实验3——第3章 线性系统的时域分析
- 格式:ppt
- 大小:6.51 MB
- 文档页数:28
第3章线性系统的时域分析与校正3.1 概述系统的数学模型建立后,便可对系统进行分析和校正。
分析和校正是自动控制原理课程的两大任务。
系统分析是由已知的系统模型确定系统的性能指标;校正是根据需要在系统中加入一些机构和装置并确定相应的参数,用以改善系统性能,使其满足所要求的性能指标。
系统分析的目的在于“认识”系统,系统校正的目的在于“改造”系统。
系统的分析校正方法一般有时域法、根轨迹法和频域法,本章介绍时域法。
3.1.1 时域法的作用和特点时域法是一种直接在时间域中对系统进行分析校正的方法,具有直观,准确的优点,它可以提供系统时间响应的全部信息,但在研究系统参数改变引起系统性能指标变化的趋势这一类问题,以及对系统进行校正设计时,时域法不是非常方便。
时域法是最基本的分析方法,该方法引出的概念、方法和结论是以后学习复域法、频域法等其他方法的基础。
3.1.2 时域法常用的典型输入信号要确定系统性能的优劣,就要在同样的输入条件激励下比较系统的行为。
为了在符合实际情况的基础上便于实现和分析计算,时域分析法中一般采用如表3-1中的典型输入信号。
3.1.3 系统的时域性能指标如第一章所述,对控制系统的一般要求归纳为稳、准、快。
工程上为了定量评价系统性能好坏,必须给出控制系统的性能指标的准确定义和定量计算方法。
稳定是控制系统正常运行的基本条件。
系统稳定,其响应过程才能收敛,研究系统的性能(包括动态性能和稳态性能)才有意义。
实际物理系统都存在惯性,输出量的改变是与系统所储有的能量有关的。
系统所储有的能量的改变需要有一个过程。
在外作用激励下系统从一种稳定状态转换到另一种稳定状态需要一定的时间。
一个稳定系统的典型阶跃响应如图3-1所示。
响应过程分为动态过程(也称为过渡过程)和稳态过程,系统的动态性能指标和稳态性能指标就是分别针对这两个阶段定义的。
表3-1 时域分析法中的典型输入信号名称)(tr时域关系时域图形)(sR复域关系例单位脉冲函数⎩⎨⎧≠=∞=)(tttδ⎰=1)(dttδdtd1s⨯撞击作用后坐力电脉冲单位阶跃函数⎩⎨⎧<≥=1)(1ttts1开关输入单位斜坡函数⎩⎨⎧<≤=)(ttttf21s等速跟踪信号单位加速度函数⎪⎩⎪⎨⎧<≥=21)(2ttttf31s1 动态性能系统动态性能是以系统阶跃响应为基础来衡量的。
竭诚为您提供优质文档/双击可除线性系统时域分析实验报告篇一:自动控制原理实验报告《线性控制系统时域分析》实验一线性控制系统时域分析1、设控制系统如图1所示,已知K=100,试绘制当h 分别取h=0.1,0.20.5,1,2,5,10时,系统的阶跃响应曲线。
讨论反馈强度对一阶系统性能有何影响?图1答:A、绘制系统曲线程序如下:s=tf(s);p1=(1/(0.1*s+1));p2=(1/(0.05*s+1));p3=(1/(0.02*s+1) );p4=(1/(0.01*s+1));p5=(1/(0.005*s+1));p6=(1/(0.002 *s+1));p7=(1/(0.001*s+1));step(p1);holdon;step(p2); holdon;step(p3);holdon;step(p5);holdon;step(p6);hol don;step(p7);holdon;b、绘制改变h系统阶跃响应图如下:stepResponse1.41.21Amplitude0.80.60.40.200.050.10.150.20.250.30.350.40.450.5Time(seconds)结论:h的值依次为0.1、0.2、0.5、1、2、5、10做响应曲线。
