苯的空间结构
- 格式:docx
- 大小:36.73 KB
- 文档页数:1
如何分析有机物分子中原子共平面的问题有机物分子中原子共平面的问题,解决方法是:由简单到复杂。
首先要掌握以下几种最简单有机物的空间构型:(1)乙烯(CH 2CH 2)分子是平面结构,2个碳原子、4个氢原子共平面;(2)乙炔(C C H H )分子是直线型结构,4个原子在同一直线上;(3)苯()分子是平面正六边形结构,6个碳原子、6个氢原子共平面;(4)甲烷(CH 4)是正四面体结构,任意3个原子共平面;(5)甲醛(C H H O)分子是平面结构,4个原子共平面.在判断有机物分子中原子共平面情况时.要结合以上五种最简单物质的结构进行分析.例1请分析苯乙炔(C CH )分子中最多有多少个原子共平面? 分析:与C CH 直接相连的苯环上的碳原子相当于C C H H分子中1个氢原子所处的位置,应与C CH 在同一条直线上;与苯环相连的C CH 中碳原子相当于苯分子中氢原予所处的位置,应在苯环所在的平面内。
由此可知C CH 所在直线上有两点在苯环的平面内,所以苯己炔分子中所有原子均在同一平面,即苯乙炔分子中8个碳原子、6个氢原子均在同一平面内.,例2:有机物C CH 2CHO H分子中至少有多少个碳原子处于同一平面上?分析:由苯分子的空问构型可知,苯环上的6个碳原子、4个氢原子以及与苯环直接相连的两个碳原子一定共平面.由乙烯的分子结构可知,CH 2C H 中的原子在同一平面。
由乙醛分子结构可知,CHO 中的原子在同一平面。
由碳碳单键可以旋转,可知C CH 2CHO H分子中所有的原子可以共面。
例3:结构式为CH 3CH 3的烃,分子中至少有多少个碳原子处在同一平面上?分析:由苯分子的空间结构可知,苯环上的六个碳原子以及与它直接相邻的两个碳原子共面。
另外与苯环相连的另一苯环对位上的碳原子,处于两苯环旋转的轴线(两苯环之间的碳碳键可以旋转)上,也应该共面另外.与苯环相连的另一苯环对位上的碳原子,处于两苯环旋转轴线(两苯环之间的碳碳单键可以旋转)上,也应该共平面。
高中化学苯的结构一、引言在化学的浩瀚海洋中,苯是一种非常特殊的化合物,其结构独特且引人注目。
它是最简单的芳香烃,也是许多重要化合物的基本构建块。
然而,理解苯的结构并非易事。
本文旨在帮助高中生更好地理解苯的结构,以及其在化学中的重要性。
二、苯的发现与命名苯是在1825年由瑞典化学家约翰·加斯特洛姆首次分离出来的。
加斯特洛姆当时并未确定苯的结构,其结构直到1866年才由德国化学家阿道夫·冯·贝尔格曼确定。
贝尔格曼将这种新化合物命名为“苯”,源自希腊词“班”(无色的意思)。
三、苯的结构特点苯的结构由一个环状的核心碳原子骨架组成,周围环绕着六个氢原子。
这一独特的环状结构使得苯在化学反应中展现出一些独特的性质。
1、稳定性:由于其稳定的环状结构,苯不易发生化学反应。
这也是为什么苯可以在高温和有氧的环境下稳定存在的原因。
2、电子分布:苯的电子分布呈现高度的对称性,这也是其稳定性的一部分原因。
六个氢原子共享一个电子,形成了一个稳定的电子配置。
3、键角:在苯的结构中,碳原子之间的键角为120度,这是一个非常标准的角度,使得苯的骨架在空间上呈现出完美的平面结构。
四、苯的化学反应尽管苯的结构稳定,但是在特定条件下,它仍然可以参与化学反应。
例如,苯可以与卤素(如氯或溴)发生取代反应,也可以在催化剂的作用下与氢气发生加成反应。
