专题一【概念阐述】
- 格式:docx
- 大小:25.28 KB
- 文档页数:4
专题一古代中国的政治制度古代中国政治制度的发展演变主要经历了两大阶段:夏商周时期早期政治制度的形成阶段和秦汉至明清时期君主专制中央集权制度的发展阶段。
阶段一中华民族早期政治文明的形成阶段——夏商周时期早期国家政治制度受宗法血缘关系的影响明显,尤其是西周时期,周王利用宗法制和分封制相结合的手段确定了一套严密的控制体系;春秋战国时期,随着诸侯割据混战,宗法分封制逐渐走向崩溃。
阶段二中华民族政治文明的发展阶段——秦汉至明清时期君主专制:秦始皇创立封建专制主义中央集权制度,摆脱了血缘政治模式,走向官僚政治集权统治。
秦汉至明清,中央由三公九卿到三省六部再到中书省、枢密院并重,直至明初废除丞相,后来明朝设立内阁、清朝设立军机处,体现了皇权不断加强、相权不断削弱直至废除的趋势。
中央集权:中央与地方矛盾的发展,促使秦汉至明清统治者不断采取措施调整地方机构。
从郡县制、郡国并行制、行省制再到权分三司,体现了地方日益听命于中央,中央集权不断强化的趋势。
选官制度:从汉代察举制到魏晋九品中正制再到隋唐科举制,中国选官制度日趋完善,一定程度上体现了公平、公正的原则,但它本质上仍是巩固专制统治的一种手段。
第1讲中国早期政治制度的特点一、夏、商的政治形式1.夏朝:王位世袭制代替禅让制。
启继承了禹的地位,政治权力由“传贤”演化为“传子”,“家天下”制度由此开始,宗族关系从此成为基本的政治关系。
2.商朝:贵族以血缘关系为纽带,实行宗法制;神权和王权密切结合。
王位世袭制的产生今大道既隐,天下为家……大人世及以为礼,城郭沟池以为固,礼义以为纪……——《礼记》核心论点:王位世袭制代替禅让制,是生产力发展的结果,标志着社会财富和社会权力的集中,即“家”的私有观念深化,表明从“公天下”到“家天下”的转变,具有神权色彩。
二、西周的分封制1.目的:巩固西周的统治。
2.概况诸侯义务对周天子定期朝贡并提供军赋和力役诸侯权利诸侯在自己的封国内享有世袭统治权初期封国鲁、齐、燕、卫、宋、晋等等级关系天子—诸侯—卿大夫—士3.影响(1)积极性:有利于稳定当时的政治秩序,保持周政治文化的稳定性和延续性。
初一辅导专题1 实数的概念一、知识要点:1、无理数的定义:无限不循环小数叫做无理数;无理数可分为正无理数和负无理数2、实数的定义:有理数和无理数统称为实数;3、实数的分类:正整数有理数 有限小数或无限循环小数 分数无理数 无限不循环小数二、例题讲解:1、在下列实数中,是无理数的为( )A .0;B . 3.5-;CD . 2、在220.6187-π,, A .1; B .2; C . 3; D .4. 3、无理数是( )A .无限循环小数;B .开方开不尽的数;C .除有限小数以外的所有实数;D .除有理数以外的所有实数. 4、实数中6,42,31π中,分数的个数是( ) A .0个; B .1个; C .2个; D .3个5、3-,00.3,227, 1.732-π2-,3,0.1010010001整数{} ;分数{} ; 正数{} ;负数{} ; 有理数{} ;无理数{} ; 6选择题(1)下列语句错误的是( )A 、正整数、0、负整数统称为整数B 、整数与分数统称为有理数C 、开方开不尽的数和π统称为无理数D 、有理数、无理数统称为实数 (2)下列说法正确的是( ).A 、无理数是开方不尽的数B 、无限小数不能化成分数C 、无限不循环小数是无理数D 、一个负数的平方是无理数 (3)下列说法错误的是( )A 、相反数与本身相等的数只有0B 、倒数与本身相等的数只有1和-1C 、平方与本身相等的数只有0和1D 、立方与本身相等的数只有0和1 (4)下列命题正确的是( )A 、无理数与无理数的和仍是无理数B 、无理数与无理数的积仍是无理数C 、有理数与无理数的积仍是无理数D 、有理数与无理数的和仍是无理数 (5)大家知道5是一个无理数,那么5-1在哪两个整数之间()A 、1与2B 、2与3C 、3与4D 、4与5 7:填空题(1)7-的相反数是__73-______,绝对值是___37-_____. (2)一个数的绝对值等于,则这个数是____3±_____.(3)绝对值最小的实数是___0___,绝对值小于的整数有±2、±1、0 8:已知b a ,都是无理数,且它们的和为2,试写出两对符合要求的无理数b a ,。
专题一 实数基本概念及化简【板块一 平方根、立方根、实数】实数可按下图进行详细分类:0⎧⎧⎫⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎧⎨⎪⎪⎨⎪⎪⎪⎩⎭⎩⎪⎪⎫⎧⎪⎪⎨⎬⎪⎪⎩⎭⎩正整数整数负整数有理数有限小数或无限循环小数正分数实数分数负分数正无理数无理数无限不循环小数负无理数实数与数轴上的点一一对应.(以下概念均在实数域范围内讨论) 平方根的定义及表示方法:如果一个数的平方等于a ,那么这个数叫做a 的平方根.也就是说,若2x a =,则x 就叫做a 的平方根. 一个非负数a 的平方根可用符号表示为“”.算术平方根:一个正数a 有两个互为相反数的平方根,其中正的平方根叫做a 的算术平方根,可用符号表示为”;0有一个平方根,就是0,0的算术平方根也是0,负数没有平方根,当然也没有算术平方根.(负数的平方根在实数域内不存在,具体内容高中将进一步学习研究)一个非负数的平方根不一定是非负数,但它的算术平方根一定是非负数,即若0a ≥0≥.平方根的计算:求一个非负数的平方根的运算,叫做开平方.开平方与平方是互逆运算,可以通过平方运算来求一个数的平方根或算术平方根,以及检验一个数是不是另一个数的平方根或算术平方根.通过验算我们可以知道:⑴当被开方数扩大(或缩小)2n 倍,它的算术平方根相应地扩大(或缩小)n 倍(0n ≥). ⑵平方根和算术平方根与被开方数之间的关系:①若0a ≥,则2a =;②不管a (0)||(0)a a a a a ≥⎧==⎨-<⎩注意二者之间的区别及联系.⑶若一个非负数a 介于另外两个非负数1a 、2a 之间,即120a a a ≤<<时,间,即:0≤<立方根的定义及表示方法:如果一个数的立方等于a ,那么这个数叫做a 的立方根,也就是说,若3,x a =则x 就叫做a 的立方根. 一个数a 的立方根可用符号表,其中“3”叫做根指数,不能省略. 前面学习的其实省略了根指数“2”“三次根号a ”“二次根号a ”“根号a ”. 任何一个数都有立方根,且只有一个立方根,正数的立方根为正数,负数的立方根为负数,0的立方根为0.立方根的计算:求一个数的立方根的运算,叫做开立方,开立方与立方是互逆运算,可以通过立方运算来求一个数的立方根,以及检验一个数是不是另一个数的立方根.通过归纳我们可以知道:⑴当被开方数(大于0)扩大(或缩小)3n 倍,它的立方根相应地扩大(或缩小)n 倍.a =,3a =⑶若一个数a 介于另外两个数1a 、2a 之间,即12a a a <<,<< 利用这个结论我们可以来估算一个数的立方根的大致范围.一、实数的概念1. 22π 3.140.614140.10010001000017-,,,,这7个实数中,无理数的个数是( )A .0B .1C .2D .32. 有一个数值转换器原理如图所示,则当输入x 为64时,输出的y 是( )输出y输入xA .8 B. C. D.3..4. 说明边长为15. 下面有四个命题:①有理数与无理数之和是无理数. ②有理数与无理数之积是无理数. ③无理数与无理数之和是无理数. ④无理数与无理数之积是无理数.请你判断哪些是正确的,哪些是不正确的,并说明理由.6. 已知在等式ax bs cx d+=+中,a b c d ,,,为有理数,x 是无理数. (1)当a b c d ,,,满足什么条件是,s 是有理数? (2)当a b c d ,,,满足什么条件是,s 是无理数?7. 若a b a b +-是不等于1的有理数,求证:ab为有理数.8. 已知a b ,是两个任意有理数,且a b <,问是否存在无理数α,使得a b α<<成立?二、数的开方9. |9|-的平方根是( )A .81B .3±C .3D .3-10. 下列命题中,真命题是( )A .22001的平方根是2001B .49-的平方根是7±C 8=±D .若22a b ==11. 的平方根是 ;2( 2.5)-的平方根是 ;2(的平方根是 .12. 