3是极坐标法,巧妙利用了A′、B′的特殊位置.解法4是利用抛物线的参数方程去解的.解法5和解法7是从寻找A′、B′的坐标关系式入手的,分别用复数法和相似形法获解.解法6把参数法与复数法结合起来,体现了思维的灵活性.总之,本例运用了解析几何的多种方法,是对学生进行求异思维训练的极好例题.(三)逆向思维在人们的思维活动中,如果把A→B的思维过程看作正向思维的话,那么就把与之相反的思维过程B→A叫做逆向思维.在平常的学习中,人们习惯于正向思维,而不善长逆向思维.因此,为了培养思维的多向性和灵活性,就必须加强逆向思维训练.在解题遇到困难时,若能灵活地进行逆向思维,往往出奇制胜,获得巧解.在解析几何中,培养学生逆向思维能力,要注意逆用解析式的几何意义、逆用曲线与方程的概念和逆用圆锥曲线的定义.例4 设a、b是两个实数,A={(x,y)|x=n,y=na+b,n∈Z},B={(x,y)|x=m,y=3(m2+5),m∈Z},C={(x,y)|x2+y2≤144}是平面xOy内的点焦,讨论是否存在a和b,使得:(1)A∩B≠ ;(2)(a,b)∈C.(1985年全国高考理科试题)【解】由已知可得,a、b是否存在等价于混合组以上二式的几何意义是:如图1-9,在平面aO′b中,na+b=3(n2+5)是直线,a2+b2≤144是圆面(即圆x2+y2=144的边界及其内部).因此,这个混合组有解的充要条件是直线na+b=3(n2+5)与圆a2+b2=144有公共点,即圆心O′(0,0)到这条直线的距离d≤12.即(n2+5)2≤16(n2+1),∴ n4-6n2+9≤0,即(n2-3)2≤0.又(n2-3)2≥0,∴ n2=3.这与n是整数矛盾.故满足题中两个条件的实数a、b不存在.【解说】这种解法中,把混合组翻译成几何语言(直线和圆面是否有公共点)就是解析法的逆向思维.教学实践表明,学生普遍认为这种解法难想,其实,“难就难在逆向思维”,普遍认为这种解法巧妙,其实,“巧就巧在逆向思维”.习题1.21.已知圆C1:(x+1)2+(y-2)2=4与圆C2:(x-3)2+(y-4)2=25,求它们外公切线交点P的坐标.2.已知直线l过点P(1,4),求它在两坐标轴正向截距之和最小时的方程.(要求至少5种解法)(要求至少4种证法).(1992年全国高考理科试题)4.长度为3的线段AB的两端点在抛物线y2=x上移动,记线段AB的中点为M,求点M 到y轴的最短距离,并求此时点M的坐标.(要求至少4种解法).(1987年全国高考理科试题)5.已知2a+3b=5,求证:直线ax+by-5=0必过一个定点.7.已知三个集合M={(x,y)|y2=x+1},S={(x,y)|4x2+2x-2y+5=0},P={(x,y)|y=ax+m},问是否存在正整数a、m使得(M∪S)∩P=φ?(其中φ表示空集)习题1.2答案或提示3.证法1:设A、B的坐标分别为(x1,y1)和(x2,y2),|PA|=r,则圆P的方程为(x-x0)2+y2=r2,与椭圆方程联立,消去y,得把A、B的坐标代入椭圆方程中,后把所)、(ρ2,θ2),点P的坐标为(t,0),则t=x0+c.由|PA|=|PB|,可得5.逆用点在直线的概念,得定点为(2,3).6.在直角坐标系中,由已知两个等式可知,直线ax+by=c过点重合的条件,可证得结论.也无实数解.故a=1,m=2.数形结合法解析几何是数形结合的科学,其显著特点是用代数的方法研究几何图形的性质,从而把代数、几何、三角熔为一炉.解题时,要贯穿数形结合的观点,不但要注意把图形数字化和把数式图形化,而且还要留心观察图形的特点,发掘题目中的隐含条件,充分利用图形的几何性质,把数与形有机地结合在一起,去探索问题的最佳解法.例1 过圆M:(x-1)2+(y-1)2=1外一点P向此圆作两条切线,当这两切线互相垂直时,求动点P的轨迹方程.【分析】本题一般用参数法去解,但运算量大且有一定的技巧,不易求解.如果运用数形结合的观点,仔细观察图形的性质,不难发现动点P是正方形PT1MT2的顶点,因此|PM|是定值,立得简捷解法如下.