高中化学 第2章 第2节 第1课时 一些典型分子的空间构型教案 高二化学教案
- 格式:doc
- 大小:132.00 KB
- 文档页数:15
《分子的空间结构》第一课时教学设计积极性。
讲授新课第二节分子的空间结构第一课时分子结构的测定一、分子结构的测定早年的科学家主要靠对物质的化学性质进行系统总结得出规律后推测分子的结构。
如今,科学家应用了许多测定分子结构的现代仪器和方法,如红外光谱、晶体X射线衍射等。
下面先介绍红外光谱,下一章还将介绍晶体X射线衍射。
1.测定分子结构的现代仪器和方法红外光谱:分子中的原子不是固定不动的,而是处于不断振动着的。
红外线透过分子时,分子会吸收跟它的某些化学键的振动频率相同的红外线,再记录到谱图上呈现吸收峰。
通过和已有谱图库比对,或通过量子化学计算,可以得知分子中含有何种化学键或官能团的信息。
红外光谱仪原理示意图测分子体结构:红外光谱仪→吸收峰→分析官能团、化学键。
例如,通过红外光谱仪测得某未知物的红外光谱图如上图所示,发现有O—H、C—H、和C—O的振动吸收。
因此,可以初步推测该未知物中含有羟基(—OH)。
认真思考了解分子结构的测定方法。
了解红外光谱和质谱工作原理及应用。
【思考】红外光谱帮助我们确定分子中的化学键和官能团,还有什么现代化仪器帮我们确定有机物的结构呢?现代化学常利用质谱仪测定分子的相对分子质量。
质谱仪的基本原理是:在质谱仪中使分子失去电子变成带正电荷的分子离子和碎片离子等粒子。
由于生成的离子具有不同的相对质量,它们在高压电场加速后,通过狭缝进入磁场得以分离,在记录仪上呈现一系列峰,化学家对这些峰进行系统分析,便可得知样品分子的相对分子质量。
质谱:纵坐标表示相对丰度,横坐标表示粒子的相对质量与其电荷数之比(m/z),简称荷质比,化学家通过分析得知,被测物的相对分子质量是92,该物质是甲苯。
思考二、多样的分子空间结构在多原子构成的分子中,由于原子间排列的空间顺序不一样,于是分子就有了原子的几何学关系和形状,这就是分子的空间结构。
这就是分子的立体构型。
1.双原子分子(直线形)2.三原子分子的空间构型3.四原子分子的空间构型4.四原子分子其他立体构型(直线形、正四面体形)5..五原子分子的空间构型6.其他多原子分子认真思考通过对典型分子空间结构的学习,认识微观结构对分子空间结构的影响,了解共价分子结构的多样性和复杂性。
《分子的空间结构》学历案(第一课时)一、学习主题本课的学习主题为“分子的空间结构”。
本节课主要探讨分子的几何形态及其与化学性质之间的关系,通过学习,学生将掌握分子空间结构的基本概念和常见分子的空间构型。
二、学习目标1. 知识与理解:掌握分子空间结构的基本概念,了解常见分子的空间构型及其特点。
2. 技能与操作:通过观察模型和实验操作,能够识别和描述分子的空间结构。
3. 情感态度与价值观:培养学生对化学学科的兴趣和好奇心,激发其探索未知的欲望。
三、评价任务1. 概念理解评价:通过课堂提问和课后小测验,评价学生对分子空间结构概念的理解程度。
2. 技能操作评价:通过观察学生在实验操作中的表现和提交的实验报告,评价其识别和描述分子空间结构的能力。
3. 综合应用评价:通过完成课后作业和课堂讨论,评价学生将分子空间结构知识应用于实际问题中的能力。
四、学习过程1. 导入新课:通过回顾之前学习的原子结构和化学键知识,引出分子空间结构的学习主题。
2. 新课讲解:通过PPT、模型、实验等方式,讲解分子空间结构的基本概念和常见分子的空间构型。
3. 实验操作:学生动手操作分子模型,观察不同分子的空间构型,并记录观察结果。
4. 课堂讨论:学生分享观察结果,讨论分子空间结构与化学性质的关系。
5. 巩固练习:完成相关练习题,加深对分子空间结构的理解。
五、检测与作业1. 课堂检测:通过课堂小测验,检测学生对分子空间结构概念的理解程度。
2. 实验报告:学生提交实验报告,评价其识别和描述分子空间结构的能力。
3. 课后作业:布置相关作业,包括选择题、填空题和简答题,巩固所学知识。
4. 作业评讲:教师评讲作业,指出学生存在的问题和不足,提供改进建议。
六、学后反思1. 教师反思:教师反思教学过程,总结经验教训,改进教学方法和手段。
2. 学生反思:学生回顾学习过程,总结所学知识,思考如何将所学知识应用于实际问题中。
3. 学习建议:针对学生的学习情况,提供学习建议和指导,帮助学生更好地掌握分子空间结构知识。
第二节分子的立体构型第1课时价层电子对互斥理论[明确学习目标] 1.认识共价分子结构的多样性和复杂性。
2.能根据价层电子对互斥理论判断简单分子或离子的构型。
学生自主学习一、形形色色的分子1.三原子分子(AB2型)2.四原子分子(AB3型)3.五原子分子(AB4型)最常见的为□09正四面体形,如甲烷分子的立体结构为□10正四面体形,键角为□11109°28′。
