常见的勾股数组公式审批稿
- 格式:docx
- 大小:136.40 KB
- 文档页数:11
数学勾股定理的公式总结勾股定理在我国,把直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定理,又称毕达哥拉斯定理或毕氏定理(PythagorasTheorem)。
数学公式中常写作a^2+b^2=c^2在任何一个直角三角形(Rt△)中(等腰直角三角形也算在内),两条直角边的长度的平方和等于斜边长度的平方,这就叫做勾股定理。
即勾的长度的平方加股的长度的平方等于弦的长度的平方。
[1]如果用a,b,c分别表示直角三角形的两条直角边和斜边,那么a+b=c;.简介这个定理在中国又称为“商高定理”(相传大禹治水时,就会运用此定理来解决治水中的计算问题),在外国称为“毕达哥拉斯定理”或者“百牛定理”。
(毕达哥拉斯发现了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”)。
他们发现勾股定理的时间都比中国晚(中国是最早发现这一几何宝藏的国家)。
目前初二学生开始学习,教材的证明方法大多采用赵爽弦图,证明使用青朱出入图。
勾股定理是一个基本的几何定理,它是用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
直角三角形两直角边的平方和等于斜边的平方。
如果用a、b和c分别表示直角三角形的两直角边和斜边,那么a^2+b^2=c^2。
勾股定理内容直角三角形(等腰直角三角形也算在内)两直角边(即“勾”“股”短的为勾,长的为股)边长平方和等于斜边(即“弦”)边长的平方。
也就是说设直角三角形两直角边为a和b,斜边为c,那么a的平方+b的平方=c的平方a+b=c。
勾股定理现发现约有500种证明方法,是数学定理中证明方法最多的定理之一。
推广1、如果将直角三角形的斜边看作二维平面上的向量,将两直角边看作在平面直角坐标系坐标轴上的投影,则可以从另一个角度考察勾股定理的意义。
即,向量长度的平方等于它在其所在空间一组正交基上投影长度的平方之和。
2.勾股定理是余弦定理的特殊情况。
勾股定理定理如果直角三角形两直角边分别为a,b,斜边为C,那么a^2+b^2=c^2。
数学勾股定理的公式总结数学勾股定理的公式总结勾股定理在我国,把直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定理,又称毕达哥拉斯定理或毕氏定理(Pythagoras Theorem)。
数学公式中常写作a^2+b^2=c^2 在任何一个直角三角形(Rt△)中(等腰直角三角形也算在内),两条直角边的长度的平方和等于斜边长度的平方,这就叫做勾股定理。
即勾的长度的平方加股的长度的平方等于弦的长度的平方。
[1]如果用a,b,c分别表示直角三角形的两条直角边和斜边,那么a+b=c;.简介这个定理在中国又称为“商高定理”(相传大禹治水时,就会运用此定理来解决治水中的计算问题),在外国称为“毕达哥拉斯定理”或者“百牛定理”。
(毕达哥拉斯发现了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”)。
他们发现勾股定理的时间都比中国晚(中国是最早发现这一几何宝藏的国家)。
目前初二学生开始学习,教材的证明方法大多采用赵爽弦图,证明使用青朱出入图。
勾股定理是一个基本的几何定理,它是用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
直角三角形两直角边的平方和等于斜边的平方。
如果用a、b和c 分别表示直角三角形的两直角边和斜边,那么a^2+b^2=c^2。
勾股定理内容直角三角形(等腰直角三角形也算在内)两直角边(即“勾”“股”短的为勾,长的`为股)边长平方和等于斜边(即“弦”)边长的平方。
也就是说设直角三角形两直角边为a和b,斜边为c,那么a的平方+b的平方=c的平方a+b=c。
勾股定理现发现约有500种证明方法,是数学定理中证明方法最多的定理之一。
推广1、如果将直角三角形的斜边看作二维平面上的向量,将两直角边看作在平面直角坐标系坐标轴上的投影,则可以从另一个角度考察勾股定理的意义。
即,向量长度的平方等于它在其所在空间一组正交基上投影长度的平方之和。
2.勾股定理是余弦定理的特殊情况。
勾股定理定理如果直角三角形两直角边分别为a,b,斜边为C,那么a^2+b^2=c^2。
常见的勾股数及公式武安市黄冈实验学校翟升华搜集整理我们知道,如果∠C=90°,a 、b 、c 是直角三角形的三边,则由勾股定理,得a 2+b 2=c 2;反之,若三角形的三边a 、b 、c 满足a 2+b 2=c 2,则该三角形是直角三角形,c 为斜边.与此相类似,如果三个正整数a 、b 、c 满足a 2+b 2=c 2,则称a 、b 、c 为勾股数,记为(a ,b ,c ).勾股数有无数多组,下面向同学们介绍几种:一、三数为连续整数的勾股数(3,4,5)是我们所熟悉的一组三数为连续整数的勾股数,除此之外是否还有第二组或更多组呢?设三数为连续整数的勾股数组为(G -1,G ,G +1),则由勾股数的定义,得(G+1)2+G 2=(G+1)2,解得G =4或G =0(舍去),故三数为连续整数的勾股数只有一组(3,4,5);类似有3n,4n,5n(n 是正整数)都是勾股数。