这些反应都是由于苯环上的氢原子被其他原子或基团取代的结果。
五、结论理解苯的结构是理解化学中许多重要概念的关键。
它不仅展示了化学键和电子分布的基本原理,还展示了化学反应的可能性及其机制。
因此,高中生应当深入学习和理解苯的结构,这将为他们进一步探索化学的奥秘提供重要的基础。
一、引言高中化学知识结构网络图是一张以图形化方式呈现高中化学知识的工具。
通过这张网络图,学生可以直观地理解化学知识的内在和逻辑结构,从而更有效地掌握和运用化学知识。
本文将详细介绍高中化学知识结构网络图的构建方法和应用价值。
【重点讲解】一、苯的分子结构1.三式:分子式C6H62.键参数:键长:1.40×10-10m键角:120°3.空间构型:六个碳原子和六个氢原子均在同一平面内,形成以六个碳原子为顶点的平面正六边形。
4.结构特征:按凯库勒式所表示的分子结构显示,苯分子中有三个碳碳单键和三个碳碳双键,相互交替组成环状结构,但进一步的研究表明,苯环上碳碳间的键应是一种介于单键和双键之间的独特的键,六个碳碳键是等同的,所以用来表示苯的结构简式更为恰当。
由于苯分子结构的特殊性,使苯兼具有饱和烃和不饱和烃的性质。
二、苯的性质Ⅰ、物理性质常温下,苯是无色,带有特殊气味的液体。
密度比水小,不溶于水,沸点比水的沸点低(80.1℃)熔点比水高(5.5℃)。
苯有毒。
注意:苯与水混合振荡静置后分层,苯层在上,水层在下,这是萃取实验常用的方法。
Ⅱ、化学性质苯分子结构的特殊性决定了苯的化学性质不同于饱和烃及其它的不饱和烃(烯烃或炔烃)具体表现为较易发生取代反应,较难发生加成反应。
1.氧化反应——可燃性2C6H6+15O212CO2+6H2O苯燃烧时火焰明亮,冒大量黑烟,说明苯分子中含碳量高,燃烧不完全。
苯不能被高锰酸钾氧化。
2.取代反应(1)硝化药品:浓HNO3、浓H2SO4、苯。
反应原理:装置特点:水浴加热,使用温度计控制温度在50~60℃,橡胶塞上加一段玻璃导管起导气和冷凝回流作用。
操作顺序:试管中先加入1.5mL浓HNO3,再加2mL浓H2SO4,振荡冷却到50~60℃以下,再加入1mL苯振荡在50~60℃的水浴中加热10分钟,倒入盛水的烧杯中。
分离提纯:将烧杯中的液体用玻璃棒搅拌,反复水洗,再分液,得到有苦杏仁味的无色油状液体—硝基苯。
(2)卤化药品:苯、液溴、铁钉。
反应原理:装置特点:反应器烧瓶上面连一长导管,起导气和冷凝回流作用,收集器锥形瓶中盛有少量水,导气管口应接近水面,但不能伸进去以利于吸收HBr。
操作顺序:先将约2mL苯加入烧瓶中,再放入5~10颗无锈铁钉,最后加入1滴管液溴,立即塞好瓶塞,在锥形瓶中的水里,滴入AgNO3溶液有淡黄色沉淀生成,证明卤化反应有HBr生成。
苯及其同系物的结构和性质一、苯1.苯分子的结构苯的分子式,结构简式:,凯库勒式:,空间构型:,键角。
具有的键。
思考、哪些事实可证明苯分子中不存在单双键交替的结构?①②③④2.苯的物理性质3.苯的化学性质:易取代,能加成,难氧化。
(1)取代反应:①卤化反应:②硝化反应:③磺化反应:(2)加成反应:(3)氧化反应:燃烧现象:4.苯的提取和用途将煤焦油在低温(170℃)条件下蒸馏可得苯,大量的苯可从石油工业中获得;常用于合成纤维、合成橡胶、塑料、农药、医药、染料、香料等。
苯也常用作有机溶剂。
二、苯的同系物1.定义芳香族化合物是分子里含有一个或多个苯环的化合物。