二、价层电子对互斥理论1.价层电子对互斥理论(VSEPR)分子中的价层电子对(包括□01σ键电子对和中心原子上的□02孤电子对)由于□03相互排斥而趋向尽可能彼此远离,分子尽可能采取对称的立体构型,以减小斥力。
2.价层电子对的确定方法σ键电子对数可由分子式确定。
a表示中心原子的价电子数,对于主族元素来说,a=原子的□04最外层电子数;对于阳离子来说,a=中心原子的□05价电子数-离子电荷数;对于阴离子来说,a=中心原子的□06价电子数+|离子电荷数|。
x表示与中心原子结合的□07原子数。
b表示与中心原子结合的原子□08最多能接受的电子数,氢为1,其他原子=□098-该原子的价电子数。
3.VSEPR模型预测分子或离子的立体构型(1)中心原子上的价电子都用于形成共价键的分子(2)中心原子上有孤电子对的分子对于中心原子上有孤电子对(未用于形成共价键的电子对)的分子,中心原子上的孤电子对也要占据中心原子周围的空间,并互相排斥使分子呈现不同的立体构型。
1.五原子的分子空间构型都是正四面体吗?提示:不是,只有中心原子所连四个键的键长相等时才为正四面体。
如CH3Cl 因C—H键和C—Cl键键长不相等,故CH3Cl分子的四面体不再是正四面体。
2.VSEPR模型和分子的立体构型二者相同吗?提示:不一定相同。
(1)VSEPR模型指的是包括σ键电子对和孤电子对在内的空间构型;分子的立体构型指的是组成分子的所有原子(只考虑分子内的σ键)所形成的空间构型。
(2)若分子中没有孤电子对,VSEPR模型和分子立体构型一致;若分子中有孤电子对,VSEPR模型和分子立体构型不一致。
第二章分子结构与性质2分子的空间结构教学目标1.认识物质的空间结构可以借助某些实验手段,通过这些手段所获得的信息为建立物质结构模型或相关理论解释提供依据。
2.结合实例了解共价分子具有特定的空间结构,并可运用相关理论和模型进行解释和预测,培养证据推理与模型认知的核心素养。
教学重难点重点:分子空间结构;杂化轨道类型的判断难点:分子空间结构;杂化轨道类型的判断教学过程一、导入新课展示教材图片——形形色色的分子。
为什么这些分子会有如此的立体构型呢?而同样是AB2型分子,为什么CO2为直线形,H2O为V形呢?二、新课讲授1、分子结构的测定【师】随着科技的飞速发展,检测手段也越来越先进,那么我们可以用什么方法来测定分子结构呢?【学生活动】讨论回答【PPT】展示红外光谱图【师】许多现代仪器和方法可测定分子结构,如红外光谱、晶体X射线衍射等。
红外光谱可以测定分子中含有哪些化学键或官能团。
2、多样的分子空间结构【PPT】展示图片【师】三原子分子的空间结构——直线形和V形CO2O=C=O180°直线形H 2O105°V形【师】四原子分子的空间结构——平面三角形和三角锥形。
化学式电子式结构式键角分子的空间结构模型空间结构空间充填模型球棍模型CH2 O120°平面三角形NH3107°三角锥形【师】五原子分子的空间结构——正四面体形。
化学式电子式结构式键角分子的空间结构模型空间结构空间充填模型球棍模型CH4109°28'正四面体形3、价层电子对互斥模型【师】价层电子对互斥理论价层电子对互斥模型认为,分子的空间结构是中心原子周围的“价层电子对”相互排斥的结果。
分子中的价层电子对包括σ键电子对和中心原子上的孤电子对,多重键只计其中σ键的电子对,不计π键电子对。
【师】VSEPR模型的两种类型。
①中心原子上的价电子都用于形成共价键的分子。
AB n n=2 n=3 n=4 价层电子 2 3 4对数电子对排布方式空间结构名称直线形平面三角形正四面体形键角180°120°109°28'实例CO2BF3CH4②中心原子上有孤电子对的分子:对于中心原子上有孤电子对(未用于形成共价键的电子对)的分子,中心原子上的孤电子对也要占据中心原子周围的空间,并互相排斥使分子呈现不同的空间结构。
第1课时一些典型分子的空间构型 [学习目标定位] 知道共价分子结构的多样性和复杂性,能用杂化轨道理论解释或预测某些分子或离子的空间构型。
一杂化轨道及其理论要点1.C原子与H原子结合形成的分子为什么是CH4,而不是CH2或CH3?CH4为什么具有正四面体的空间构型?答案在形成CH4分子时,碳原子的一个2s轨道和三个2p轨道发生混杂,形成四个能量相等的sp3杂化轨道。
四个sp3杂化轨道分别与四个H原子的1s轨道重叠成键形成CH4分子,所以四个C—H是等同的。
可表示为2.由以上分析可知:(1)在外界条件影响下,原子内部能量相近的原子轨道重新组合形成一组新轨道的过程叫做原子轨道的杂化,重新组合后的新的原子轨道,叫做杂化原子轨道,简称杂化轨道。
(2)轨道杂化的过程:激发→杂化→轨道重叠。
3.杂化轨道理论要点(1)原子在成键时,同一原子中能量相近的原子轨道可重新组合成杂化轨道。
(2)参与杂化的原子轨道数等于形成的杂化轨道数。
(3)杂化改变了原子轨道的形状、方向。
杂化使原子的成键能力增大。