若22(2)a =-,则a = ;若22()(3)x -=-,则x = .13. 2=,则(25)x +的平方根是 ;若5=,则x = .14. 若A =A 的算术平方根是_________.15. 设a a 的值是________.16. 判断下列各题,并说明理由的平方根是9±. ( )( ) ⑶2a 的算术平方根是a . ( )5=,则5a =-. ( )3=±.( ) ⑹6-是2(6)-的平方根. ( ) ⑺2(6)-的平方根是6-.( )⑻若236x =,则6x ==±. ( )⑼若两个数平方后相等,则这两个数也一定相等. ( ) ⑽如果两个非负数相等,那么这两个数各自的算术平方根也一定相等. ( ) ⑾算术平方根一定是正数. ( ) ⑿2a -没有算术平方根. ( ) ⒀64的立方根是4±.( ) ⒁12-是16-的立方根.( )x =. ( ) ⒃互为相反数的两个数的立方根互为相反数. ( ) ⒄正数有两个互为相反数的偶数次方根,任何数都有唯一的奇数次方根. ( )17. 已知某正数的两个平方根是35a -与1a +,求这个正数.18. 一个数的平方根是22a b +和4613a b -+,求这个数.19. 已知23m-是正数p的平方根,试求p的值.m-和1220. 已知a b,为两个连续整数,且a b<<,则a b+=_______.21. 的小数部分是b,求432+++-b b b b123762022. 当0m<,2m的算术平方根是.23. 2-,则a b.-算术平方根是a ba b()24. 若一个自然数的一个平方根是m,那么比它大1的自然数的平方根是.25. 平方根等于本身的数是,算术平方根等于它本身的数是,立方根等于它本身的数是;平方根与立方根相等的数是.26. 8的立方根是( )A .2B .2±C .4D .4±27.)A .3B .3-C .13D .13-28. 的相反数是 ;的立方根是 .29. 1.22== _____.30. 若22(3)x =-,33(2)y =-,求x y +所有可能值.31.32. 已知3(2)27a b +=-5=,求21(3)n a b ++的值(n 为正整数).33. 已知2a -的平方根是2±,27a b ++的立方根是3,求22a b +的平方根.34. a =,2y b =(0y <)8=(4b a >)18=,求xy 的值.35. 2a b x -=3a +的算术平方根,3b a y -=是3b -的立方根,求y x -的立方根.36. 设3320082006200820082008200720082005a =⨯-⨯37. (1995年第6届希望杯全国数学邀请赛试题)设[]x 表示不大于x 的最大整数,如[π]3=,则100______⎤⎤⎡⎤++++=⎦⎦⎣⎦.板块二 二次根式0a ≥)的式子叫做二次根式.二次根式的基本性质:0≥(0a ≥)双重非负性;⑵2a =(0a ≥); (0)(0)a a a a a ≥⎧==⎨-<⎩38. x 取何值时,下列各式有意义:(7))12--39. 当x 时,有意义.40. 已知a 为实数,且满足200a a -=,求2200a -的值.41. 已知x 1πx -的值是多少?42. 化简:25-43. 若a 、b 为实数,且|1|0a -=,求1111(1)(1)(2)(2)(1993)(1993)a b a b a b a b ++++++++++的值.44. 若m 199y x =--,试确定m 的值.板块三 a =二次根式的化简45. 2)a <-.46. -112a≤≤)47.48.+49. (0a>,0b>)50. 设012x y<<<<+-=__________.51. 设a b ,都是实数,且0a a +=,ab ab =,0c c -=,那么化简b a c --为( )A .2c b -B .22b a -C .b - D.b52. 把根号外的因式适当变形后移入根号内:(a +53. 已知a b c ,,为ABC △+54. x 2(2)0x -=,求x 的值.。
高一数学复习考点知识与题型专题讲解第一章集合与常用逻辑用语1.1集合的概念【考点梳理】考点一元素与集合的概念1.元素:一般地,把研究对象统称为元素(element),常用小写的拉丁字母a,b,c…表示.2.集合:把一些元素组成的总体叫做集合(set),(简称为集),常用大写拉丁字母A,B,C…表示.3.集合相等:指构成两个集合的元素是一样的.4.集合中元素的特性:给定的集合,它的元素必须是确定的、互不相同的.考点二元素与集合的关系1.属于:如果a是集合A的元素,就说a属于集合A,记作a∈A.2.不属于:如果a不是集合A中的元素,就说a不属于集合A,记作a∉A.考点三常见的数集及表示符号数集非负整数集(自然数集) 正整数集整数集有理数集实数集符号N N*或N+Z Q R考点四:集合的表示(1)列举法:把集合的所有元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.(2)描述法:一般地,设A是一个集合,把集合A中所有具有共同特征P(x)的元素x 所组成的集合表示为{x∈A|P(x)},这种表示集合的方法称为描述法.【题型归纳】题型一:集合的概念1.考察下列每组对象,能组成一个集合的是()①一中高一年级聪明的学生;②直角坐标系中横、纵坐标相等的点;③不小于3的正整数;④3的近似值.A.①②B.③④C.②③D.①③2.下列说法中正确的有()个:①很小的数的全体组成一个集合:②全体等边三角形组成一个集合;③{}R表示实数集;④不大于3的所有自然数组成一个集合.A.1B.2C.3D.43.下列叙述正确的是()A .方程2210x x ++=的根构成的集合为{}1,1--B .{}220x x +==∅C .集合(){},5,6M x y x y xy =+==表示的集合是{}2,3D .集合{}1,3,5与集合{}3,1,5是不同的集合题型二:元素与集合的关系4.下列关系中①0N ∈;②27Z ∈;③3Z -∉;④Q π∉正确的个数为( )A .0B .1C .2D .35.下列五个写法,其中正确写法的个数为( )①{}{}00,1,3∈;②{}0∅⊆;③{}{}0,1,21,2,0⊆;④0∈∅;⑤0∅=∅IA .1B .2C .3D .46.设集合2{|2}M x R x =∈…,1a =,则下列关系正确的是( )A .a M ÜB .a M ∉C .{}a M ∈D .{}a M Ü题型三:元素特性技巧解题7.已知a R ∈,b R ∈,若集合{}2,,1,,0ba a ab a ⎧⎫=+⎨⎬⎩⎭,则20192019a b +的值为( )A .2-B .1-C .1D .28.已知{},1,1A x x =+,{}22,,B x x x x =+,且A B =,则x =( )A .1x =或1x =-B .1x =C .0x =或1x =或1x =-D .1x =-9.含有三个实数的集合既可表示成,,1ba a ⎧⎫⎨⎬⎩⎭,又可表示成{}2,,0a a b +,则20132014a b +()A .-1B .0C .1D .2题型四:集合的表示方法10.若用列举法表示集合311(,)1x y A x y x y ⎧⎫+=⎧⎪⎪=⎨⎨⎬-=⎩⎪⎪⎩⎭,则下列表示正确的是( ) A .{}32x y ==,B .{}(32),C .{}32,D .32x y =⎧⎨=⎩11.在直角坐标系内,坐标轴上的点构成的集合可表示为( )A .{(x ,y )|x =0,y ≠0或x ≠0,y =0}B .{(x ,y )|x =0且y =0}C .{(x ,y )|xy =0}D .{(x ,y )|x ,y 不同时为零}12.集合{1,3,5,7,9,…}用描述法可表示为( )A .{x |x =2n ±1,n ∈Z }B .{x |x =2n +1,n ∈Z }C .{x |x =2n +1,n ∈N *}D .{x |x =2n +1,n ∈N }【双基达标】一、单选题13.已知集合{}1,2A =,{},,B x x a b a A b A ==-∈∈,则集合B 中元素个数为( )A .1B .2C .3D .414.集合{3,x ,x 2–2x }中,x 应满足的条件是( )A .x ≠–1B .x ≠0C .x ≠–1且x ≠0且x ≠3D .x ≠–1或x ≠0或x ≠315.