二、后两数为连续整数的勾股数易知:(5,12,13),(9,40,41),(113,6338,6385),…,都是勾股数,如此许许多多的后两数为连续整数的勾股数,它的一般形式究竟是什么呢?a=2n+1,b=2n 2+2n,c=2n 2+2n+1(其特点是斜边与其中一股的差为1).分别取n =1,2,3,…就得勾股数组(3,4,5),(5,12,13),(7,24,25),…三、前两数为连续整数的勾股数你知道(20,21,29),(119,120,169),(4059,4060,5741)…,这些都是前两数为连续整数的勾股数组。
其公式为:(G ,G +1,1222++x x )(G 为正整数)。
设前两数为连续整数的勾股数组为(G ,G +1,P ),P=1222++x x 则()2221y x x =++(*) 整理,得1222++x x =2y ,化为()121222-=-+y x ,即()y x 212++()y x 212-+=-1, 又()()2121-+=-1,∴()1221++n ()1221+-n =-1(n∈N), 故取()y x 212++=()1221++n ,()y x 212-+=()1221+-n ,解之,得G =41〔()1221++n +()1221+-n -2〕,P =42〔()1221++n -()1221+-n 〕, 故前两数为连续整数的勾股数组是(41〔()1221++n +()1221+-n -2〕,41〔()1221++n +()1221+-n -2〕+1,42〔()1221++n -()1221+-n 〕).四、后两数为连续奇数的勾股数如(8,15,17),(12,35,37)…其公式为:4(n+1),4(n+1)2-1,4(n+1)2+1(n 是正整数).五、其它的勾股数组公式:1.a=2m,b=m 2-1,c=m 2+1(m 大于1的整数).2.a=21(m 2-n 2),b=mn,c=21(m 2+n 2)(其中m>n 且是互质的奇数). 3.a=2m,b=m 2-n 2,c=m 2+n 2(m>n,互质且一奇一偶的任意正整数).下面我们把100以内的勾股数组列出来,供同学们参考:34 5;512 13;6810;72425;81517;9 1215;940 41;102426;116061;12 16 20;12 35 37;13 84 85;14 48 50;15 20 25;15 36 39;15112 113;16 30 34;16 63 65 17144 145;18 24 30;18 80 82;19 180 181;20 21 29;20 48 52;20 99 101;21 28 35 21 72 75;21 220 221;22 120 122;23 264 265;24 32 40;24 45 51;24 70 74;24 143 145 25 60 65;25 312 313;26 168 170;27 36 45;27120 123;27 364 365;28 45 53;28 96 100 28 195 197;29 420 421;30 40 50;30 72 78;30 224 226;31 480 481;32 60 68;32 126 130 32 255 257;33 44 55;33 56 65;33 180 183;33 544 545;34 288 290;35 84 91;35 120 125 35 612 613;36 48 60;36 77 85;36 105 111;36 160 164;36 323 325;37 684 685;38 360 362 39 52 65;39 80 89;39 252 255;39 760 761;40 42 58;40 75 85;40 96 104;40 198 202 40 399 401;41 840 841;42 56 70;42 144 150;42 440 442;43 924 925;44 117 125;44 240 244 44 483 485;45 60 75;45 108 117;45 200 205;45 336 339;46 528 530;48 55 73;48 64 80 48 90 102;48 140 148;48 189 195;48 286 290;48 575 577;49 168 175;50 120 130;50 624 62651 68 85;51 140 149;51 432 435;52 165 173;52 336 340;52 675 677;54 72 90;54 240 246 54 728 730;55 132 143;55 300 305;56 90 106;56 105 119;56 192 200;56 390 394;56 783 785 57 76 95;57176 185;57 540 543;58 840 842;60 63 87;60 80 100;60 91 109;60 144 156 60 175 185;60 221 229;60 297 303;60 448 452;60 899 901;62 960 962;63 84 105;63 216 225 63 280 287;63 660 663;64 120 136;64 252 260;64 510 514;65 72 97;65 156 169;65 420 425 66 88 110;66 112 130;66 360 366;68 285 293;68 576 580;69 92 115;69 260 269;69 792 795 70 168 182;70 240 250;72 96 120;72 135 153;72 154 170;72 210 222;72 320 328;72 429 435 72 646 650;75 100 125;75 