【解】如图1-10,设切点为T1、T2,连结MT1、MT2、PM,则MT1⊥T1P,MT2⊥PT2,又T1P⊥PT2,且|PT1|=|PT2|,那么MT2PT1设动点P(x,y),则(x-1)2+(y-1)2=2,这就是所求的轨迹方程.的对称点为Q,点P绕圆心C依逆时针方向旋转120°后到达点R,求线段RQ长度的最大值和最小值.α),然后求出点Q、R的坐标,最后用两点间距离公式,求出|RQ|的最值.但这种解法运算量较大,还易出错.观察图1-11,在△PRQ中,欲求|RQ|,因A是PQ的中点,易想起三角形的中位线,从而取PR的中点B,连结BA,则|RQ|=2|AB|.又求|QR|的最值,转化为求点A与所作圆上点的距离的最值.过C、A作直线,交所作圆于B1、B2两点,则由平面几何知,|AB|的最大值为x<2},求a的值集.【分析与解】本题如果用纯代数法,着眼于求出集合A,就相当麻烦.如果用数形结合的观点看待已知不等式,从“形”的角度去考虑可得下列简捷解法:为半径的半圆(如图1-12),而y=(a-1)x是过原点的直线束.问题转化为:求半圆在动直线上方且0<x<2时,a的值集.易得a-1≥1,即a≥2.故a的值集为{a|a≥2}.【解说】由以上三例可知,数与形密切配合,坐标法以图形性质相助,如虎添翼,问题可迎刃而解.习题1.3用数形结合观点解证下列各题:1.过圆M:(x-a)2+y2=a2(a>0)上一点A(2a,0)作此圆的动弦AB,求AB中点P的轨迹方程.必与相应的准线相交.u=x 2+y 2的最大值和最小值.习题1.3答案或提示1.连MP ,则MP ⊥AB ,从而P 的轨迹是以AM 为直径的圆,方程为222)21()23(a y a x =+-2.欲证准线l 与以AB 为直径的圆相交,即证圆心M 到l 的距离小于半径.设过A 、B 、M 分别作准线l 的垂线,重足分别为P 、Q 、N ,则|MN|=21(|AP|+|BQ|)=)||||(21eBF e AP +=e21|AB|<21|AB|(1>e )(这里F 为焦点,AB F ∈)。
课题:合情推理---类比推理(第一课时)教材:普通高中课程标准实验教科书人教社A版选修1-2【教学目标】:1.知识与能力:掌握类比推理的基本方法与步骤,会对一些简单问题进行类比,得出新的结论,并把它们用于对问题的发现与解决中去,培养类比推理能力。
2.过程与方法:类比推理是从特殊到特殊的推理,是寻找事物之间的共同或相似性质,类比的性质相似性越多,相似的性质与推测的性质之间的关系就越相关,从而类比得出的结论就越可靠。
3.情感态度与价值观:(1).正确认识合情推理在数学中的重要作用,养成从小开始认真观察事物、分析问题、发现事物之间的质的联系的良好个性品质,善于发现问题,探求新知识。
(2).认识数学在日常生产生活中的重要作用,培养学生学数学,用数学,完善数学的正确数学意识。
【教学重点、难点】:重点:了解合情推理的含义,能利用类比进行简单的推理。
难点:用类比进行推理,做出猜想。
【教学方法与手段】教学方法:启发探究式教学手段:多媒体课件【教学过程】B类事物具有性质:a’,b’,c’,(a,b,c与a’,b’,c’相似或相同)所以B类事物可能具有性质d’.理解定义。
应用举例例:类比平面内直角三角形的勾股定理,试给出空间中四面体性质的猜想.∠C=90°∠PDF=∠PDE=∠EDF=90°三条边的长度a,b,c四个面的面积S1,,S2,S3和S两条直角边a,b和一条斜边c三个“直角面”S1,,S2,S3和一个“斜面”S,+C2=a2+b2S2= S12+S22+S32变式训练1. 若三角形内切圆半径为r,三边长为cba,,,则三角形的面积)(21cbarS++=,根据类比思想,若空间四面体内切球半径为R,四个面的面积为4321,,,SSSS,则四面体的体积V为讲例题前,先引导学生从构成几何体的元素数目来看,平面几何中的三角形可以类比立体几何中的四面体。
而直角三角形中的线线垂直应该类比四面体中的面面垂直;于是选择三个面面两两垂直的四面体进行类比。