由大于-3且小于11的偶数所组成的集合是( )A .{x |-3<x <11,x ∈Z }B .{x |-3<x <11}C .{x |-3<x <11,x =2k }D .{x |-3<x <11,x =2k ,k ∈Z }16.下列关系正确的是( )A .0N *∈B .Q π∈C .0∈∅D .2R ∈17.集合A ={1,-3,5,-7,9,L }用描述法可表示为()A .{x |x =2n ±1,n ∈N }B .{x |x =(-1)n (2n -1),n ∈N }C .{x |x =(-1)n (2n +1),n ∈N }D .{x |x =(-1)n -1(2n +1),n ∈N }18.下列叙述正确的是( )A .集合{x |x <3,x ∈N }中只有两个元素B .{x |x 2-2x +1=0}={1}C .整数集可表示为{Z }D .有理数集表示为{x |x 为有理数集}19.有下列四个命题:①{0}是空集;②若a N ∈,则a N -∉;③集合2{|210}A x R x x =∈-+=有两个元素;④集合6B x N N x ⎧⎫=∈∈⎨⎬⎩⎭是有限集. 其中正确命题的个数是( )A .0B .1C .2D .320.已知关于x 的方程26(0)x x a a -=>的解集为P ,则P 中所有元素的和可能是( )A .3,6,9B .6,9,12C .9,12,15D .6,12,1521.对集合{1,5,9,13,17}用描述法来表示,其中正确的是( )A .{ x |是小于18的正奇数}B .{}|41,5x x k k Z k =+∈<且C .{}|43,,5x x s s N s =-∈≤且D .{}|43,,5x x s s N s *=-∈≤且22.给出下列6个关系:①22R ∈,②3Q ∈,③0N ∉,④4N ∉,⑤Q π∈,⑥2Z -∉,其中正确命题的个数为( )A .1B .2C .3D .4【高分突破】23.已知集合(){}223A x y x y x Z y Z =+≤∈∈,,,,则A 中元素的个数为( ) A .9B .8C .5D .424.集合{x |3213x -<-≤,x ∈Z }等于( )A .{1,2}B .{0,1,2}C .{1-,0,1,2}D .{0,1}25.已知集合M是方程x2-x+m=0的解组成的集合,若2∈M,则下列判断正确的是()A.1∈M B.0∈MC.-1∈M D.-2∈M26.已知x,y都是非零实数,x y xyzx y xy=++可能的取值组成集合A,则()A.2∈A B.3∉A C.-1∈A D.1∈A27.设集合{1,2,3,4}A=,{5,6}B=,{|,}C x y x A y B=+∈∈,则C中元素的个数为()A.3B.4C.5D.628.设非空数集M同时满足条件:①M中不含元素-1,0,1;②若a∈M,则11aa+-∈M.则下列结论正确的是()A.集合M中至多有2个元素B.集合M中至多有3个元素C.集合M中有且仅有4个元素D.集合M中至少有4个元素29.已知集合{1M=,2m+,24}m+,且5M∈,则m的值为()A.1或1-B.1或3C.1-或3D.1,1-或330.若集合A的元素y满足y=x2+1,集合B的元素(x,y)满足y=x2+1(A,B中x∈R,y∈R).则下列选项中元素与集合的关系都正确的是()A.2∈A,且2∈B B.(1,2)∈A,且(1,2)∈BC.2∈A,且(3,10)∈B D.(3,10)∈A,且2∈B二、多选题31.(多选题)下列各组中M ,P 表示不同集合的是( )A .M ={3,-1},P ={(3,-1)}B .M ={(3,1)},P ={(1,3)}C .M ={y |y =x 2+1,x ∈R},P ={x |x =t 2+1,t ∈R}D .M ={y |y =x 2-1,x ∈R},P ={(x ,y )|y =x 2-1,x ∈R}32.(多选题)若集合A ={x |kx 2+4x +4=0,x ∈R}只有一个元素,则实数k 的值为( ) A .0B .1C .2D .333.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[]k ,即[]{}5|Z k n k n =+∈,0k =,1,2,3,4,给出如下四个结论,其中,正确结论的是( ) A .[]20211∈B .[]33-∈C .若整数a ,b 属于同一“类”,则[]0a b -∈D .若[]0a b -∈,则整数a ,b 属于同一“类”34.设非空集合{}S x m x l =≤≤满足:当x S ∈时,有2x S ∈.给出如下四个命题,其中正确命题的有( )A .若1m =,则{}1S =B .若12m =-,则114m ≤≤C .若12l =,则202m -≤≤D .112m -≤≤ 35.下面四个说法中错误的是( )A .10以内的质数组成的集合是{2,3,5,7}B .由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}C .方程x 2﹣2x +1=0的所有解组成的集合是{1,1}D .0与{0}表示同一个集合36.设集合{}3,,A x x m n m n N *==+∈,若1x A ∈,2x A ∈,12x x A ⊕∈,则运算⊕可能是( ) A .加法B .减法C .乘法D .除法37.若集合A 具有以下性质:(1)0∈A ,1∈A ;(2)若x ∈A ,y ∈A ;则x ﹣y ∈A ,且x ≠0时,1x ∈A .则称集合A 是“好集”.下列命题中正确的是( )A .集合B ={﹣1,0,1}是“好集”B .有理数集Q 是“好集”C .整数集Z 不是“好集”D .设集合A 是“好集”,若x ∈A ,y ∈A ,则x +y ∈A三、填空题38.用符号“∈”或“∉”填空:(1)0______N ; (2)2021(1)-_____Z ;(3)44_____Q ; (4)2()π-_____R ;(5)1_____{|}1x x y x =-; (6)1_____{|}1x y y x =-; (7)(2,2)_____{|}1x x y x =-; (8)∅_____ {,{0}}∅.39.若集合2{|440}A x kx x =-+=只有一个元素,则集合A =______.40.已知集合{}221,(1),33A m m m m =+--+,若1A ∈,则2021m =__________.41.设集合{}222,3,3,7,2,0A a a a B a a⎧⎫=-++=-⎨⎬⎩⎭,已知4A ∈且4B ∉,则实数a 的取值集合为__________.42.用符号“∈”或“∉”填空:(1)设集合B 是小于11的所有实数的集合,则23________B ,1+2________B ; (2)设集合C 是满足方程x =n 2+1(其中n 为正整数)的实数x 的集合,则3________C ,5________C ;(3)设集合D 是满足方程y =x 2的有序实数对(x ,y )组成的集合,则-1________D ,(-1,1)________D .43.我国古代数学名著《孙子算经》中有如下问题:“今有三女,长女五日一归,中女四日一归,小女三日一归,问三女何时相会?”则此三女前三次相会经过的天数用集合表示为____.四、解答题44.(1)已知{}221,251,1A a a a a =-+++,2A -∈,求实数a 的值;(2)已知集合{}2340A x R ax x =∈--=,若A 中有两个元素,求实数a 的取值范围.45.已知函数f (x )=2x -ax +b (a ,b ∈R ).集合A ={x |f (x )-x =0},B ={x |f (x )+ax =0},若A ={1,-3},试用列举法表示集合B .46.用描述法表示下列集合,并思考能否用列举法表示该集合(1)所有能被3整除的自然数(2)不等式²230x x +-<的解集(3)²230x x+-=的解集47.已知集合A的元素全为实数,且满足:若a A∈,则11aAa+∈-.(1)若3a=-,求出A中其他所有元素;(2)0是不是集合A中的元素?请你设计一个实数a A∈,再求出A中的元素;(3)根据(1)(2),你能得出什么结论?48.