matlab曲线默认从第一条到第七条颜色依次为蓝、黄、紫、绿、红、青、黑,图中可知随着h值得增大系统上升时间减小,调整时间减小,有更高的快速性。
2?n?(s)?22,设已知s?2??ns??n2、二阶系统闭环传函的标准形式为?n=4,试绘制当阻尼比?分别取0.2,0.4,0.6,0.8,1,1.5,2,5等值时,系统的单位阶跃响应曲线。
求出?取值0.2,0.5,0.8时的超调量,并求出?取值0.2,0.5,0.8,1.5,5时的调节时间。
讨论阻尼比变化对系统性能的影响。
答:A、绘制系统曲线程序如下:s=tf(s);p1=16/(s^2+1.6*s+16);p2=16/(s^2+3.2*s+16);p3=16/(s^ 2+4.8*s+16);p4=16/(s^2+6.4*s+16);p5=16/(s^2+8*s+16) ;p6=16/(s^2+12*s+16);p7=16/(s^2+16*s+16);p8=16/(s^2 +40*s+16);step(p1);holdon;step(p2);holdon;step(p3); holdon;step(p4);holdon;step(p5);holdon;step(p6);hol don;step(p7);holdon;step(p8);holdon;b、绘制系统阶跃响应图如下:c、?取值为0.2、0.5、0.8、1.5、5时的参数值。
线性系统的时域分析实验报告线性系统的时域分析实验报告引言:线性系统是控制理论中的重要概念,它在工程领域中有广泛的应用。
时域分析是研究线性系统的一种方法,通过对系统输入和输出的时域信号进行观察和分析,可以得到系统的动态特性。
本实验旨在通过对线性系统进行时域分析,探究系统的稳定性、阶数和频率响应等特性。
实验一:稳定性分析稳定性是线性系统的基本性质之一,它描述了系统对于不同输入的响应是否趋于有界。
在本实验中,我们选取了一个简单的一阶系统进行稳定性分析。
首先,我们搭建了一个一阶系统,其传递函数为H(s) = 1/(s+1),其中s为复变量。
然后,我们输入了一个单位阶跃信号,观察系统的输出。
实验结果显示,系统的输出在输入信号发生变化后,经过一段时间后稳定在一个有限的值上,没有出现发散的情况。
因此,我们可以判断该系统是稳定的。
实验二:阶数分析阶数是线性系统的另一个重要特性,它描述了系统的动态响应所需的最小延迟时间。
在本实验中,我们选取了一个二阶系统进行阶数分析。
我们搭建了一个二阶系统,其传递函数为H(s) = 1/(s^2+2s+1)。
然后,我们输入了一个正弦信号,观察系统的输出。
实验结果显示,系统的输出在输入信号发生变化后,经过一段时间后才稳定下来。
通过进一步分析,我们发现系统的输出波形具有两个振荡周期,这表明系统是一个二阶系统。
实验三:频率响应分析频率响应是线性系统的另一个重要特性,它描述了系统对于不同频率输入信号的响应情况。
在本实验中,我们选取了一个低通滤波器进行频率响应分析。
我们搭建了一个低通滤波器,其传递函数为H(s) = 1/(s+1),其中s为复变量。
然后,我们输入了一系列不同频率的正弦信号,观察系统的输出。
实验结果显示,随着输入信号频率的增加,系统的输出幅值逐渐减小,表明系统对高频信号有较强的抑制作用。
这一结果与低通滤波器的特性相吻合。
结论:通过以上实验,我们对线性系统的时域分析方法有了更深入的了解。
兰州理工大学《自动控制原理》MATLAB分析与设计仿真实验报告院系:电气工程与信息工程学院班级:电气工程及其自动化四班姓名:学号:时间:年月日电气工程与信息工程学院《自动控制原理》MATLAB 分析与设计仿真实验任务书(2014) 一、仿真实验内容及要求 1.MATLAB 软件要求学生通过课余时间自学掌握MATLAB 软件的基本数值运算、基本符号运算、基本程序设计方法及常用的图形命令操作;熟悉MATLAB 仿真集成环境Simulink 的使用。