数学中的类比法摘要类比是数学学习中经常用到的一种推理方法.它是发现概念、定理、公式的重要手段,也是发现问题、探索问题、解决问题的重要方法.本文主要研究了:将平面几何的一些定理推广到空间几何中、将代数中的集合运算与概率事件中的运算进行类比、从有限到无限的类比、降次类比、降元类比等.这有助于我们借助类比对象间的“类比关系”更清晰的认识两个相似体系间的内在联系,逐渐养成发散思维能力和创新意识,通过类比还可以降低问题解决的难度.关键词:类比;降维类比;降次类比;几何.The analogy method in mathematicsAbstract:Analogy is a reasoning method is often used in mathematics learning. In mathematics, analogy is an important means of found concept, theorem, formula, and found the problem, explore the problems, the important way to solve the problem.This paper mainly studied: some of plane geometry theorem is generalized to space geometry; Collection of the algebraic operations with probability event in operations analogy; From limited to unlimited analogy; Drop analogy; Yuan analogy, etc. This will help us with the analogy between objects "analogy" more clear understanding of the intrinsic relationship between two similar system, and gradually form a divergent thinking ability and innovation consciousness, through the analogy can also reduce the difficulty of problem solving.Keywords: analogy, dimension reduction, fall time analogy, geometric analogy目录引言 (1)1 文献综述 (1)1.1国内外研究现状 (1)1.2国内外研究现状评价 (1)1.3提出问题 (2)2类比法 (2)2.1 类比法 (2)2.2 类比法的分类 (2)2.3类比法的意义 (3)3 类比法在数学中的应用 (4)3.1升维类比 (4)3.1.1勾股定理的类比 (4)3.1.2射影定理的类比 (5)3.1.3余弦定理的类比 (5)3.1.4维维安尼定理的类比 (7)3.1.5相似三角形性质的类比 (7)3.2降元类比法 (8)3.3降次类比法 (9)3.4结构的类比 (9)3.4.1类比定比分点公式求解函数的值域 (9)3.4.2类比三角公式证明等式 (10)3.4.3类比斜率公式求解圆锥曲线的最值问题 (11)3.5从有限到无限的类比 (12)3.6随机事件与集合的类比 (13)4 容易出错的“类比法” (14)4.1从平面到空间的类比 (14)4.2从等式到不等式的类比 (14)5 结论 (15)5.1主要发现 (15)5.2启示 (15)5.3局限性 (15)5.4努力方向 (16)参考文献 (17)致谢 (18)引言学习和研究数学,关键在于掌握数学思想和方法.如果说数学概念和数学命题是数学的骨架和躯体,那么数学思想和方法就是数学的血液和精髓.要想真正学会学好数学,把握数学的内在规律、要点和实质,就必须领会和研究数学的思想和方法,它是解决数学问题的利器,是进行数学发现和创造的有力工具[1].也可以这么说,数学知识是静止的,是被理解和被掌握的,其存在和应用具有很大的局限性,而数学思想和方法是运动的,是长期起作用的,它贯穿数学的始终,具有普遍的意义的永恒的价值.掌握一种数学思想和方法将终生受益.类比法就是众多数学思想和方法中一种.类比法是由两个或两类思考对象在某些属性上相同或相似推出它们在另一属性上也有相同或相似的一种推理方法,它是从特殊到特殊的逻辑推理方法[1].