已知集合A={x|ax2-3x+2=0}.(1)若集合A中只有一个元素,求实数a的值;(2)若集合A中至少有一个元素,求实数a的取值范围;(3)若集合A中至多有一个元素,求实数a的取值范围.【答案详解】1.C【详解】①“一中高一年级聪明的学生”的标准不确定,因而不能构成集合;②“直角坐标系中横、纵坐标相等的点”的标准确定,能构成集合;③“不小于3的正整数”的标准确定,能构成集合;④“3的近似值”的标准不确定,不能构成集合.故选:C.2.B【详解】①很小的数不确定,不能组成一个集合,故错误:②全体等边三角形组成一个集合,故正确;③{}R 表示以实数集为元素的集合,不表示实数集,故错误;④不大于3的所有自然数是0,1,2,3,组成一个集合,故正确. 故选:B3.B【详解】对于A ,方程2210x x ++=的根构成的集合为{}1-,故A 错误;对于B ,方程220x +=无解,所以{}220x x +==∅,故B 正确;对于C ,集合(){},5,6M x y x y xy =+==为点集,集合{}2,3是数集, 故C 错误;对于D ,由集合元素的无序性可得集合{}{}13,1,5,3,5=,故D 错误. 故选:B.4.C【详解】①因为0是自然数,所以0N ∈,故正确;②因为27不是整数,所以27Z ∉,故错误;③因为3-是整数,所以3Z -∈,故错误;④因为π是无理数,所以Q π∉,故正确;故选:C.5.B【详解】解:①{}{}00,1,3Ü,故①错误,②{}0∅⊆,故②正确,③{}{}0,1,21,2,0=,故③正确,④0∉∅,故④错误,⑤0为元素,与∅无法运算,故⑤错误;故选:B6.D【详解】解:22x …,22x ∴-剟,{|22}M x R x ∴=∈-剟,又1a =,a M ∴∈,{}a M Ü.故选:D.7.B【详解】 因为{}2,,1,,0ba a ab a ⎧⎫=+⎨⎬⎩⎭, 所以201b a a a b a ⎧=⎪⎪=+⎨⎪=⎪⎩,解得01b a =⎧⎨=⎩或01b a =⎧⎨=-⎩, 当1a =时,不满足集合元素的互异性,故1a =-,0b =,()2019201920192019101a b +=-+=-,故选:B.8.D【详解】当1x =时,集合{}1,2,1A =,{}1,2,1B =都出现两个1,出现了互异性的错误,排除ABC ,当1x =-时,{}1,0,1A =-,{}1,0,1B =-,A B =,故选:D.本题考查了集合性质,属于基础题.9.A【详解】 解:由题意得,{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,所以0b a=即0a ≠,1a ≠,即0b =,则有{}{}2,0,1,,0a a a =,所以21a =,解得1a =-, ∴201320141a b +=-.故选:A.10.B【详解】因为3111x y x y +=⎧⎨-=⎩可解得:32x y =⎧⎨=⎩, 所以{}311(,)(32)1x y A x y x y ⎧⎫+=⎧⎪⎪==⎨⎨⎬-=⎩⎪⎪⎩⎭,. 故选:B11.C【详解】A.表示x 轴和y 轴上的点,但不包含原点,故A 错误;B.集合中只有一个元素,就是原点,故错误;C.00xy x =⇔=或0y =,即表示坐标轴上点的集合,故C 正确;D.表示平面中的点,但不包含原点,故错误.故选:C.12.D对于A :{}{|}3,1,1,321,5x x n n Z =--=±∈,,故A 错误;对于B :{}{|}3,1,1,321,5x x n n Z =--=±∈,,故B 错误;对于C :{}*{|}3,5,217,x x n n N =+∈=,,故C 错误;对于D :{}{|}1,3,5,2,17x x n n N ==+∈,,故D 正确.故选:D13.C【详解】解:由题意知:{1,2}a ∈,{1,2}b ∈,{}{}|,,0,1,1B x x a b a A b A ==-∈∈=-,∴集合B 中元素个数为3.故选:C.14.C【详解】集合{3,x ,x 2–2x }中,x 2–2x ≠3,且x 2–2x ≠x ,且x ≠3,解得x ≠3且x ≠–1且x ≠0,故选:C .15.D【详解】解:大于-3且小于11的偶数,可表示为-3<x <11,x =2k ,k ∈Z ,所以由大于-3且小于11的偶数所组成的集合是{x |-3<x <11,x =2k ,k ∈Z },故D 符合题意;对于A ,集合表示的是大于-3且小于11的整数,不符题意;对于B ,集合表示的是大于-3且小于11的数,不符题意;对于C ,集合表示的是大于-3且小于11的数,,但不一定是整数,不符题意. 故选:D.16.D【详解】对于A ,因为0不是正整数,所以0N *∉,所以A 错误,对于B ,因为π是无理数,所以Q π∉,所以B 错误,对于C ,因为空集是不含任何元素的集合,所以0∉∅,所以C 错误, 对于D ,因为2是实数,所以2R ∈,所以D 正确,故选:D17.C解:观察集合A 的前几项发现:A 的元素都是奇数,并且偶数项为负,奇数项为正; ∴可表示为(1)(21)n x n =-+,n N ∈;{|(1)(21)n A x x n ∴==-+,}n N ∈.故选:C.18.B【详解】A.集合中元素有0,1,2,错;B.{}{}22101x x x -+==,正确;C.整数集表示为Z ,错;D.有理数集表示为{x |x 为有理数},错.故选:B.19.B【详解】①{0}中有一个元素0,不是空集,不正确;②中当0a =时不成立,不正确;③中2210x x -+=有两个相等的实数根,因此集合只有一个元素,不正确; ④中集合6{|}{1,2,3,6}B x N N x=∈∈=是有限集,正确, 故选:B20.B【详解】解:关于x 的方程26(0)x x a a -=>等价于260x x a --=①,或者260x x a -+=②. 由题意知,P 中元素的和应是方程①和方程②中所有根的和.0a >,对于方程①,()2(6)413640a a ∆=--⨯⨯-=+>.∴方程①必有两不等实根,由根与系数关系,得两根之和为6. 而对于方程②,364a ∆=-,当9a =时,0∆=可知方程②有两相等的实根为3, 在集合中应按一个元素来记,故P 中元素的和为9; 当9a >时,∆<0方程②无实根,故P 中元素和为6; 当09a <<时,方程②中0∆>,有两不等实根,由根与系数关系,两根之和为6, 故P 中元素的和为12.故选:B .21.D【详解】对于A :{ x |是小于18的正奇数}={}1,3,5,7,9,11,13,15,17,,故A 错误; 对于B :{}{}|41,53,1,5,9,13,17x x k k Z k =+∈<=-且,故B 错误; 对于C :{}{}|43,,53,1,5,9,13,17x x s s N s =-∈≤=-且,故C 错误;对于D :{}{}|43,,51,5,9,13,17x x s s N s *=-∈≤=且,故D 正确.故选:D22.A【详解】R 、Q 、N 、Z 分别表示实数集、有理数集、自然数集、整数集, 所以,22R ∈,3Q ∉,0N ∈,42N =∈,Q π∉,22Z -=∈, 因此,①正确,②③④⑤⑥不正确,故选:A .23.A【详解】223x y +≤23,x ∴≤x Z ∈1,0,1x ∴=-当1x =-时,1,0,1y =-;当0x =时,1,0,1y =-;当1x =时,1,0,1y =-;所以共有9个,故选:A.24.B【详解】解:{x |3213x -<-≤,x ∈Z }={x |2-<2x ≤4,x ∈Z }={x |1-<x ≤2,x ∈Z }={0,1,2}, 故选:B .25.C【详解】由2∈M 知2为方程x 2-x +m =0的一个解,所以22-2+m =0,解得m =-2.所以方程为x 2-x -2=0,解得x 1=-1,x 2=2.故方程的另一根为-1.故选:C .26.C【详解】①当x >0,y >0时,z =1+1+1=3;②当x >0,y <0时,z =1-1-1=-1;③当x <0,y >0时,z =-1+1-1=-1;④当x <0,y <0时,z =-1-1+1=-1,∴集合A ={-1,3}.∴-1∈A .