[归纳总结]1.杂化轨道数与参与杂化的原子轨道数相同,但能量不同。
2.杂化轨道为使相互间的排斥力最小,故在空间取最大夹角分布,不同的杂化轨道伸展方向不同。
3.杂化轨道只用于形成σ键或者用来容纳未参与成键的孤电子对。
4.未参与杂化的p轨道,可用于形成π键。
[活学活用]1.下列关于杂化轨道的说法错误的是( )A.所有原子轨道都参与杂化B.同一原子中能量相近的原子轨道参与杂化C.杂化轨道能量集中,有利于牢固成键D.杂化轨道中不一定有一个电子答案 A解析参与杂化的原子轨道,其能量不能相差太大,如1s轨道与2s、2p轨道能量相差太大,不能形成杂化轨道,即只有能量相近的原子轨道才能参与杂化,故A项错误,B项正确;杂化轨道的电子云一头大一头小,成键时利用大的一头,可使电子云重叠程度更大,形成牢固的化学键,故C 项正确;并不是所有的杂化轨道中都会有电子,也可以是空轨道,也可以有一对孤电子对(如NH 3、H 2O 的形成),故D 项正确。
第1课时一些典型分子的空间构型【教学目标】1. 理解杂化轨道理论的主要内容,掌握三种主要的杂化轨道类型;2. 学会用杂化轨道原理解释常见分子的成键情况与空间构型过程与方法:【教学重点】理解杂化轨道理论的主要内容,掌握三种主要的杂化轨道类型【教学难点】理解杂化轨道理论的主要内容,掌握三种主要的杂化轨道类型【教学方法】采用图表、比较、讨论、归纳、综合的方法进行教学【教学过程】【课题引入】在宏观世界中,花朵、蝴蝶、冰晶等诸多物质展现出规则与和谐的美。
科学巨匠爱因斯坦曾感叹:“在宇宙的秩序与和谐面前,人类不能不在内心里发出由衷的赞叹,激起无限的好奇。
”实际上,宏观的秩序与和谐源于微观的规则与对称。
通常,不同的分子具有不同的空间构型。
例如,甲烷分子呈正四面体形、氨分子呈三角锥形、苯环呈正六边形。
那么,这些分子为什么具有不同的空间构型呢?【思考】美丽的鲜花、冰晶、蝴蝶与微观粒子的空间构型有关吗?【活动探究】你能身边的材料动手制作水分子、甲烷、氨气、氯气的球棍模型吗?【过渡】我们知道,共价键具有饱和性和方向性,所以原子以共价键所形成的分子具有一定的空间构型。
【板书】(一)甲烷分子的形成及立体构型【联想质疑】研究证实,甲烷(CH4)分子中的四个C—H键的键角均为l09.5º,从而形成非常规则的正四面体构型。
原子之间若要形成共价键,它们的价电子中应当有未成对的电子。
碳原子的价电子排布为2s22p2,也就是说,它只有两个未成对的2p电子,若碳原子与氢原子结合,则应形成CH2;即使碳原子的一个2s电子受外界条件影响跃迁到2p空轨道,使碳原子具有四个未成对电子,它与四个氢原子形成的分子也不应当具有规则的正四面体结构。
那么,甲烷分子的正四面体构型是怎样形成的呢?【过渡】为了解决这一矛盾,鲍林提出了杂化轨道理论,【阅读教材40页】【板书】1. 杂化原子轨道在外界条件影响下,原子内部能量相近的原子轨道重新组合的过程叫做原子轨道的杂化,组合后形成的一组新的原子轨道,叫做杂化原子轨道,简称杂化轨道。
第1课时价层电子对互斥理论[明确学习目标] 1.认识共价分子结构的多样性和复杂性。
2.能根据价层电子对互斥理论判断简单分子或离子的构型。
学生自主学习一、形形色色的分子1.三原子分子(AB2型)2.四原子分子(AB3型)3.五原子分子(AB4型)最常见的为□09正四面体形,如甲烷分子的立体结构为□10正四面体形,键角为□11109°28′。
二、价层电子对互斥理论1.价层电子对互斥理论(VSEPR)01σ键电子对和中心原子上的□02孤电子对)由于□03相互排斥而分子中的价层电子对(包括□趋向尽可能彼此远离,分子尽可能采取对称的立体构型,以减小斥力。
2.价层电子对的确定方法σ键电子对数可由分子式确定。
a表示中心原子的价电子数,对于主族元素来说,a=原子的□04最外层电子数;对于阳离子来说,a=中心原子的□05价电子数-离子电荷数;对于阴离子来说,a=中心原子的□06价电子数+|离子电荷数|。
x表示与中心原子结合的□07原子数。
b表示与中心原子结合的原子□08最多能接受的电子数,氢为1,其他原子=□098-该原子的价电子数。
3.VSEPR模型预测分子或离子的立体构型(1)中心原子上的价电子都用于形成共价键的分子(2)中心原子上有孤电子对的分子对于中心原子上有孤电子对(未用于形成共价键的电子对)的分子,中心原子上的孤电子对也要占据中心原子周围的空间,并互相排斥使分子呈现不同的立体构型。
1.五原子的分子空间构型都是正四面体吗?提示:不是,只有中心原子所连四个键的键长相等时才为正四面体。
如CH 3Cl 因C —H 键和C —Cl 键键长不相等,故CH 3Cl 分子的四面体不再是正四面体。
2.VSEPR 模型和分子的立体构型二者相同吗?提示:不一定相同。
(1)VSEPR 模型指的是包括σ键电子对和孤电子对在内的空间构型;分子的立体构型指的是组成分子的所有原子(只考虑分子内的σ键)所形成的空间构型。