180 195;75 308 317;75 560 565;75 936 939;76 357 365;76 720 724 77 264 275;77 420 427;78 104 130;78 160 178;78 504 510;80 84 116;80 150 170;80 192 208 80 315 325;80 396 404;80 798 802;81 108 135;81 360 369;84 112 140;84 135 159;84 187 205 84 245 259;84 288 300;84 437 445;84 585 591;84 880 884;85 132 157;85 204 221;85 720 725 87 116 145;87 416 425;88 105 137;88 165 187;88 234 250;88 480 488;88 966 970;90 120 150 90 216 234;90 400 410;90 672 678;91 312 325;91 588 595;92 525 533;93 124 155;93 476 48595 168 193;95 228 247;95 900 905;96 110 146;96 128 160;96 180 204;96 247 265;96 280 29696 378 390;96 572 580;96 765 771;98 336 350;99 132 165;99 168 195;99 440 451;99 540 549 100 105 145;100240260;100 495 505;100621629.以下是大于100的勾股数:第223组:102 136 170第224组:102 280 298第225组:102 864 870第226组:104 153 185第227组:104 195 221第228组:104 330 346第229组:104 672 680第230组:105 140 175第231组:105 208 233第232组:105 252 273第233组:105 360 375第234组:105 608 617第235组:105 784 791第236组:108 144 180第237组:108 231 255第238组:108 315 333第239组:108 480 492第240组:108 725 733第241组:108 969 975第242组:110 264 286第243组:110 600 610第244组:111 148 185第245组:111 680 689第246组:112 180 212第247组:112 210 238第248组:112 384 400第249组:112 441 455第250组:112 780 788第251组:114 152 190第252组:114 352 370第253组:115 252 277第254组:115 276 299第255组:116 837 845第256组:117 156 195第259组:117 756 765 第260组:119 120 169 第261组:119 408 425 第262组:120 126 174 第263组:120 160 200 第264组:120 182 218 第265组:120 209 241 第266组:120 225 255 第267组:120 288 312 第268组:120 350 370 第269组:120 391 409 第270组:120 442 458 第271组:120 594 606 第272组:120 715 725 第273组:120 896 904 第274组:121 660 671 第275组:123 164 205 第276组:123 836 845 第277组:124 957 965 第278组:125 300 325 第279组:126 168 210 第280组:126 432 450 第281组:126 560 574 第282组:128 240 272 第283组:128 504 520 第284组:129 172 215 第285组:129 920 929 第286组:130 144 194 第287组:130 312 338 第288组:130 840 850 第289组:132 176 220 第290组:132 224 260 第291组:132 351 375 第292组:132 385 407 第293组:132 475 493 第294组:132 720 732 第295组:133 156 205 第296组:133 456 475 第297组:135 180 225 第298组:135 324 351 第299组:135 352 377 第300组:135 600 615 第301组:136 255 289 第302组:136 273 305 第303组:136 570 586 第304组:138 184 230 第305组:138 520 538 第306组:140 147 203 第307组:140 171 221第310组:140 480 500 第311组:140 693 707 第312组:140 975 985 第313组:141 188 235 第314组:143 780 793 第315组:143 924 935 第316组:144 165 219 第317组:144 192 240 第318组:144 270 306 第319组:144 308 340 第320组:144 420 444 第321组:144 567 