类比是一种很重要的推理方法和数学思想.无论是过去还是现在,在科学研究和生产实践中,特别是数学解题和教学中发挥着及其重要的作用.波利亚说:“类比是一个伟大的引路人”.可以说类比是探索问题、解决问题与发现问题的一种卓有成效的思维方法.在数学中,类比也是发现概念、方法、定理和公式的重要手段.例如,空间的毕达哥拉斯定理、空间余弦定理、空间射影定理等的发现及证明.多项式理论的建立便是类比在代数中取得全面成功的一个例子.我们在建立了整数理论的基础上,把多项式与整数类比.由整数的运算性质、整除性质、带余除法定理等可以得出多项式的相关性质.本文我将从以下几方面介绍数学中的类比法,包括:平面到空间的类比、降元类比、降次类比、结构相似的类比、有限到无限的类、随机事件与集合的类比以及一些错误使用类比法的情况.1 文献综述1.1国内外研究现状在查阅到的国内外参考文献[1-15]中:刘俊、付本路、姚玉平在文献[1]中介绍了类比法并给出一些运用类比法的例子.孙颖、杨文青、陆建在文献[2、3、4]中主要介绍了类比法在数学中的应用,如:概念类比,方法类比,教学思想类比,结构形式类比等.方宝初在文献[5]中主要给出了一些运用类比的典型例题.对于类比法的研究,最具影响力的是美国数学家、教育学家波利亚.波利亚在文献[6、8、14]中,通过对数学史上一些著名猜想的剖析,再现了一些重大发现产生的渊源及过程,认为归纳和类比是两种最基本的猜测方法,并以此为据提出了合理推理的一般模式,认为类比就是某种类型的相似性[2].通过具体的例子论述合情推理(归纳类比)在数学发现和解题方面的作用.他还结合中学数学的实际呼吁:“要教学生猜想,要教合情推理”.朱华伟文献[7]中,分别从高维与底维的类比、一般与特殊的类比、结构相似的类比几个方面进行探讨.张文忠在文献[12]中主要研究了升维类比法.蔡小雄在文献[15]中,从归纳猜想、类比迁移、进退互化、整体处理、正难则反五个反面论述类比法在解题中的应用.1.2国内外研究现状评价对于类比法在数学教学中的应用,前人已经做了比较系统、全面的研究.但是涉及的类比思想比较浅显、知识点也比较简单;对于类比法在数学解题中的应用,例题比较丰富,也不乏典型例题,但是大部分文献中将类比法与其他数学方法(数形结合法、分类讨论法、化归法、换元法、特殊化法等)一起进行研究,类比法所占的篇幅极少,只是几个典型的例题而已,研究的内容比较单一,不够系统化.1.3提出问题类比法不仅是一种以特殊到特殊的推理方法,也是一种寻求解题思路,猜测问题答案或结论的方法.我将从类比法的认识(定义、分类、意义),类比法的应用(降维类比、降次类比、降元类比、结构类比等),类比法的错误运用三方面进行研究,运用举例、分析与综合、观察、猜想等方法进行研究.通过对现有文献的归纳、总结、研究,对类比法进行更全面的研究.2类比法类比是发现新命题、新结论的途径之一.数学中许多重要的结论,往往是先通过类比发现,然后再给出一般性的证明.在数学史上,很多成果都是通过类比推理得到的.数学家欧拉就是一位擅长类比推理的高手.2.1 类比法类比法是由两个或两类思考对象在某些属性上相同或相似推出它们在另一属性上也有相同或相似的一种推理方法,它是从特殊到特殊的逻辑推理方法[1].2.2 类比法的分类类比法可分为简单类比和复杂类比两类.简单类比是一种形式性质类比,它具有明显性、直接性的特征.其模式为:对象A具有属性 a b c对象B具有属性 a b猜测对象B具有属性 c复杂类比是一种实质性类比,需要通过较为深入的分析后才能得出新的猜测.其模式为: H蕴含AH蕴含B ,B为真猜测A可能为真按比较对象可分为:特征类比、结构类比;按类比推理的实际应用可分为:模糊类比、精确类比.类比是一种主观的不充分的似真推理,因此要确认其正确性还必须经过严格的逻辑论证.[3]运用类比解决问题,其基本过程可用如下的框图表示:猜想2.3类比法的意义类比法不仅是一种特殊到特殊的推理方法,也是一种求解问题思路、猜测问题答案或结论的发现方法.首先,从思维方向看,其思维是多方向,多角度的.归纳是从特殊到一般,演绎是从一般到特殊.与归纳和演绎的思维方向固定不同,它是从具体到具体的推理.