(2)若分子中没有孤电子对,VSEPR 模型和分子立体构型一致;若分子中有孤电子对,VSEPR 模型和分子立体构型不一致。
第2课时分子的空间构型与分子性质目标与素养:1.了解极性分子和非极性分子。
(微观探析)2.了解“手性分子”在生命科学等方面的应用。
(社会责任)一、分子的对称性1.对称分子(1)概念依据对称轴的旋转或借助对称面的反映能够复原的分子。
(2)性质具有对称性。
(3)与分子性质的关系分子的极性、旋光性及化学性质等都与分子的对称性有关。
2.手性分子(1)手性一种分子和它在镜中的像,就如同人的左手和右手,相似而不完全相同,即它们不能重叠。
(2)手性分子具有手性的分子。
一个手性分子和它的镜像分子构成一对异构体,分别用D和L标记。
(3)手性碳原子四个不同的原子或基团连接的碳原子。
(4)应用①手性分子缩合制蛋白质和核酸。
②分析药物有效成分异构体的活性和毒副作用。
③药物的不对称合成。
二、分子的极性1.分子极性的实验探究3.分子极性的判断(1)(2)1.判断正误(正确的打“√”,错误的打“×”)(1)CH4分子是面对称。
(√)(2)NH3和H2O分子是面对称。
(×)(3)由极性键构成的分子都是极性分子。
(×)(4)含有手性碳原子的分子都是极性分子。
(√)2.下列分子为手性分子的是( )B[B项乳酸分子的中间碳原子连—CH3、—H、—OH、—COOH四种不同的原子和基团,为手性分子。
]3.用一带静电的玻璃棒靠近A、B两种纯液体流,现象如图所示,据此分析,A、B两种液体分子的极性正确的是( )A.A是极性分子,B是非极性分子B.A是非极性分子,B是极性分子C.A、B都是极性分子D.A、B都是非极性分子B[由图示用一带静电的玻璃棒靠近A时,A不偏转,说明A无极性,靠近B时,B偏转,说明B有极性。
]分子的对称性1.对称轴:以通过两个碳原子的连线为轴线旋转120°或240°时,分子完全恢复原状,我们称这条连线为对称轴。
2.对称面:如甲烷分子,通过与碳原子相连的两个氢原子所构成的平面,分子被分割成相同的两部分,我们称这个平面为对称面。
《分子的空间结构》教学设计方案(第一课时)一、教学目标1. 了解常见分子的空间结构,能够识别不同类型的分子。
2. 能够分析分子间的作用力及其对物质性质的影响。
3. 理解分子的空间结构对化学反应速率的影响。
二、教学重难点1. 教学重点:掌握常见分子的空间结构,理解分子间作用力及其对物质性质的影响。
2. 教学难点:如何正确识别不同类型的分子空间结构,以及如何分析分子空间结构对化学反应速率的影响。
三、教学准备1. 准备相关PPT,包括分子结构图和反应原理图。
2. 准备各种常见分子的模型,以便学生能够实际观察和操作。
3. 准备相关实验器材,以便进行实验演示和探究。
4. 安排学生进行小组讨论,对常见的分子的空间结构进行归纳和总结。
四、教学过程:本节课的教学设计理念是:通过实验探究,使学生掌握分子的空间结构的概念,并通过实例了解分子的空间结构在物质性质中所起的作用。
教学过程包括实验探究、小组讨论、教师讲解和学生练习四个环节。
1. 实验探究首先,通过演示氨分子的球棍模型,引导学生观察分子的形状,并让学生思考分子的形状与物质的性质有何关系。
接着,进行氨分子的喷泉实验,让学生观察喷泉实验的现象,并思考喷泉实验的原因与分子的空间结构有何关系。
通过这两个实验,让学生初步了解分子的空间结构。
2. 小组讨论将学生分成若干小组,让每个小组讨论以下几个问题:(1)什么是分子的空间结构?(2)分子的空间结构与物质的性质有何关系?(3)分子的空间结构在化学反应中的作用是什么?让学生通过讨论,加深对分子的空间结构的理解。
3. 教师讲解在学生讨论的基础上,教师进行分子的空间结构的讲解,包括分子中的键型(极性键和非极性键)、分子的对称性(镜面对称和非镜面对称)等知识点。
同时,结合实验现象,分析分子的空间结构与物质性质的关系。
4. 学生练习通过一些练习题,让学生进一步巩固分子的空间结构的知识,包括一些判断题、选择题和简答题等。
通过学生的练习,教师可以了解学生对分子的空间结构的掌握情况,并进行针对性的指导。
第2节共价键与分子的空间构型第1课时一些典型分子的空间构型学习目标 1.掌握轨道杂化的基本思想,并能用杂化轨道理论判断简单分子共价键的形成和空间构型。
一、甲烷分子的空间构型化学式:________,结构式:________________,分子的立体结构模型:二、杂化轨道理论1.杂化轨道在外界条件影响下,原子内部能量________的原子轨道重新组合的过程叫做原子轨道的杂化,组合后形成的一组新的原子轨道,叫做________________,简称杂化轨道。
杂化轨道在角度分布上比单纯的s或p轨道在某一方向上更________,从而使它与其他原子的原子轨道重叠的程度更大,形成的共价键更__________。