故选:C27.C【详解】因集合{1,2,3,4}A =,{5,6}B =,又,x A y B ∈∈,则当5y =时,x y +的值有:6,7,8,9,当6y =时,x y +的值有:7,8,9,10,于是得{6,7,8,9,10}C =, 所以C 中元素的个数为5.故选:C28.D【详解】因为a ∈M ,11a a+-∈M , 所以111111aa a a ++-+--=-1a ∈M , 所以1111a a +---=11a a -+∈M , 又因为11111a a a a -++--+=a ,所以集合M 中必同时含有a ,-1a ,11a a+-,11a a -+这4个元素, 由a 的不确定性可知,集合M 中至少有4个元素.故选:D29.B【详解】解:5{1∈,2m +,24}m +,25m ∴+=或245m +=,即3m =或1m =±.当3m =时,{1M =,5,13};当1m =时,{1M =,3,5};当1m =-时,{1M =,1,5}不满足互异性,m ∴的取值集合为{1,3}.故选:B . 30.C 【详解】集合A 中的元素为y ,是数集,又y =x 2+1≥1,{}[)211,A y y x ==+=+∞,故2∈A ,集合B 中的元素为点(x ,y ),且满足y =x 2+1,(){}2,1B x y y x ==+,经验证,(3,10)∈B .故选:C . 31.ABD 【详解】选项A 中,M 是由3,-1两个元素构成的集合,而集合P 是由点(3,-1)构成的集合;选项B 中,(3,1)与(1,3)表示不同的点,故M ≠P ;选项C 中,M ={y |y =x 2+1,x ∈R}=[)1,+∞,P ={x |x =t 2+1,t ∈R}=[)1,+∞,故M =P ; 选项D 中,M 是二次函数y =x 2-1,x ∈R 的所有因变量组成的集合,而集合P 是二次函数y =x 2-1,x ∈R 图象上所有点组成的集合. 故选ABD . 32.AB 【详解】集合A 中只有一个元素,即方程kx 2+4x +4=0只有一个根, 当k =0时,方程为一元一次方程,只有一个根,当k ≠0时,方程为一元二次方程,若只有一个根,则∆=16-16k =0,即k =1,所以实数k 的值为0或1. 故选:AB 33.ACD 【详解】对于A :因为202140451=⨯+,所以[]20211∈,故选项A 正确; 对于B :因为()3512-=⨯-+,所以[]32-∈,故选项B 错误;对于C :若a 与b 属于同一类,则15a n k =+,25b n k =+,()[]1250(a b n n -=-∈其中1n ,2Z)n ∈,故选项C 正确;对于D :若[]0a b -∈,设5,Z a b n n -=∈,即5,Z a n b n =+∈,不妨令5,Z b m k m =+∈,0k =,1,2,3,4,则()555a m n k m n k =++=++,m ∈Z ,Z n ∈,所以a 与b 属于同一类,故选项D 正确; 故选:ACD. 34.ABC 【详解】对于A 选项,若1m =,则2211x l x l ≤≤⇒≤≤, 根据当x S ∈时,有2x S ∈,可得21l l l≥⎧⎨≤⎩,得101l l ≥⎧⎨≤≤⎩,可得1l =,故{}1S =,A 对; 对于B 选项,若12m =-,则214m =,则214l ll⎧≤⎪⎨≤⎪⎩,解得114l ≤≤,B 对;对于C 选项,若12l =,则12S x m x ⎧⎫=≤≤⎨⎬⎩⎭,即212022m m m ≤≤⇒-≤≤,C 对; 对于D 选项,若1m =-,1l =时,此时{}11S x x =-≤≤符合题意,D 错. 故选:ABC .35.CD 【详解】解:10以内的质数组成的集合是{2,3,5,7},故A 正确;由集合中元素的无序性知{1,2,3}和{3,2,1}表示同一集合,故B 正确; 方程x 2﹣2x +1=0的所有解组成的集合是{1},故C 错误; 由集合的表示方法知0不是集合,故D 错误, 故选:CD . 36.AC由题意可设1113x m n =+,2223x m n =+,其中1m ,2m ,1n ,2n N *∈, 则()1212x x m m +=+()123n n ++,12x x A +∈,所以加法满足条件,A 正确;()()1212123x x m m n n -=-+-,当12n n =时,12x x A -∉,所以减法不满足条件,B 错误;()121212112133x x m m n n m n m n ==++,12x x A ∈,所以乘法满足条件,C 正确;11122233x m n x m n +=+,当()11220mnm n λλ==>时,12xA x ∉,所以出发不满足条件,D 错误.故选:AC . 37.BCD 【详解】解:对于A ,假设集合B 是“好集”,因为1B -∈,1B ∈,所以112B --=-∈,这与2B -∉矛盾,所以集合B 不是“好集”.故A 错误;对于B ,因为0Q ∈,1Q ∈,且对任意的x Q ∈,y Q ∈有x y Q -∈,且0x ≠时,1Q x ∈,所以有理数集Q 是“好集”,故B 正确;对于C ,因为2Z ∈,但12Z ∉,所以整数集Z 不是“好集”.故C 正确;因为集合A 是“好集”,所以0A ∈,又y A Î,所以0y A -∈,即y A -∈,又x A ∈,所以()x y A --∈,即x y A +∈,故D 正确. 故选:BCD .38.∈∈∉∈∉∉∉∈. 【详解】(1)N 是自然数集,所以0N ∈; (2)Z 是整数集,所以()202111Z -=-∈;(3)Q 是有理数集,所以442Q =∉; (4)R 是实数集,所以()2R ππ-=∈;(5)1xy x =-中1x ≠,所以11x x y x ⎧⎫∉=⎨⎬-⎩⎭; (6)1xy x =-={}1y y ≠,所以11x y y x ⎧⎫∉=⎨⎬-⎩⎭; (7)(2,2)表示点,{|}1xx y x =-表示数集,所以()2,21x x y x ⎧⎫∉=⎨⎬-⎩⎭; (8)集合{}{},0∅中有2个元素,分别是∅,{}0,所以{}{},0∅∈∅. 故答案为:∈;∈; ∉;∈; ∉; ∉;∉;∈ 39.{}1或{}2解:A 只有一个元素;∴方程2440kx x -+=只有一个解;0k =①时,440x -+=,1x =,满足题意; 0k ≠②时,16160k =-=;1k ∴=;解2440x x -+=得,2x =;{}1A ∴=或{}2.故答案为:{}1或{}2. 40.1 【详解】依题意,分别令11m +=,得0m =,此时()211m -=,不满足互异性; 当()211m -=,得0m =或2m =,检验后,都不满足互异性; 当2331m m -+=,解得:1m =或2m =,经检验,1m =,成立, 所以20211=m . 故答案为:1 41.{4} 【详解】当234a a -=时,可得4a =或1a =-, 若1a =-时,则274a a++=,不合题意;若4a =时,则2711.5a a ++=,|2|2a -=符合题意;当274a a++=,可得1a =-或2a =-, 若1a =-,则234a a -=,不合题意; 若2a =-,则|2|4a -=,不合题意. 综上所述:4a =. 故答案为:{4}42.∉ ∈ ∉ ∈ ∉ ∈ 【详解】(1)∵231211=> ∴23∉B ; ∵(1+2)2=3+22<3+2×4=11, ∴1+2<11 ,∴1+2∈B .(2)∵n 是正整数,∴n 2+1≠3,∴3∉C ; 当n =2时,n 2+1=5,∴5∈C .(3)∵集合D 中的元素是有序实数对(x ,y ),则-1是数, ∴-1∉D ;又(-1)2=1,∴(-1,1)∈D . 故答案为:∉,∈,∉,∈,∉,∈. 43.{}60,120,180 【详解】因为三女相会经过的天数是5,4,3的公倍数,且它们的最小公倍数为60, 所以三女前三次相会经过的天数用集合表示为{}60,120,180. 故答案为:{}60,120,180. 44.(1)32a =-;(2)9016a a ⎧-<<⎨⎩或}0a >. 【详解】(1)因为210a +>,故212a +≠-, 因为2A -∈,则12a -=-或22512a a ++=-.①当12a -=-时,即当1a =-时,此时212512a a a -=++=-,集合A 中的元素不满足互异性; ②当22512a a ++=-时,即22530a a ++=,解得32a =-或1a =-(舍),此时512a -=-,21314a +=,集合A 中的元素满足互异性. 