其次,从结论收前提制约的程度看,类比的结论受前提制约的程度小.在演绎法中,结论断定的范围不超出前提断定的范围;在不完全归纳法中,结论断定的范围超出前提断定的范围,结论是前提的概括.而对于类比法,它能跨越原有理论框架,把新事实作为应予解释的系统,在广阔领域内进行类比,提出新的猜想,推动科学进步.再次,就适用范围的广阔性而言是演绎法和归纳法无可比拟的,演绎法或归纳法都是在同类对象的范围内进行;类比法即可在同类范围内进行,也可在异类范围内进行.最后,关于类比的创造机制问题,它是直觉思维与逻辑思维的有机结合.因此,数学的发展时至今日,研究数学的方法和手段越来越多,但类比法仍是我们数学教学及解题中的一种重要的手段.它能使人们的思维和解题能力得到进一步加强.3 类比法在数学中的应用类比是探索问题、解决问题与发现问题的一种卓有成效的思维方法.在数学中,类比也是发现概念、方法、定理和公式的重要手段,类比法在数学解题中的应用也十分广泛,它也是数学教学中的一种重要手段3.1升维类比平面几何和立体几何在研究对象、方法和构成图形的基本元素等方面是相同或相似的,因此,在两者之间进行类比是研究它们性质的一种有效的方法.将平面(二维)中的对象升级到空间(三维)中的对象,这种类比方法称为升维类比。
《农村市场调查与商情预测》练习题及答案一、单项选择题1.对市场含义的理解错误的是( ).A。
市场是商品交换的场所B.市场是商品交换关系的总和C。
市场是商品销售的区域D。
市场是对全部商品的需求2。
关于农产品市场的特点,不正确的是()。
A.农产品市场有较强季节性和周期性B.农产品市场经济风险大C。
农产品市场的地域性不明显D.农产品市场销售的零散性3。
关于农产品市场体系,下面说法不正确的是()。
A.农产品市场主体是指参与市场交易活动的所有组织和个人B.农产品市场客体是指交易的农产品,即市场交易的对象C。
农产品市场机制是指市场经济中的各种法律法规D。
农产品市场组织是为保证商品交换顺利进行而建立的协调、监督、管理和服务农产品市场的各种机构、手段和法规4。
关于农产品电子商务发展状况正确的是()。
A.网上交易市场可以为买卖双方展现出一个巨大的市场B.利用电子商务平台,可以低成本高效率地吸引更多的消费C.电子商务模式可以有效地解决传统交易中“拿钱不给货”和“拿货不给钱”的难题D。
以上都对5。
对市场调查的认识错误的是( )。
A。
市场调查是为了某项市场营销决策所进行的调查B.市场调查是对所有市场营销问题进行调查;C。
市场调查是企业制定营销决策和进行市场预测的前提和保障D。
市场调查是一个系统的过程6。
市场调查的内容不包含的是().A。
市场宏观环境调查B.市场微观环境调查C。
市场营销调查D。
市场竞争调查7.()也被称为非正式市场调查.其作用是在市场情况不明朗时,为了发现问题所在,明确进一步深入调查的具体内容和重点而进行的调查活动。
A。
探测性调查B.描述性调查C。
因果性调查D.预测性调查8.()是指对所研究的市场现象的客观实际情况,收集、整理、分析其资料,反映其现象的表现。
它主要解决的是市场调查活动中说明“是什么”的环节。
它主要对市场现象的各种数量表现和情况进行描述,为进一步的分析研究提供资料。
A.探测性调查B.描述性调查C。
环境影响评价复习知识点第一章:环境影响评价概述1.基本概念:A.自然因素的总体称为自然环境,社会因素的总体称为社会环境B.环境的基本特征:整体性与区域性、变动性与稳定性、资源性和价值性C.环境影响:人类活动(经济活动、政治活动和社会活动)导致的环境变化以及由此引起的对人类社会的效应。
环境影响的概念包括人类活动对环境的作用和环境对人类的反作用两个层次。
D.环境影响评价:对规划和建设项目实施后可能造成的环境影响进行分析、预测和评估,提出预防或者减轻不良环境影响的对策和措施,进行跟踪监测的方法与制度。
环境影响评价≠环境质量评价环境影响评价的分类:按评价对象分:规划环境影响评价、建设项目环境影响评价按环境要素分:大气环境影响评价、地表水环境影响评价、土壤环境影响评价、声环境影响评价、固体废物环境影响评价、生态环境影响评价环境影响评价必须客观、公开、公正环境影响评价的基本功能:预测、选择、导向(核心)2.环境影响评价制度及法律依据环境影响评价≠环境影响评价制度A.第一个建立环境影响评价制度的国家:美国《国家环境政策法》(1969年)B.在进行新建、改建和扩建工程时,必须提出对环境影响的报告书,经环境保护部门和其他部门审查批准后才能进行设计”。