通常,有多少个原子轨道参加杂化,就形成多少个杂化轨道。
2.杂化轨道的类型1.下列分子的空间构型是正四面体形的是( )①CH4②NH3③CF4④SiH4⑤C2H4⑥CO2A.①②③ B.①③④C.②④⑤ D.①③⑤2.下列分子的空间构型,可以用sp1杂化方式解释的是( )A.HCl B.BeCl2 C.PCl3 D.CCl43.在BrCH===CHBr分子中,C—Br键采用的成键轨道是( )A.sp1—p B.sp3—sC.sp2—p D.sp3—p4.下列分子的中心原子形成sp2杂化轨道的是( )A.H2O B.NH3C.C2H4 D.CH45.下列分子中的中心原子杂化轨道的类型相同的是( )A.CO2与SO2 B.CH4与NH3C.BeCl2与BF3 D.C2H4与C2H2练基础落实知识点一一些典型分子的空间构型1.下列分子中键角最小的是( )A.H2O B.CO2 C.BF3 D.CH42.NH3分子空间构型是三角锥形,而CH4是正四面体形,这是因为( )A.两种分子的中心原子杂化轨道类型不同,NH3为sp2杂化,而CH4是sp3杂化B.NH3分子中N原子形成3个杂化轨道,CH4分子中C原子形成4个杂化轨道C.NH3分子中有一对未成键的孤对电子,它对成键电子的排斥作用较强D.NH3分子中有3个σ键,而CH4分子中有4个σ键知识点二杂化轨道理论3.sp3杂化形成的AB4型分子的空间构型是( )A.平面四边形 B.四面体形C.四角锥形 D.平面三角形4.下列分子中的碳原子采取sp2杂化的是( )A.C2H2 B.C2H4C.C3H8 D.CO25.有关甲醛分子的说法正确的是( )A.C原子采取sp1杂化B.甲醛分子为三角锥形结构C.C原子采取sp2杂化D.甲醛分子为三角锥形结构6.三氯化磷分子的空间构型是三角锥形而不是平面正三角形,下列关于三氯化磷分子空间构型的叙述,不正确的是( )A.PCl3分子中P采用sp3杂化B.PCl3分子中P—Cl键属于极性共价键C.PCl3分子中三个共价键键能、键角均相等D.PCl3是非极性分子练方法技巧较复杂分子的空间构型的判断7.下列关于丙烯()的说法不正确的是( )A.丙烯分子有8个σ键,1个π键B.丙烯分子中3个碳原子都是sp3杂化C.丙烯分子中存在非极性键D.丙烯分子中3个碳原子不在同一直线上8.下列关于分子结构的叙述中,正确的是( )①6个碳原子可能都在一条直线上②6个碳原子不可能都在同一条直线上③6个碳原子可能都在同一平面上④6个碳原子不可能都在同一平面上A.①③ B.②③C.①④ D.②④练高考真题9.(2008·四川理综,27)D、E、X、Y、Z是周期表中的前20号元素,且原子序数逐渐增大,它们的最简单氢化物分子的空间结构依次是正四面体、三角锥形、正四面体、角形(V形)、直线形。
《分子的空间结构》教学设计方案(第一课时)一、教学目标1. 掌握常见分子的空间结构,包括原子之间成键方式,键角等观点。
2. 学会利用分子模型构建分子的空间结构,加深对分子结构的理解。
3. 提高观察,分析和解决问题的能力。
二、教学重难点1. 教学重点:通过观察和分析模型,理解常见分子的空间结构,包括键角,空间构型等。
2. 教学难点:构建分子的空间结构模型,培养空间想象力。
三、教学准备1. 准备各种常见分子的分子模型,包括共价键模型,分子轨道模型等。
2. 准备一些简单模型材料,方便学生自行构建分子的空间结构。
3. 设计一份教室练习题,用来检验学生对分子空间结构的理解水平。
4. 预先安置一些在线资源,供学生在课后自行学习。
四、教学过程:1. 导入:通过展示分子的立体结构模型或动画,让学生对分子的空间结构有直观的认识,引发学生兴趣,引入课题。
2. 探索分子的空间构型:通过展示不同类型的分子的立体结构模型或动画,让学生观察并思考这些分子的空间构型,引导学生通过观察、分析和讨论,总结出分子的空间构型的特点和规律。
3. 实验探究:通过实验探究,让学生了解分子的空间构型的形成过程和影响因素。
例如,通过实验探究氨气的分子构型,让学生了解氨分子中氮原子的杂化方式以及其对分子构型的影响。
4. 总结与反思:引导学生总结本节课所学内容,并思考如何将所学知识应用于实际生活中。
同时,对本节课的教学过程进行反思,发现问题并及时调整。
5. 拓展延伸:通过一些与本节课相关的实际应用案例,引导学生思考如何在实际应用中更好地利用所学知识。
例如,讨论有机分子中碳原子的成键方式和空间构型对有机物性质的影响,以及如何利用这些知识合成新型材料等。
在教学过程中,应注意以下几点:1. 合理设计教学情境,激发学生的学习兴趣和积极性。
2. 注重实验探究和实际应用案例的结合,引导学生将所学知识应用于实际生活中。
3. 注重学生的参与和互动,鼓励学生发表自己的观点和想法,培养学生的创新认识和实践能力。