综上所述,32a =-;(2)因为集合{}2340A x R ax x =∈--=中有两个元素,则09160a a ≠⎧⎨∆=+>⎩,解得916a >-且0a ≠, 因此,实数a 的取值范围是9016a a ⎧-<<⎨⎩或}0a >. 45.{-3,3}. 【详解】:解答:A ={1,-3},∴f (1)−1=0,f (−3)−(−3)=0,即1−a +b −1=b −a =0,(9+3a +b )+3=3a +b +12=0, 解得a =−3,b =−3.∴f (x )+ax =2x +3x -3+(-3x )=2x -3=0. ∴x =±3, ∴B ={-3,3}. 46 【详解】(1){|3,}x x n n N =∈,集合中元素个数无穷,不能用列举法表示; (2)2230x x +-<,即(1)(3)0x x -+<,31x -<<,集合为{|31}x x -<<,集合中元素有无数个,不能用列举法表示; (3)集合可表示为2{|230}x x x +-=,列举法表示为{3,1}-.47.(1)由题意可知:3A -∈,则()()131132A +-=-∈--,11()12131()2A +-=∈--,1132113A +=∈-,12312A +=-∈-, 所以A 中其他所有元素为11223-,,; (2)假设0A ∈,则10110A +=∈-,而当1A ∈时,11a a+-不存在,假设不成立, 所以0不是A 的元素,取3a =,则13213A +=-∈-,1(2)11(2)3A +-=-∈--,11()13121()3A +-=∈--,1123112A +=∈-, 所以当3A ∈,A 中的元素是:3,2-,13-,12;(3)猜想A 中没有元素1-,0,1;A 中有4个元素,其中两个元素互为负倒数,另两个元素也互为负倒数. 由(2)知:0,1A ∉, 若1A -∈,则1(1)01(1)A +-=∈--,与0A ∉矛盾,则有1A -∉,即1,0,1-都不在集合A 中, 若实数1a A ∈,则12111a a A a +=∈-,12131211111111111a a a a A a a a a +++-===-∈+---, 311431111()111111()a a a a A a a a +-+-===∈-+--,1415114111111111a a a a a A a a a -+++===∈---+, 又由集合元素互异性知,A 中最多只有4个元素1234,,,a a a a 且132411,a a a a =-=-, 显然12a a ≠,否则11111a a a +=-,得211a =-无实数解,同理,14a a ≠,即A 中有4个元素,所以A中没有元素101-,,;A中有4个元素,其中两个元素互为负倒数,另两个元素也互为负倒数.48.(1)a=0或a=98;(2)9|8a a⎧⎫≤⎨⎬⎩⎭;(3)a≥98或a=0.【详解】解:(1)当a=0时,原方程可化为-3x+2=0,得x=23,符合题意.当a≠0时,方程ax2-3x+2=0为一元二次方程,由题意得,∆=9-8a=0,得a=98.所以当a=0或a=98时,集合A中只有一个元素.(2)由题意得,当0,980,aa≠⎧⎨∆=->⎩即a<98且a≠0时方程有两个实根,又由(1)知,当a=0或a=98时方程有一个实根.所以a的取值范围是9|8a a⎧⎫≤⎨⎬⎩⎭.(3)由(1)知,当a=0或a=98时,集合A中只有一个元素.当集合A中没有元素,即A=∅时,由题意得0,980,aa≠⎧⎨∆=-<⎩解得a>98.综上得,当a≥98或a=0时,集合A中至多有一个元素.。
第一课《核心概念界定与阐释》讲义一、核心概念的界定概念是思维的细胞立片言而居要,乃一篇之警策”把鲁迅先生的《拿来主义》先读一读例1.北京卷2019年高考作文从下面两个题目中任选一题,按要求作答。
不少于700字。
将题目抄在答题卡上。
①“韧性”是指物体柔软坚实、不易折断的性质。
中华文明历经风雨,绵延至今,体现出“韧”的精神。
回顾漫长的中国历史,每逢关键时刻,这种文明的韧性体现得尤其明显。
中华民族的伟大复兴,更需要激发出这种文明的韧性。
请以“文明的韧性”为题,写一篇议论文。
可以从中国的历史变迁、思想文化、语言文字、文学艺术、社会生活及中国人的品格等角度,谈谈你的思考。
要求:观点明确,论据充分,论证合理。
②色彩,指颜色;不同的色彩常被赋予不同的意义。
2019年,我们隆重纪念五四运动100周年,欢庆共和国70华诞。
作为在这个特殊年份参加高考的学生,你会赋予2019年哪一种色彩,来形象地表达你的感受和认识?请以“2019的色彩”为题,写一篇记叙文。
要求:思想健康,内容充实,感情真挚,运用记叙、描写和抒情等多种表达方式。
例2.阅读下面的文字,根据要求作文。
生活中处处有“未完成状态”:赛跑未到终点,大楼尚未竣工,学习没有结业,作品还没完成……有人认为未完成状态使人疲惫、焦虑,难以忍受;有人认为未完成状态使人激昂、奋进,充满期待。
关于“未完成状态”,你也一定有自己的故事,有自己的所思所感,请根据你的所思所感并结合上述材料,写一篇不少于800字的文章。
要求:1.选好角度,确定立意,自拟题目2.不得脱离材料的范围作文3明确文体,但不得写成诗歌4不得抄袭、套作。
二、核心概念的含义1、区别概念的本义与引申义:登临2、区别概念的比喻义与象征义:沙漠3.区别概念的一般义和新义:4.处理好关系型概念的界定:舍与得三、核心概念的界定和阐释的方法(一)将概念具体化概念是人类使用抽象化的方式从群体事物中提取出的反映其本质属性的思维单位,具有抽象性、模糊性、丰富性等特点。
一、有理数六大基本概念Ⅰ:正数、负数及有理数概念正数:像、、等的数,叫做正数.在小学学过的数,除外都是正数.正数都大于.负数:像、、等在正数前加“”(读作负)号的数,叫做负数.负数都小于. 既不是正数,也不是负数.一个数字前面的“”,“”号叫做它的符号.正数前面的“”可以省略.用正、负数表示相反意义的量:如果正数表示某种意义,那么负数表示它的相反的意义,反之亦然. “相反意义的量”包括两个方面的含意:一是相反意义;二是相反意义的基础上要有量.有理数:整数与分数统称有理数.注:⑴正数和零统称为非负数;⑵负数和零统称为非正数;⑶正整数和零统称为非负整数;⑷负整数和零统称为非正整数.⑷正有理数和零统称为非负有理数.⑷负有理数和零统称为非正有理数.Ⅱ:数轴数轴:规定了原点、正方向和单位长度的直线.310.33+001- 3.12-175--00+-+()ììüïýïíþïïïíîïìïíïîî正整数自然数整数零有理数按定义分类负整数正分数分数负分数()()ììíïîïïíïìïïíïïîî正整数正有理数正分数有理数按符号分类零零既不是正数,也不是负数负整数负有理数负分数ìüïýíþïî有限小数可化成分数形式,是有理数小数无限循环小数无限不限循环小数---不可化成分数形式,不是有理数第一讲有理数之六大必考概念注意:⑴原点、正方向、单位长度称为数轴的三要素,三者缺一不可.⑵单位长度和长度单位是两个不同的概念,前者指所取度量单位的长度,后者指所取度量单位的名称,即单位长度是一条人为规定的代表“1’的线段,这条线段可长可短,按实际情况来规定,同一数轴上的单位长度一旦确定,则不能再改变.⑶数轴的画法及常见错误分析①画一条水平的直线;②在这条直线上适当位置取一实心点作为原点:③确定向右的方向为正方向,用箭头表示;④选取适当的长度作单位长度,用细短线画出,并对应标注各数,同时要注意同一数轴的单位长度要一致.数轴画法的常见错误举例:一切有理数都可以用数轴上的点表示出来. 注意:数轴上的点不都代表有理数,如. 在数轴上,右边的点所对应的数总比左边的点所对应的数大.正数都大于0,负数都小于0,正数大于一切负数.利用数轴比较有理数的大小:数轴上右边的数总大于左边的数.因此,正数总大于零,负数总小于零,正数大于负数.Ⅲ:相反数相反数:只有符号不同的两个数互称为相反数.特别地,0的相反数是0.相反数的性质:⑴代数意义:只有符号不同的两个数叫做互为相反数,特别地,0的相反数是0.相反数必须成对出现,不能单独存在.另外,定义中的“只有”指除符号以外,两个数完全相同,注意应与“只要符号不同”区分开.⑵几何意义:一对相反数在数轴上应分别位于原点两侧,并且到原点的距离相等.