芳香烃:分子里含有一个或多个苯环的碳氢化合物属于芳香烃。
苯的同系物:凡分子里只含有一个苯环结构,且符合通式的所有芳香烃都是苯的同系物。
如甲苯、二甲苯等。
2.写出C8H10 含苯环的同分异构体并命名3.苯的同系物化学性质与苯类似。
(1)取代反应①卤化反应:与溴蒸汽,光照与液溴,铁②硝化反应:(2)加成反应(3)氧化反应①可燃性②苯的同系物能使酸性KMnO4溶液褪色。
苯环的侧链不论长短,有几个侧链,就被氧化为几个羧基而成为羧酸。
(苯环所连的侧链的碳原子上必须有氢)CH COOH 如:三、烃的结构特点和鉴别方法四、烃的分类烃烃的风雷6.取代反应断键规律(1)卤代反应断键规律:断C-H键(A)烷烃的卤代反应条件:光照、溴蒸汽(纯态)方程式:(B)苯的卤代反应条件:催化剂(Fe3+)、液溴方程式:(C)苯的同系物的卤代反应条件:催化剂、液溴方程式:原因:苯环上的邻、对位上的氢原子受侧链的影响而变得活泼。
(2) 硝化反应断键规律:断C-H键(A)苯的硝化反应条件:浓硫酸作催化剂,吸水剂,水浴加热到55℃-60℃。
方程式:(B)苯的同系物的硝化反应条件:浓硫酸作催化剂,吸水剂。
加热。
方程式:原因:苯环上的邻、对位上的氢原子受侧链的影响而变得活泼。
(3)磺化反应断键规律:断C-H键反应条件:水浴加热到70℃-80℃方程式:7.以苯的实验为基础的有机实验网络(1)溴苯制取实验——长导管的作用——带有长导管的实验:(2)硝基苯的制取实验——水浴加热——需水浴加热的实验:等。
一. 四种基本构型及简单变换:甲烷、乙烯、乙炔、苯1.甲烷的正四面体结构:在甲烷分子中,一个碳原子和任意两个氢原子可确定一个平面,其余两个氢原子分别位于平面的两侧,即甲烷分子中有且只有三原子共面(称为三角形规则)。
当甲烷分子中某氢原子被其他原子或原子团取代时,,可将它看作是原来氢原子位置。
CH 3CH 3左侧甲基和②C 构成“甲烷”分子,此分子中④H 、①C 、②C 构成三角形,同理①C 、②C 、③H 也构成了三角形,即乙烷分子中最多有2个碳原子(①C 、②C )和2个氢原子(③H 、④H )4个原子共面。
CH 3CH 2CH 3其结构式可写成如图2所示。
左侧甲基和②C 构成“甲烷分子”。
此分子中⑤H ,①C ,②C 构成三角形。
中间亚甲基和①C ,③C 构成“甲烷”分子。
此分子中①C ,②C ,③C 构成三角形,同理②C ,③C ,④H 构成三角形,即丙烷分子中最多三个碳原子(①C ,②C ,③C )两个氢原子(④H ,⑤H)五原子可能共面。
2.乙稀的平面结构:乙烯分子中的所有原子都在同一平面内,键角为120°。
当乙烯分子中某氢原子被其他原子或原子团取代时,则代替氢原子的原子一定在乙烯的平面内。
其结构式可写成如图4所示。
三个氢原子(①②③)和三个碳原子(④⑤⑥)六原子一定共面。
根据三角形规则[⑤C ,⑥C ,⑦H构成三角形]。
⑦H 也可能在这个平面上。
最多7原子共面。
同理可推出CH 3CH=CHCH 3至少6个原子,至多8个原子共面。
(CH 3)2C=C(CH 3)2至少6个原子(6个碳原子),至多10个原子共面(6个碳原子和4个氢原子),每个甲基可提供一个氢原子在乙烯平面.3.苯的平面结构苯分子所有原子在同一平面内, 键角为120°。
当苯分子中的一个氢原子被其他原子或原子团取代时,代替该氢原子的原子一定在苯分子所在平面内。