第2节共价键与分子的空间构型(第一课时)【教学目标】1、通过分析甲烷、乙烯、乙炔、苯、氨分子的空间结构,了解杂化轨道理论和价电子对互斥理论,建立分子空间结构模型的推导方法,发展证据推理与模型认知化学学科核心素养;2、通过阅读教材,了解分子的对称性、分子的极性及分子极性与分子空间结构、分子性质的联系,了解手性分子在生命科学等方面的应用,形成理论联系实际的观念。
【教学重难点】重点:杂化轨道理论、价电子对互斥理论难点:分子的空间结构【教学用具】学案、PPT【教学过程】【新课引入】早期用于减轻妇女妊娠反应的药物沙利度胺,曾导致许多胎儿畸形。
科学家们对沙利度胺进行了深入的研究,发现沙利度胺有两种对映异构体,其中右旋异构体没有副作用,而左旋异构体则与致畸有关。
那么什么样的分子存在对映异构体呢?【课中讲解】一.分子空间结构的理论分析1.杂化轨道理论(1)杂化轨道的定义在外界条件影响下,原子内部能量相近的原子轨道重新组合形成新的原子轨道的过程叫作原子轨道的杂化,组合后形成的一组新的原子轨道叫作杂化原子轨道,简称杂化轨道。
特点:同一组杂化轨道的能量、形状、成分完全。
(2)杂化轨道理论的要点相同,杂化轨道的空间取向一定能量相近原子在成键时,同一原子内能量相近的原子轨道重新组合形成新的、能量相同的原子轨道数目不变参与杂化的原子轨道数等于形成的杂化轨道数成键能力增强杂化改变了原有原子轨道的能量、形状和空间取向,使原子的成键能力增强排斥力最小杂化轨道的能量相同,为使相互间的排斥力最小,故在空间取最大夹角分布,不同的杂化轨道空间取向不同,夹角也不同2. 用杂化轨道理论解释分子的空间结构(1)sp³杂化与甲烷(CH₄)分子的空间结构sp³杂化轨道1个ns轨道与3 个np轨道的杂化称为sp³ 杂化,所形成的四个杂化轨道称为sp³杂化轨道。
四个sp³杂化轨道在空间中均匀分布,轨道间夹角为109°2 8',其空间结构为正四面体形CH₄中碳原子的杂化过程示意图与成键过程CH ₄中的碳原子的四个杂化轨道分别与四个氢原子的1s 轨道重叠形成四个共价键。
你想是如何的人,你就是如何的人;你想成为如何的人,你离这个目标就不会太远。
2.2分子的立体构造教课目的1.认识杂化轨道理论的重点2.进一步认识有机化合物中碳的成键特点3.能依据杂化轨道理论判断简单分子或离子的构型4.采纳图表、比较、议论、概括、综合的方法进行教课5.培育学生剖析、概括、综合的能力和空间想象能力教课重点杂化轨道理论的重点教课难点分子的立体构造,杂化轨道理论[ 展现甲烷的分子模型][ 创建问题情形]碳的价电子构型是什么样的?甲烷的分子模型表示是空间正四周体,分子中的C—H 键是等同的,键角是109° 28′。
说明什么?[结论]碳原子拥有四个完整同样的轨道与四个氢原子的电子云重叠成键。
师:碳原子的价电子构型 2s2 2p2,是由一个 2s 轨道和三个 2p 轨道构成的,为何有这四个同样的轨道呢?为认识释这个构型Pauling提出了杂化轨道理论。
板:三、杂化轨道理论1、杂化的观点:在形成多原子分子的过程中,中心原子的若干能量邻近的原子轨道从头组合,形成一组新的轨道,这个过程叫做轨道的杂化,产生的新轨道叫杂化轨道。
[ 思虑与沟通 ]甲烷分子的轨道是如何形成的呢?形成甲烷分子时,中心原子的2s 和 2p x, 2p y,2p z等四条原子轨道发生杂化,形成一组新的轨道,即四条sp 3杂化轨道,这些sp 3杂化轨道不一样于s 轨道,也不一样于p 轨道。
看人生峰高处,惟有劫难多正果。
11 / 4依据参加杂化的 s 轨道与 p 轨道的数量,除了有 sp3杂化轨道外,还有 sp2杂化和 sp 杂化, sp2杂化轨道表示由一个 s 轨道与两个 p 轨道杂化形成的, sp 杂化轨道表示由一个 s 轨道与一个 p 轨道杂化形成的。
[议论沟通 ]:应用轨道杂化理论,研究分子的立体构造。
化学式杂化轨道数杂化轨道种类分子构造CH4C2H4BF3CH2OC2H2[ 总结评论 ] :指引学生剖析、概括、总结多原子分子立体构造的判断规律,达成下表。
【第1课时一些典型分子的空间构型】之小船创作目标与素养:1.了解典型的分子空间构型,能够制作典型分子的空间模型。
(科学探究)2.了解杂化轨道理论,掌握常见的杂化轨道类型。
(模型认知)3.能够应用杂化轨道理论解释典型分子的空间构型。
(宏观辨识与微观探究)一、甲烷分子的空间构型CH4化学式分子结构示意图填充模型球棍模型1.杂化轨道在外界条件影响下,原子内部能量相近的原子轨道重新组合的过程叫做原子轨道的杂化,组合后形成的一组新的原子轨道,叫做杂化原子轨道,简称杂化轨道。
杂化轨道在角度分布上比单纯的s或p轨道在某一方向上更集中,从而使它在与其他原子的原子轨道成键时重叠的程度更大,形成的共价键更牢固。
通常,有多少个原子轨道参加杂化,就形成多少个杂化轨道。
2.甲烷中碳原子的杂化类型3.杂化轨道的类型根据杂化轨道理论,形成苯分子时每个碳原子的价电子原子轨道发生sp2杂化(如s、p x、p y),由此形成的三个sp2杂化轨道在同一平面内。