这两点是关于原点对称的.⑶求任意一个数的相反数,只要在这个数的前面添上“”号即可.一般地,数的相反数是;这里以表示任意一个数,可以为正数、0、负数,也可以是任意一个代数式.注意不一定是负数.当时,;当时,;当时,.π-a a -a a -0a >0a -<0a =0a -=0a <0a ->⑷互为相反数的两个数的和为零,即若与互为相反数,则,反之,若,则与互为相反数.⑸多重符号的化简:一个正数前面不管有多少个“”号,都可以全部去掉;一个正数前面有偶数个“”号,也可以把“”号全部去掉;一个正数前面有奇数个“”号,则化简后只保留一个“”号,既“奇负偶正”(其中“奇偶”是指正数前面的“”号的个数的奇偶数,“负正”是指化简的最后结果的符号). Ⅳ:绝对值绝对值的几何意义:一个数的绝对值就是数轴上表示数的点与原点的距离.数的绝对值记作.绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.注意:①取绝对值也是一种运算,运算符号是“”,求一个数的绝对值,就是根据性质去掉绝对值符号.②绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;的绝对值是.③绝对值具有非负性,取绝对值的结果总是正数或0.④任何一个有理数都是由两部分组成:符号和它的绝对值,如:符号是负号,绝对值是.求字母的绝对值:① ② ③ 利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小.绝对值非负性:如果若干个非负数的和为0,那么这若干个非负数都必为0.例如:若,则,,Ⅴ:倒数、负倒数倒数:乘积为1的两个数互为倒数. ,互为倒数,则;反之亦然.倒数是成对出现的,单独一个数不能称为倒数;互为倒数的两个数的乘积一定是;0没有倒数; 负倒数:乘积为的两个数互为负倒数.,互为负倒数,则.反之亦然.二、有理数大小的比较数轴上的数,右边的数总大于左边的数.正数大于0,负数小于0,正数大于负数;两个负数,绝对值大的反而小 两数比较大小,可按符号情况分类: 注☆“0”的9种说法:(1)既不是正数也不是负数的数. (2)最大的非正数. (3)最小的非负数. (4)与其相反数相等的数. (5) 最小的非负整数. (6) 最大的非正整数. (7) 最小的自然数. (8) 绝对值最小的有理数. (9) 没有倒数的数.a b 0a b +=0a b +=a b +-----a a a a 005-5a (0)0(0)(0)a a a a a a >ìï==íï-<î(0)(0)a a a a a ì=í-<î≥(0)(0)a a a a a >ì=í-î≤0a b c ++=0a =0b =0c =a b 1a b ×=11-a b 1a b ×=-0ììïíîïïíïìïíïîî同正:绝对值大的数大两数同号同负:绝对值大的反而小比较大小两数异号(一正一负):正数大于负数正数与0:正数大于0其中有时负数与0:负数小于0补充练习【例1】 (北京师范大学附属中学初一期中考试第1题3分)如果零上记作,那么零下记作( )A. B . C. D.【例2】 (铁路第二中学初一第二次月考第1题2分)关于零,下列几种说法不正确...的是 ( ) A .零既不是正数,也不是负数 B .零的相反数是它本身C .零是绝对值最小的有理数D .零是最小的有理数【例3】 (京源学校初一期中考试第1题3分)1是( )A .最小的整数B .最小的正整数C .最小的自然数D .最小的有理数【例4】 (人大附中初一期中考试第2题3分)在15,,0.15,,,中,负分数的个数是( )A .1B .2C .3D .4【例5】 (一六一中学初一期中考试第14题2分)和的大小关系是____ 【例6】 (北京四中初一期中考试第13题2分)数轴上与原点距离是3个单位长度的点所表示的数是__________.【例7】 (北京市中考题第1题4分)7的相反数( )A .B .7C .D . 【例8】 (一六一中学初一期中考试第13题2分)数的相反数是________【例9】 (北京市中考题第1题4分)的绝对值等于( )A .6B .C .D . 【例10】 (上地实验初一期中考试第17题3分)绝对值大于2而小于5的负整数是 .【例11】 (101中学初一期中考试第6题4分)已知、为有理数,且,,,则、、、的大小关系是( )A .B .C .D .【例12】 (人大附中初一期中考试第4题3分) 下列说法正确的是( )A .符号相反的数互为相反数B .任何有理数均有倒数C .一个数的绝对值越大,表示它的点在数轴上越靠右D .一个数的绝对值越大,表示它的点在数轴上离原点越远【例13】 (101中学初一期中考试第1题4分)下列说法错误的是( )A .0既不是正数,也不是负数B .1是绝对值最小的数C .一个有理数不是整数就是分数D .0的绝对值就是0 【例14】 (101中学初一期中考试第5题4分) 下列各数中互为相反数的是( )A .和B .和 5℃5+℃5℃5-10-5-℃10-℃38-30-12.8-22545-0.9-45-0.9-1717-7-a 6-1616-6-a b 0a <0b >||||b a <a b a -b -b a b a -<<<-b b a a -<<-<a b b a <-<<-a b b a -<<-<()a --||a --(2)-+(2)+-C .和D .和 【例15】 (京源学校初一期中考试选择第8题3分)若为有理数,则表示的数是( )A .正数B .非正数C .负数D .非负数【例16】 (2007北京市中考题第一题4分)的倒数( )A .B .C .D .3 【例17】 (西城外国语初一期中第6题3分)下列说法正确的是( ). A .符号相反的数互为相反数 B .任何有理数都有倒数C .最小的自然数是1D .一个数绝对值越大,表示它的点在数轴上离原点越远【例18】 (北大附中初一期中考试试卷第14题2分)的绝对值为_______,的相反数为_______,的倒数是________.【例19】 (北京师范大学附属中学初一期中考试第2题3分,14题2分)⑴ 在0,,,这四个数中,最小的数是 ( ) A. B. C. 0 D. ⑵ 大于而小于2的所有整数是 . ⑶(北京四中初一期中考试第15题2分)比较大小: ; _______. 【例20】 若是非负有理数,则下列说法中正确的有 .① 是负有理数;② 是正有理数或0;③ 是正有理数或0;④ 可以是正有理数,也可以是负有理数;⑤ 也是有理数;⑥ 是正有理数或0或负有理数.【例21】 (北京四中初一期中考试第30题4分)一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续走了1.5千米到达小红家,又向西走了10千米到达小刚家,最后回到百货大楼.⑴ 以百货大楼为原点,以向东的方向为正方向,用1个单位长度表示1千米,请你在数轴上表示出小明、小红、小刚家的位置;⑵ 小明家与小刚家相距多远?⑶ 若货车每千米耗油0.05升,那么这辆货车共耗油多少升?(5)--|5|-132- 3.5x ||x x -3-13-133-3.5- 3.5-3.5-211-3-3-1-21313-31-52-()1--1--a -()a -+()a ---éùëû()a +--éùëû()a --a ()a -+百货大楼-。
专题一古代中国的政治制度一、中国古代社会的政治制度1.“政治制度”的定义政治制度是人类社会发展到一定阶段的产物,寓国家本质与形式于一体,主要是指国家政权的组织形式及与之相关的政治领域的各项制度,包括国家组织形式、政治关系、政治体制、政治组织形式及人们的政治参与等内容。
它是国体与政体的总和。
其核心问题是政体,即政权的组织形式、结构形式和治理形式问题。
2.我国古代社会的政治制度我国古代社会的政治制度从社会形态来说,可以划分为奴隶社会政治制度和封建社会政治制度;从政治体制来说,可以划分为分封制和中央集权制;从权力系统来说,可以划分为血缘集权统治和政治集权统治。
就其产生与演变而言,有三次大的创新:(1)禹传位于启,开始“家天下”的国家制度。
(2)西周确立起分封制、宗法制、礼乐制,使中国历史由“方国联盟”走向“天下共主”,走向血缘集权统治时期。