2.各章节实验内容及要求1)第三章 线性系统的时域分析法∙ 对教材第三章习题3-5系统进行动态性能仿真,并与忽略闭环零点的系统动态性能进行比较,分析仿真结果;∙ 对教材第三章习题3-9系统的动态性能及稳态性能通过仿真进行分析,说明不同控制器的作用;∙ 在MATLAB 环境下选择完成教材第三章习题3-30,并对结果进行分析; ∙ 在MATLAB 环境下完成英文讲义P153.E3.3;∙ 对英文讲义中的循序渐进实例“Disk Drive Read System”,在100=a K 时,试采用微分反馈控制方法,并通过控制器参数的优化,使系统性能满足%5%,σ<3250,510s ss t ms d -≤<⨯等指标。
2)第四章 线性系统的根轨迹法∙ 在MATLAB 环境下完成英文讲义P157.E4.5; ∙ 利用MATLAB 绘制教材第四章习题4-5;∙ 在MATLAB 环境下选择完成教材第四章习题4-10及4-17,并对结果进行分析;∙ 在MATLAB 环境下选择完成教材第四章习题4-23,并对结果进行分析。
3)第五章 线性系统的频域分析法∙ 利用MATLAB 绘制本章作业中任意2个习题的频域特性曲线;4)第六章 线性系统的校正∙ 利用MATLAB 选择设计本章作业中至少2个习题的控制器,并利用系统的单位阶跃响应说明所设计控制器的功能;∙ 利用MATLAB 完成教材第六章习题6-22控制器的设计及验证;∙ 对英文讲义中的循序渐进实例“Disk Drive Read System”,试采用PD控制并优化控制器参数,使系统性能满足给定的设计指标ms t s 150%,5%<<σ。
线性系统时域分析实验报告1. 实验目的本实验旨在通过对线性系统的时域分析,加深对线性系统特性的理解和掌握。
2. 实验原理线性系统是指满足叠加性和比例性质的系统。
时域分析是通过观察系统对不同输入信号的响应来研究系统的特性。
在本实验中,我们将研究线性时不变系统(LTI)在时域上的特性,包括冲激响应和单位阶跃响应。
3. 实验步骤3.1 实验准备准备如下实验设备和材料:•示波器•函数发生器•电阻、电容等元件•连接线3.2 实验步骤1.搭建线性系统电路。
根据实验要求选择合适的电路结构,包括电阻、电容等元件。
将信号源(函数发生器)连接到输入端,示波器连接到输出端。
2.设置函数发生器和示波器。
根据实验要求,设置函数发生器以产生不同类型的输入信号,如方波、正弦波等。
调整示波器的时间和电压刻度,以便能够清晰地观察到输出信号的变化。
3.测量冲激响应。
将函数发生器的输出设置为冲激信号,并观察示波器上输出信号的变化。
记录下输出信号的波形和参数,如幅度、延迟等。
4.测量单位阶跃响应。
将函数发生器的输出设置为单位阶跃信号,并观察示波器上输出信号的变化。
记录下输出信号的波形和参数,如幅度、上升时间等。
5.分析实验结果。
根据测量的波形和参数,进一步分析线性系统的特性。
比较不同输入信号对输出信号的影响,讨论线性系统的时域特性。
4. 实验结果分析根据实验测量的波形和参数,我们可以得出以下结论:1.冲激响应:冲激响应是指系统对一个冲激信号的响应。
通过观察冲激响应的波形,我们可以了解系统的频率响应特性。
例如,当系统为低通滤波器时,冲激响应的幅度在低频时较大,在高频时逐渐减小。
2.单位阶跃响应:单位阶跃响应是指系统对一个单位阶跃信号的响应。
通过观察单位阶跃响应的波形,我们可以了解系统的稳定性和响应速度。
例如,当系统为一阶惯性系统时,单位阶跃响应的上升时间较长,而当系统为二阶系统时,单位阶跃响应的上升时间较短。
5. 实验总结通过本实验,我们深入了解了线性系统时域分析的方法和步骤。