585 第322组:144 640 656 第323组:144 858 870 第324组:145 348 377 第325组:145 408 433 第326组:147 196 245 第327组:147 504 525 第328组:150 200 250 第329组:150 360 390 第330组:150 616 634 第331组:152 285 323 第332组:152 345 377 第333组:152 714 730 第334组:153 204 255 第335组:153 420 447 第336组:153 680 697 第337组:154 528 550 第338组:154 840 854 第339组:155 372 403 第340组:155 468 493 第341组:156 208 260 第342组:156 320 356 第343组:156 455 481 第344组:156 495 519 第345组:156 667 685 第346组:159 212 265 第347组:160 168 232 第348组:160 231 281 第349组:160 300 340 第350组:160 384 416 第351组:160 630 650 第352组:160 792 808 第353组:161 240 289 第354组:161 552 575 第355组:162 216 270 第356组:162 720 738 第357组:165 220 275 第358组:165 280 325第361组:165 900 915 第362组:168 224 280 第363组:168 270 318 第364组:168 315 357 第365组:168 374 410 第366组:168 425 457 第367组:168 490 518 第368组:168 576 600 第369组:168 775 793 第370组:168 874 890 第371组:170 264 314 第372组:170 408 442 第373组:171 228 285 第374组:171 528 555 第375组:171 760 779 第376组:174 232 290 第377组:174 832 850 第378组:175 288 337 第379组:175 420 455 第380组:175 600 625 第381组:176 210 274 第382组:176 330 374 第383组:176 468 500 第384组:176 693 715 第385组:176 960 976 第386组:177 236 295 第387组:180 189 261 第388组:180 240 300 第389组:180 273 327 第390组:180 299 349 第391组:180 385 425 第392组:180 432 468 第393组:180 525 555 第394组:180 663 687 第395组:180 800 820 第396组:180 891 909 第397组:182 624 650 第398组:183 244 305 第399组:184 345 391 第400组:184 513 545 第401组:185 444 481 第402组:185 672 697 第403组:186 248 310 第404组:186 952 970 第405组:189 252 315 第406组:189 340 389 第407组:189 648 675 第408组:189 840 861 第409组:190 336 386第411组:192 220 292 第412组:192 256 320 第413组:192 360 408 第414组:192 494 530 第415组:192 560 592 第416组:192 756 780 第417组:195 216 291 第418组:195 260 325 第419组:195 400 445 第420组:195 468 507 第421组:195 748 773 第422组:196 315 371 第423组:196 672 700 第424组:198 264 330 第425组:198 336 390 第426组:198 880 902 第427组:200 210 290 第428组:200 375 425 第429组:200 480 520 第430组:200 609 641 第431组:201 268 335 第432组:203 396 445 第433组:203 696 725 第434组:204 253 325 第435组:204 272 340 第436组:204 560 596 第437组:204 595 629 第438组:204 855 879 第439组:205 492 533 第440组:205 828 853 第441组:207 224 305 第442组:207 276 345 第443组:207 780 807 第444组:207 920 943 第445组:208 306 370 第446组:208 390 442 第447组:208 660 692 第448组:208 819 845 第449组:210 280 350 第450组:210 416 466 第451组:210 504 546 第452组:210 720 750 第453组:213 284 355 第454组:215 516 559 第455组:215 912 937 第456组:216 288 360 第457组:216 405 459 第458组:216 