这样,每个碳原子的两个sp2杂化轨道上的电子分别与邻近的两个碳原子的sp2杂化轨道上的电子配对形成σ键,于是六个碳原子组成一个正六边形的碳环;每个碳原子的另一个sp2杂化轨道上的电子分别与一个氢原子的1s电子配对形成σ键。
与此同时,每个碳原子的一个与碳环平面垂直的未参与杂化的2p轨道(如2p z)均含有一个未成对电子。
这六个碳原子的2p轨道相互平行,它们以“肩并肩”的方式相互重叠,从而形成含有六个电子、属于六个碳原子的π键。
人们把这种在多原子间形成的多电子的π键称为大π键。
所以,在苯分子中,整个分子呈平面正六边形,六个碳碳键完全相同,键角皆为120°。
三、价电子对互斥理论与等电子原理1.价电子对互斥理论(1)价电子对互斥理论基本观点:分子中的中心原子的价电子对——成键电子对(bp)和孤电子对(lp)由于相互排斥作用,尽可能趋向于彼此远离。
(2)(3)若中心原子没有孤电子对,为使价电子对之间的斥力最小,使分子的结构尽可能采取对称的结构。
2.等电子原理(1)内容:化学通式相同且价电子总数相等的分子或离子具有相同的空间构型和化学键类型等结构特征。
(2)应用①判断一些简单分子或离子的空间结构。
a.SO2-4、PO3-4等离子具有AX4通式,价电子总数为32,中心原子采取sp3杂化,呈四面体空间构型。
b.SO2-3、PO3-3等离子具有AX3通式,价电子总数为26,中心原子采取sp3杂化,由于存在一对孤对电子,分子空间构型呈三角锥形。
②利用等电子体在性质上的相似性制造新材料。
③利用等电子原理针对某物质找等电子体。
1.判断正误(正确的打“√”,错误的打“×”)(1)有多少个原子轨道发生杂化就形成多少个杂化轨道。
(√)(2)杂化轨道用于形成π键。
(×)(3)苯分子中C原子发生sp2杂化。
(√)2.下列对sp3、sp2、sp1杂化轨道的夹角的比较,得出结论正确的是( )A.sp1杂化轨道的夹角最大B.sp2杂化轨道的夹角最大C.sp3杂化轨道的夹角最大D.sp3、sp2、sp杂化轨道的夹角相等[答案]A3.在CCH3OCH3中,中间的碳原子和两边的碳原子分别采用的杂化方式是( )A.sp2sp2B.sp3sp3C.sp2sp3D.sp1sp3C[CO中碳原子形成了3个σ键,无未成键价电子对,需要形成3个杂化轨道,采用的杂化方式是sp2。
两边的碳原子各自形成了4个σ键,无未成键电子对,需要形成4个杂化轨道,采用的是sp3杂化。
]杂化轨道理论1.杂化轨道的特点(1)形成分子时,通常存在激发、杂化和轨道重叠等过程。
(2)原子轨道的杂化只有在形成分子的过程中才会发生,孤立的原子是不可能发生杂化的。
(3)杂化前后轨道数目不变。
(4)杂化后轨道伸展方向、形状发生改变。
(5)只有能量相近的轨道才能杂化(n s、n p)。
2.分子空间构型的确定轨道杂化类型电子对的空间构型成键电子对数孤电子对数电子对的排列方式分子的空间构型实例sp1直线形 2 0 直线形HC≡CH BeCl2 CO2sp2平面三角形3 0平面三角形BF3BCl3 2 1 V形SnBr2PbCl2sp3四面体4 0正四面体形CH4CCl4 3 1 三角锥形NH3NF32 2 V形H2O【典例1】下列各物质中的中心原子不是采用sp杂化的是( )A.NH3B.H2OC.CO2D.CCl4C[NH3为三角锥形,但中心原子氮原子采用sp3杂化,形成4个等同的轨道,其中一个由孤对电子占据,余下的3个未成对电子各占一个。
H2O为V形,但其中的氧原子也是采用sp3杂化形成4个等同的轨道,其中两对孤对电子分别占据两个轨道,剩余的2个未成对电子各占一个。
CCl4分子中C原子也采用sp3杂化,但CO2分子中C原子为sp1杂化,CO2为直线形分子。
]熟悉和掌握常见分子的中心原子的杂化方式和空间构型的关系,有助于正确分析、解决有关问题。
1.关于原子轨道的说法正确的是( )A.凡是中心原子采取sp3杂化轨道成键的分子其空间构型都是正四面体B.CH4分子中的sp3杂化轨道是由4个H原子的1s轨道和C原子的2p轨道混合起来而形成的C.sp3杂化轨道是由同一个原子中能量相近的s轨道和p轨道混合起来形成的一组能量相同的新轨道D.凡AB3型的共价化合物,其中心原子A均采用sp3杂化轨道成键C[中心原子采取sp3杂化,分子的空间构型为正四面体,但如果中心原子还有孤电子对,分子的空间构型不是正四面体。
CH4分子中的sp3杂化轨道是C原子的一个2s与三个2p杂化而成的。
AB3型的共价化合物,A原子可能采取sp2杂化或sp3杂化。
]2.(2019·全国Ⅰ卷)乙二胺(H2NCH2CH2NH2)是一种有机化合物,分子中氮、碳的杂化类型分别是__________________。
[答案]sp3sp3确定分子空间构型的简易方法1.确定中心原子A的价电子数目(1)对于AB m型分子,中心原子的杂化轨道数可以这样计算。