《中华人民共和国环境保护法(试行)》 (1979年) C.1979年《环境保护法(试行)》确立环评制度D.2002年10月28日第九届全国人大常委会通过《中华人民共和国环境影响评价法》并于从2003年9月1日正式实施,环境影响评价从项目环境影响评价进入到规划环境影响评价。
E.2004年,人事部、国家环保总局在全国环境影响评价行业建立环境影响评价工程师职业资格制度。
F.环境保护法律:环境保护综合法、环境保护单行法、环境保护相关法G.《建设项目环境保护管理条例》,它是指导建设项目环境影响评价极为重要和可操作性强的行政法规。
3.我国环境影响评价制度的特点:具有法律强制性、纳入基本建设程序(针对建设项目环评)、分类管理(针对建设项目环评)、分级审批、环境影响评价工程师职业资格制度对环境可能造成重大影响的,必须编制环境影响报告书,对环境影响较小的可编写环境影响报告表,对环境影响很小的可只填报环境影响登记表。
类比分析法:A=AD ×MA-某污染物排放总量 AD-某污染物的排放定额 M-产品总产量工业水重复利用率:R 小C=C/Y 乘以百分之百=c/q+c 乘以百分之百C-重复用水量 y-项目总用水量 Q-项目取个样水量经验计算法 Q=k ×WQ-某时间污染物排放量k 产品经验排放系数 W 单位产品的单位时间产量实测法 G=C ×QG-实测的污染物单位排放量 Q 废气和废水的流浪 C 实测的污染物算术平均浓度第3章 工程分析与污染源调查1、SO 2排放量计算:2(1)G BS D η=⨯⨯⨯-G :产生量,kg/h ;B :燃煤量kg/h S :煤的含硫量% D :可燃煤的比例% η:脱硫率% 2、燃煤烟尘排放量:(1)Y B A D η=⨯⨯⨯-Y :烟尘排放量 B :燃煤量 A :煤的灰分含量% D :烟尘占灰分的比例% η:除尘率% 燃煤烟尘排放量计算:Y=B ×A ×D×(1-η)/(1-Cfh )B —燃煤量;A —灰分含量;D —烟气中烟尘占灰分量的百分比;η—除尘效率;Cfh —烟气中可燃物调整系数有二级除尘器时η=1-(1-η1)(1-η2)第4章 大气环境影响评价等效排气筒:当排气筒1、2排放同一种污染物,其距离小于该两个排气筒的高度之和时 等效排放速率:Q=Q 1+Q 2 Q 1、Q 2排气筒1、2的排放速率 等效排气筒高度:22121()2h h h =+ h 1、h 2排气筒1、2的高度 等效排气筒位置:12()a Q Q aQ x Q Q-==a :两个排气筒的距离 x :等效排气筒距1的距离内插法、外推法内插法 如某排气筒高度处于列表两高度之间时11()()()a a a a a a Q Q Q Q h h h h ++=+--- Qa 比某排气筒高度低的列表限值最大值外推法 如排气筒高度高于列表高度的最高值时 高于表中最高值:2()b b hQ Q h = h 某排气筒高度 h b 列表内最高高度 低于表中最低值:2()c c hQ Q h = h 某排气筒高度 h b 列表内最低高度第5章 地表水环境影响评价1、内梅罗平均值:22C C C 2+=极均内2、标准指数:S ij =C ij /C sj (C ij 平均值C sj 标准限值)S ij ≤1.0达标 S ij >1.0超标A :对于溶解氧(DO)两种情况 :DO j ≥DO S 时:f jDOj f sDO DO S DO DO -=-S DOj -DO 的标准指数 DO j <DO S 时:jDOj s DO S 109DO =-⨯ DO j -DO 实测值f 468DO 31.6T=+ T 为摄氏度水温 DOs-DO 的评价标准值 DO f -为某水温、气压条件下饱和溶解氧浓度B :pH 的标准指数:()()7.07.0j pHjsd pH S pH -=- 7.0j pH ≤ ()()7.07.0j pHj su pH S pH -=- 7.0j pH ≥ S pHj —pH 的标准指数;pH j —pH 实测值;pH sd —地表水质标准中规定的pH 值下限;6 pH su —地表水质标准中规定的pH 值上限。