甲苯中的7个碳原子(苯环上的6个碳原子和甲基上的一个碳原子),5个氢原子(苯环上的5个氢原子)这12个原子一定共面。
考点48 常见烃的结构与性质一、甲烷的结构和性质1.甲烷的存在和用途(1)甲烷是天然气、沼气、油田气和煤矿坑道气的主要成分。
2.甲烷的分子结构(1)组成与结构分子式电子式结构式球棍模型比例模型CH4(2)空间结构空间结构示意图结构特点及空间构型4个C—H键的长度和强度相同,夹角相等,是正四面体结构;碳原子位于正四面体的中心,4个氢原子位于4个顶点3.甲烷的性质(1)物理性质颜色气味状态水溶性密度无色无味气态难溶比空气的小(2)化学性质在通常情况下,甲烷性质比较稳定,与酸性KMnO4等强氧化剂以及强酸、强碱都不反应。
但在特定条件下也会发生某些反应。
①甲烷的氧化反应——可燃性CH4+2O2CO2+2H2O现象:燃烧时放出大量的热,还伴有淡蓝色火焰。
②甲烷的取代反应a.甲烷与氯气的取代反应实验操作实验现象(A)装置a.色变浅:试管内气体的颜色逐渐变浅,最终变为无色;b.出油滴,生白雾:试管内壁有油状液滴出现,同时试管中有少量白雾;c.水上升:试管内液面逐渐上升。
(B)装置:无明显现象现象分析a.色变浅:说明氯气参与了反应,导致混合气体的黄绿色变浅;b.出油滴:说明反应后有难溶于水的有机物生成;c.生白雾:说明有HCl生成;d.水上升:说明反应后气体体积减小而使水位上升实验结论光照条件下,甲烷与Cl2发生反应:CH3Cl+Cl2CH2Cl2+HClCH2Cl2+Cl2CHCl3+HClCHCl3+Cl2CCl4+HClb.甲烷的四种氯代产物名称一氯甲烷二氯甲烷三氯甲烷四氯甲烷状态常温时呈气态常温时均呈液态俗称————氯仿四氯化碳结构式空间构型 均是四面体(不是正四面体)正四面体水溶性 均不溶于水密度 —— 均比水的大用途————有机溶剂有机溶剂、灭火剂4.注意事项(1)有机反应比较复杂,常伴随很多副反应发生,因此有机反应方程式常用“―→”。
(2)CH 4与Cl 2的反应逐步进行,应分步书写。
(3)当n (CH 4)∶n (Cl 2)=1∶1时,反应并不只发生CH 4+Cl 2−−−→光照CH 3Cl+HCl ,其他反应仍发生。
苯的空间结构
苯是有机化合物,是无机化合物中最基本的单价分子,其分子式是C6H6,分
子量为78.11,属于官能团的二芳基化合物。
苯的官能团组成主要包括C-H、C-C、C=C等,其中C=C为双键,是一种稳定结构,即烷烃的核心机构。
苯分子之间有两种键:前体键和侧链键,这两种键相互作用,形成型如正六角形的空间结构。
前体键是两个原子间的单键,一般由6个单键组成,它们位于苯分子表面上,相互平行,形成六节点金字塔形构造。
其中,每个单键包括一个氢原子,两个碳原子和一个二重键,键的方向舍弃外的形状。
而苯分子的侧链键是介于苯分子的前体键之间的官能基C-H键,这些官能基C-H键有三种形式,分别是上下官
能基C-H键,前后官能基C-H键和前侧官能基C-H键。
两种平行官能基C-H键之间互相作用,形成不可分断的空间结构。
苯分子具有独特的空间结构,这种结构的特点是其反应活性较高,极易发生化学反应,且反应过程不失其芳香性。
苯分子的空间结构不仅支持其分子内反应,而且还可以支撑苯分子间的反应。
此外,苯的空间结构支持分子内的光谱性质,可用于化学分析和检测。
由此可见,苯的空间结构是独一无二的,不仅具有一定的稳定性,而且具有特定的反应性,特别适用于构建反应网络和手性分子而受到许多科学家的青睐。