中心原子上的孤电子对数=错误!。
例如,H2O中的中心原子为氧原子,其价电子数为6,与氧原子结合的氢原子未成对电子数为1,可知:氧原子上的孤电子对数=6-2×12=2例如:n=12(中心原子的价电子数+配位原子的成键电子数±电荷数)。
2.确定价电子对的空间构型由于价电子对之间的相互排斥作用,它们趋向于尽可能的相互远离。
价电子对的空间构型与价电子对数目的关系如下表:根据分子中成键电子对数和孤电子对数,可以确定相应的较稳定的分子空间构型,如下表:(1)互为等电子体应满足的条件①化学通式相同。
②价电子总数相等。
(2)等电子原理的应用①利用等电子原理可以判断一些简单分子或离子的空间构型。
如NH3和H3O+的空间构型相似(三角锥形);SiCl4、SO2-4、PO3-4都呈正四面体构型。
②等电子体不仅有相似的空间构型,且有相似的性质。
【典例2】用价电子对互斥理论预测H2S和BF3的空间结构,两个结论都正确的是( )A.直线形;三角锥形B.V形;三角锥形C.直线形;平面三角形D.V形;平面三角形D[S原子最外层尚有孤电子对,参与成键电子对间的排斥,故H2S为V形结构;BF3中B原子最外层电子全部参与成键,三条B—F键等效排斥,故分子的空间构型为平面三角形。
]3.下列分子的空间构型是正四面体形的是( )①CH4②NH3③CF4④SiH4⑤C2H4⑥CO2A.①②③B.①③④C.②④⑤D.①③⑤B[C原子与Si原子的价电子层都是n s2n p2结构,参与成键时都是形成了4个sp3杂化轨道,故它们形成的①CH4,③CF4和④SiH4的空间构型都是正四面体形。
而NH3为三角锥形,C2H4为平面形,CO2为直线形。
]4.通常把原子总数和价电子总数相同的分子或离子称为等电子体,人们发现等电子体的空间结构相同。
已知B3N3H6分子的结构与苯相似,则下列有关说法中正确的是( )A.CH4和NH+4互为等电子体,键角均为60°B.NO-3和CO2-3互为等电子体,均为平面三角形结构C.H3O+和PCl3互为等电子体,均为三角锥形结构D.B3N3H6和苯互为等电子体,B3N3H6分子中不存在“肩并肩”式重叠的轨道B[CH4和NH+4的原子数都是5,价电子总数都是8,互为等电子体,空间构型为正四面体结构,键角为109.5°,故A错误;NO-3和CO2-3的原子数都是4,价电子总数都是24,互为等电子体,均为平面三角形结构,故B正确;H3O+价电子总数是8,PCl3价电子总数是26,二者价电子总数不同,不互为等电子体,故C错误;B3N3H6分子的结构类似苯,存在π键,π键是p轨道以“肩并肩”的方式重叠形成的,所以B3N3H6分子中存在“肩并肩”式重叠的轨道,故D错误。
]等电子体的换算方法(1)将粒子中的两个原子换成原子序数分别增加n和减少n(n=1,2等)的原子,如N2和CO、N-3和CNO-互为等电子体。
(2)将粒子中一个或几个原子换成原子序数增加(或减少)n的元素对应的带n个单位电荷的阳离子(或阴离子),如N2O和N-3互为等电子体。
(3)同主族元素最外层电子数相等,故可将粒子中的原子换成同主族元素原子,如O3和SO2互为等电子体。
1.能正确表示CH4中碳原子成键方式的示意图为( ) D[碳原子中的2s轨道与2p轨道形成4个等性的杂化轨道,因此碳原子最外层上的4个电子分占在4个sp3杂化轨道上并且自旋方向相同。
]2.乙炔分子中的碳原子采取的杂化方式是( )A.sp1杂化B.sp2杂化C.sp3杂化D.无法确定A[乙炔的结构式为H—C≡C—H,其空间构型为直线形,属于sp1杂化。
]3.有关苯分子中的化学键描述不正确的是( )A.每个碳原子的sp2杂化轨道中的其中一个形成大π键B.每个碳原子的未参加杂化的2p轨道形成大π键C.碳原子的三个sp2杂化轨道与其他原子形成三个σ键D.苯分子中六个碳碳键完全相同,键角均为120°A[苯分子中每个碳原子中的三个sp2杂化轨道分别与两个碳原子和一个氢原子形成σ键。
同时每个碳原子还有一个未参加杂化的2p轨道,它们均有一个未成对电子。
这些2p轨道相互平行,以“肩并肩”方式相互重叠,形成一个多电子的大π键。
所以苯分子中6个碳原子和6个氢原子都在同一平面内,6个碳碳键完全相同,键角皆为120°。
] 4.下列关于苯分子的性质描述错误的是 ( )A.苯分子呈平面正六边形,六个碳碳键完全相同,键角皆为120°B.苯分子中的碳原子采取sp2杂化,6个碳原子中未参与杂化的2p轨道以“肩并肩”形式形成一个大π键C.苯分子中的碳碳键是介于单键和双键之间的一种特殊类型的键D.苯能使溴水和酸性KMnO4溶液退色D[苯分子中的碳原子采取sp2杂化,六个碳碳键完全相同,呈平面正六边形结构,键角皆为120°;在苯分子中间形成一个较稳定的六电子大π键,因此苯分子中的碳碳键并不是单、双键交替结构,不能使溴水和酸性KMnO4溶液退色。