类比法在小学数学教学中的运用:数学是一门重要的学科,它可以让我们在生活中更好的理解和应用,而数学教学也是学生必修的课程。
但是,少数学生对数学的学习及理解存在困难。
在小学数学教学中,教师可以运用不同的教学方法,以便更好地促进学生的学习。
本文将探讨其中一个较为常用的类比法,以及如何在小学数学教学中运用该方法,让学生更好地理解和应用数学知识。
一、类比法的简介类比法是一种教学方法,它通过将所学知识与某些具体的事物相比较来加深学生的理解,并提高其记忆和应用能力。
这种方法不仅可以帮助学生更好地理解所学内容,还可以引起他们的兴趣,从而开发他们的创造力和想象力。
二、类比法的优点类比法有以下优点:1.提高学生的理解能力:类比法将所学知识与具体的事物相比较,易于让学生理解其内涵和逻辑。
2.促进学生的记忆能力:在类比中,学生可以通过观察和记忆事物的特征和规律,来应用到所学知识中,进而加深记忆。
3.激发学生的情感投入:类比法运用生动具体的事例,帮助学生在学习过程中加深对知识的喜爱和情感认同,激发学生的学习兴趣和积极性。
三、类比法在小学数学教学中的运用1. 数学概念类比法在数学教学中,教师可以将数学概念与生活中的具体事例相比较,来帮助学生理解和应用所学知识。
例如,教师可以以自行车的轮子为例来讲解圆形的周长和面积,以公共汽车站的候车人群密集程度来理解概率的含义等等。
2. 数学运算法则类比法数学运算是数学学习的重要组成部分,教师可以将数学运算规则与具体的生活事例相比较,辅助学生理解记忆所学内容。
例如,让学生将一些有规律的实物排列起来,如彩色珠子、小球等,以此来演示数列和等数学知识。
3. 数学问题类比法在数学问题的解决中,教师可以通过丰富的类比法找到问题的关键,引导学生将所学知识和生活中的情境联系起来。
例如,教师可以将数学问题与魔方一起讲解,让学生通过旋转魔方来理解正反对称、平移对称等数学概念。
四、小学数学教学中应用类比法的优缺点小学数学教学中应用类比法的优点是十分显著的,它可以让学生在生动具体的情境下认知他们所学的知识,从而提高他们的学习效果。
1一月二月三月产品名称数量金额利润产品名称数量金额利润产品名称数量金额利润合计合计合计四月五月六月产品名称数量金额利润产品名称数量金额利润产品名称数量金额利润类比推理解题技巧从题型角度一、二项式型峨眉山:四川A.黄山:安徽B.庐山:江苏C.五台山:山西D.泰山:山东【答案】C【解析】解答类比推理题目时,首选需要最大限度的寻找词项间的逻辑关系。
具体到本题,题干中的峨眉山坐落于四川,属于物与物的对应关系。
由此,再看选项,黄山也是坐落在安徽,于是,许多考生在做题时由于时间紧张往往不再看剩余的选项直接选A。
事实上A、C、D均属于这种关系。
再仔细分析题面部分可以发现,峨眉山又属于我国的佛教名山,而只有C中的五台山符合这层意思。
即,要正确解答本题,选项必须同时符合题面的两层逻辑关系。
注意:解答此类题目的时候,许多考生往往题目还没看完,或者仅考虑表面的、非本质的联系便匆忙作答,很容易误选,因此,需要认真分析每个选项,并透过现象发现本质,避免犯“机械类比”的错误,尽可能多地挖掘词项间的逻辑关系,找到尽可能多的相同或相似的本质属性,进而从中选取最佳答案。
抛开词项间的逻辑关系看,本题考查的内容实际涉及到常识问题,如果考生了解这方面的知识,即使不分析词项间的逻辑关系,也能很快的得到正确答案,因此广大考生需要注意平时知识的积累。
把握类比推理的解答技巧。
有些词语之间的关系,单纯从逻辑的概念角度谈,不容易找出规律,但是根据生活中二者存在或发生的关系进行判断却可以推断出二者确实有着联系,因此,注意从生活中寻找给出词语的关系。
83. 狗:鼠A.马:牛B.猫:虎C.狼:狗D.鹅:鸭【答案】A【解析】首先寻找题面的逻辑关系--并列关系,A、B、C、D均符合;且两个概念的外延恰似没有重合关系,但是,生活中,大家都知道狗和鼠都是生肖,而且可以构成歇后语--狗拿耗子多管闲事。
再纵观各选项,就不难发现,A项中的马和牛都是生肖,且亦可以构成歇后语--风马牛不相及。