(3)秦始皇创立中央集权制度,中国历史从此摆脱血缘政治模式,走向单纯政治集权统治时期。
3.中国早期政治制度的基本特点所谓“早期”,是指秦始皇建立统一的多民族国家和专制主义中央集权以前的夏、商、西周政治时期,即先秦时期。
中国早期政治制度的主要表现形式是王位世袭制、宗法制和分封制。
其基本特点是:(1)王权与神权结合:早期王权是通过神权来表现的,商王朝的一切政治事务都通过占卜进行决策。
(2)以血缘关系为纽带形成国家政治结构:西周时期按照血缘宗族关系分配政治权力,形成了以宗法制为核心的政治制度体系。
(3)最高执政集团尚未实行权力的高度集中:在分封制下受封者在自己的领地内拥有很大的独立性,同时,早期王权在不同程度上受到其他力量的制约,要受习惯法和传统礼制的约束,这与后来的皇权是有差异的。
二、王位世袭制1.含义:王位世袭制是夏、商、周三代的基本政治制度。
就其本质而言,它是以最高统治者“王”为核心的维护王、诸侯继统的王权专制制度。
2.王位世袭制在不同时期有不同的特点:在夏朝时,王位在一家一姓中传承;商朝时,有时兄终弟及,有时父子相传;到西周时,形成了嫡长子继承制度。
总体上看,它有三个基本特点,即专制独裁、世袭和终身制。
3.王位世袭制形成于夏启统治时期,发展于商周时期。
春秋战国时期,社会发生剧烈变革,周王室衰微,宗法制度遭到破坏,分封制逐渐被郡县制所取代。
这些变化赋予了王位世袭制以新的内涵,而最终随着秦的统一和秦朝的建立,王位世袭制演变为君主专制制度。
三、嫡长子继承制嫡长子继承制是宗法制度最基本的一项原则,即王位和财产必须由嫡长子继承。
按照宗法制的规定,嫡长子是嫡妻(正妻)所生的长子,西周天子的王位由其嫡长子继承,而其他的庶子为别子,他们被分封到全国各重要的战略要地。
由嫡长子继承的王位可以确保周王朝世世代代大宗的地位,庶子对嫡子的大宗来说,是小宗,而在自己的封地内又为大宗,其继承者也必须是嫡长子。
西周的嫡长子继承制目的在于解决权位和财产的继承与分配,稳定社会的统治秩序。
四、秦朝的中央集权制度(1)概念:专制主义中央集权制度,包括专制主义和中央集权制度两个含义。
专制主义是就中央的决策方式而言的,主要是帝位终身制与皇位世袭制。
即帝王一旦登基,终身为帝;皇帝个人专断独裁,集国家最高权力于一身;皇帝从决策到行使立法、司法、行政权,都具有独断性和随意性。
中央集权是针对地方分权而言,特点是地方政府在政治、经济、军事和文化上没有独立性,必须严格服从中央政府的命令,受制于中央政府。
(2)形成原因:①是由封建的经济基础决定的。
封建经济的分散性,要求有一个强有力的中央政权,维护国家统一,社会安定,保证生产发展。
②封建地主阶级也需要有一个强有力的政权保护封建土地所有制,镇压农民的反抗。
③法家“集权”理论的影响。
(3)建立的前提:秦王嬴政发动战争,灭掉六国,结束诸侯割据的局面,建立了统一的封建王朝。
(4)确立的标志:秦始皇统一后,确立了至高无上的皇权,建立了完备的中央和地方行政体制。
主要包括皇帝制度、三公九卿制、郡县制。
这套金字塔形统治机构的建立,标志着专制主义中央集权制度的确立。
(5)特点:①皇权至上原则。
②帝位终身制和皇位世袭制。
③从中央到地方的各级官吏一律由皇帝直接任免,不得世袭。
④皇帝从决策到行使立法、司法、行政等独断权力。
⑤宣扬“君权神授”。
⑥中央与地方、君权与相权的矛盾伴随着中央集权制度发展的始终。
突出特征:皇权至高无上,主要表现在皇位世袭和皇帝总揽国家的政治、经济、司法和军事等一切大权,中央和地方的官员必须绝对服从皇帝的命令。
(6)作用和影响:①使秦朝国力增强,形成中国历史上第一个统一的多民族的封建国家,成为当时的世界大国。
②促进了封建经济和文化的发展,对祖国疆域的初步奠定、巩固国家统一以及形成以华夏族为主体的中华民族,都起了重要作用。
主要表现在秦始皇颁布了通行全国的秦律;统一度量衡、货币、车轨、文字;修驰道;开灵渠;筑长城;大规模移民等。
③奠定了中国两千多年封建社会政治制度的格局,为历代封建王朝沿用并不断加强。
④秦朝依靠皇帝的专制权威,实行暴政,造成阶级矛盾迅速激化,导致了它短命而亡。
五、郡县制1.春秋战国时期出现了郡、县等新的地方行政区划单位;秦始皇采纳李斯的建议在全国推行郡县制取代了分封制,郡是直属于中央的地方行政设置,郡设郡守、郡尉、监御史等职官,分别执掌行政、军事、监察职责。
县隶属于郡。
郡县长官都由皇帝直接任免。
2.特点:(1)郡是直属于中央的地方行政设置。
(2)郡县长官,皆由天子任免调动,不得世袭。
3.作用:加强了中央对地方的控制,这是我国地方行政制度上一个划时代的改革,郡县制在我国被长期沿用下来,影响十分深远。
六、三公九卿秦王朝在皇帝之下设立的中央执政机构。
最高长官有丞相、太尉和御史大夫,有人称之为“三公”。
丞相有左右二员,职责是协助皇帝,总管一切行政事务。
太尉主管军事。
御史大夫是丞相的助手,负责监察系统。
“三公”各有分工,互相钳制。
“三公”之下有所谓“九卿”,即奉常、郎中令、卫尉、太仆、廷尉、典客、宗正、治粟内史、少府。
地位与之相当的还有中尉、将作少府等。
所有这些官吏都由皇帝任免和调动,概不世袭。
国家有军政要务,丞相、御史大夫与诸卿以“朝议”等方式参与讨论,供皇帝用作裁决的依据。
秦王朝建立的这套中央集权的官僚机构,以后一直为历代王朝所仿效,比如西汉就基本上照搬秦制。
七、皇帝制度1. 概念:秦始皇统一天下后,自以为功德超过传说中的“三皇五帝”,便使用“皇帝”称号,确立了“皇帝”制度。
中国皇帝制度维持了两千一百多年,直到1911年辛亥革命才废除。
2.皇权至上的君主专制政体特点(1)皇帝有天下独尊的地位,集行政权、司法权和军事指挥权于一身。
国家的法律、政策,都决定于皇帝一人的意志。
(2)君主专制政体下,皇帝具有独断性和随意性的理念,深深影响着政治决策,影响着立法、行政和司法。
(3)秦朝以后,历代官僚体制都以维护皇权、服务于皇帝为基本原则。
群臣关系,实质上是“主公”与“奴才”的关系。
八、三省六部制1.概念:三省六部制是隋文帝综合汉魏以来的官制而创立的一种新的中央行政制度,唐时得以完善。
三省为尚书省、中书省、门下省,是中央最高政府机构。
中书省负责草拟和颁发皇帝诏令;门下省负责审核政令;尚书省负责执行国家重要政令,三省的长官都是宰相。
六部即吏、户、礼、兵、形、工六部,是尚书省的下设机构。
三省六部有分工,也有合作;它们互相牵制、监督,使封建官僚机构形成一个严密完整的体系。
2.特点:三省六部制是对中央行政机构的一个完善,各部分工明确,有力地提高了政府的办事效率,加强了中央的统治力量。
相权的一分为三,造成了彼此相互监督和牵制,削弱了相权,加强了皇权。
九、九品中正制九品中正制是魏晋南北朝时期一种重要的官吏选拔制度,又名九品官人法。
它把人分为九个等级,作为政府选用官吏的依据。
中正:有名望的推荐官,人才的等级由他们评定。
此制至西晋渐趋完备,南北朝时又有所变化。
九品中正立制之初有选贤的用意,但是不久就被门阀左右,成为世族把持政权的工具,以致出现了“上品无寒门,下品无势族”(《晋书•刘毅传》)的现象。
这一制度创始于曹魏,发展成熟于两晋,衰落于南北朝时期,废除于隋朝,随之科举制形成。
十、军机处(1)最初设置的目的:起初是为适应西北军务需要,始设军机房,选亲重大臣协办军务,后来由单纯处理军务逐步扩大到其他政务。
(2)职能和特点:军机处是辅助皇帝处理政务的最重要的中枢机构。
军机大臣均由钦定,只能秉承皇帝的旨意办事,因而军政大权进一步集中到皇帝手里。
军机处机构简单,人员精干,有官无吏,办事效率高。
又因地处内廷,外界干扰少,但政治决策封闭的特征更为明显。
(3)实质:军机处的设立,明显提高了中央集权政府的行政效率,进一步加强了君主专制制度。
十一、改土归流(1)概念:清朝雍正年间在西南一些少数民族地区废除土司制,实行流官制的政治改革。
(2)原因:元朝开始实行的土司制度,弊病很多,土司对内残暴统治属民,对中央叛服不常,骚扰与之接壤的汉民,土司之间也不断发生战争。
为了解决日久相沿的土司割据的积弊,明清两朝的统治者大多主张实行改土归流政策。
(3)措施:即在条件成熟的地方,取消土司世袭制度,设立府﹑厅﹑州﹑县,派遣有一定任期的流官进行管理。
(4)意义:改土归流废除了土司制度,减少了叛乱因素,加强了中央政府对边疆的统治,有利于少数民族地区社会经济的发展,对中国多民族国家的统一和经济文化的发展有着积极意义。