462 510 第459组:216 630 666 第460组:216 713 745第462组:217 456 505 第463组:217 744 775 第464组:219 292 365 第465组:220 231 319 第466组:220 459 509 第467组:220 528 572 第468组:220 585 625 第469组:222 296 370 第470组:224 360 424 第471组:224 420 476 第472组:224 768 800 第473组:224 882 910 第474组:225 272 353 第475组:225 300 375 第476组:225 540 585 第477组:225 924 951 第478组:228 304 380 第479组:228 325 397 第480组:228 665 703 第481组:228 704 740 第482组:230 504 554 第483组:230 552 598 第484组:231 308 385 第485组:231 392 455 第486组:231 520 569 第487组:231 792 825 第488组:232 435 493 第489组:232 825 857 第490组:234 312 390 第491组:234 480 534 第492组:235 564 611 第493组:237 316 395 第494组:238 240 338 第495组:238 816 850 第496组:240 252 348 第497组:240 275 365 第498组:240 320 400 第499组:240 364 436 第500组:240 418 482 第501组:240 450 510 第502组:240 551 601 第503组:240 576 624 第504组:240 700 740 第505组:240 782 818 第506组:240 884 916 第507组:240 945 975 第508组:243 324 405 第509组:245 588 637 第510组:245 840 875 第511组:246 328 410第514组:249 332 415 第515组:250 600 650 第516组:252 275 373 第517组:252 336 420 第518组:252 405 477 第519组:252 539 595 第520组:252 561 615 第521组:252 735 777 第522组:252 864 900 第523组:255 340 425 第524组:255 396 471 第525组:255 612 663 第526组:255 700 745 第527组:256 480 544 第528组:258 344 430 第529组:259 660 709 第530组:259 888 925 第531组:260 273 377 第532组:260 288 388 第533组:260 624 676 第534组:260 651 701 第535组:260 825 865 第536组:261 348 435 第537组:261 380 461 第538组:264 315 411 第539组:264 352 440 第540组:264 448 520 第541组:264 495 561 第542组:264 702 750 第543组:264 770 814 第544组:264 950 986 第545组:265 636 689 第546组:266 312 410 第547组:266 912 950 第548组:267 356 445 第549组:270 360 450 第550组:270 648 702 第551组:270 704 754 第552组:272 510 578 第553组:272 546 610 第554组:273 364 455 第555组:273 560 623 第556组:273 736 785 第557组:273 936 975 第558组:275 660 715 第559组:276 368 460 第560组:276 493 565 第561组:276 805 851 第562组:279 372 465第565组:280 342 442 第566组:280 351 449 第567组:280 450 530 第568组:280 525 595 第569组:280 672 728 第570组:280 759 809 第571组:280 960 1000 第572组:282 376 470 第573组:285 380 475 第574组:285 504 579 第575组:285 684 741 第576组:285 880 925 第577组:287 816 865 第578组:288 330 438 第579组:288 384 480 第580组:288 540 612 第581组:288 616 680 第582组:288 741 795 第583组:288 840 888 第584组:290 696 754 第585组:290 816 866 第586组:291 388 485 第587组:294 392 490 第588组:295 708 767 第589组:296 555 629 第590组:297 304 425 第591组:297 396 495 第592组:297 504 585 第593组:300 315 435 第594组:300 400 500 第595组:300 455 545 第596组:300 589 661 第597组:300 720 780 第598组:300 875 925 第599组:301 900 949 第600组:303 404 505 第601组:304 570 646 第602组:304 690 754 第603组:305 732 793 第604组:306 408 510 第605组:306 840 894 第606组:308 435 533 第607组:308 495 583 第608组:308 819 875 第609组:309 412 515 第610组:310 744 806 第611组:310 936 986 第612组:312 416 520 第613组:312 459 555第614组:312 585 663 第615组:312 640 712 第616组:312 910 962 第617组:315 420 525 第618组:315 572 653 第619组:315 624 699 第620组:315 756 819 第621组:318 424 530 第622组:319 360 481 第623组:320 336 464 第624组:320 462 562 第625组:320 600 680 第626组:320 768 832 第627组:321 428 535 第628组:322 480 578 第629组:324 432 540 第630组:324 693 765 第631组:324 945 999 第632组:325 360 485 第633组:325 780 845 第634组:327 436 545 第635组:328 615 697 第636组:330 440 550 第637组:330 560 650 第638组:330 792 858 第639组:333 444 555 第640组:333 644 725 第641组:335 804 871 第642组:336 377 505 第643组:336 385 511 第644组:336 448 560 第645组:336 527 625 第646组:336 540 636 第647组:336 630 714 第648组:336 748 820 第649组:336 850 914 第650组:339 452 565 第651组:340 357 493 第652组:340 528 628 第653组:340 816 884 第654组:341 420 541 第655组:342 456 570 第656组:344 645 731 第657组:345 460 575 第658组:345 756 831 第659组:345 828 897 第660组:348 464 580 第661组:348 805 877 第662组:350 576 674 第663组:350 840 910 第664组:351 468 585。
100以内常用勾股数组勾股定理是数学中一个重要的理论,他指出两个正整数的平方和等于另外一个正整数的平方,即:a+b = c,其中a和b称为勾股数。
因此,中学生一般都要掌握勾股数的知识,本文将介绍100以内的常用勾股数组。
首先,我们介绍1到10之间常用的勾股数组:3-4-5、5-12-13、7-24-25。
3-4-5为最常见的勾股数,由3+4=5成立,它在经典传统建筑中能够引人注目,最著名的例子就是古希腊的宙斯神殿。
5-12-13也是常用的勾股数组,它可以通过5+12=13证明。
它在建筑中的应用最著名的例子就是希伯来教堂,垂直支撑和双重砖柱都用到了这个勾股数组。
7-24-25是另一个常用的勾股数,它可以证明7+24=25。
它被用于古代建筑,比如印度的塔拉德拉塔,它就用到了7-24-25的勾股数组。
另外,我们还要介绍像20-21-29、28-45-53、36-77-85这类常用勾股数组。
20-21-29的勾股数组来自20+21=29。
它在建筑中的应用被应用在古哲学建筑中,比如古希腊的圆形十字架。
28-45-53的勾股数可以通过28+45=53的公式得出,它曾经在古希腊的神庙中被使用,作为神庙的支撑技术。
36-77-85的勾股数可以通过36+77=85的公式得出,它也被用于古代建筑,比如印度教堂,它也用到了这种勾股数组。
此外,40或以上的勾股数组也很常用,如63-80-97、60-91-109、84-87-141、 75-90-105等,它们也形成了古代建筑中重要的一部分。
63-80-97的勾股数可以通过63+80=97的公式得出,它被用于古代庙宇建筑,比如埃及的克里特神庙。
60-91-109的勾股数可以由60+91=109的公式证明,它也被用于古希腊的神殿,比如土耳其的卫兰神殿。
84-87-141的勾股数可以通过84+87=141的公式得出,它也被用于古代建筑,比如古印度的婆罗门神庙。
75-90-105的勾股数可以由75+90=105的公式证明,它曾经被用于古代庙宇建筑,比如伊朗的苏莱曼清真寺。
常见的勾股数及公式武安市黄冈实验学校 翟升华搜集整理我们知道,如果∠C=90°,a 、b 、c 是直角三角形的三边,则由勾股定理,得a 2+b 2=c 2;反之,若三角形的三边a 、b 、c 满足a 2+b 2=c 2,则该三角形是直角三角形,c 为斜边.与此相类似,如果三个正整数a 、b 、c 满足a 2+b 2=c 2,则称a 、b 、c 为勾股数,记为(a ,b ,c ).勾股数有无数多组,下面向同学们介绍几种:一、三数为连续整数的勾股数(3,4, 5)是我们所熟悉的一组三数为连续整数的勾股数,除此之外是否还有第二组或更多组呢?设三数为连续整数的勾股数组为(x -1,x ,x +1),则由勾股数的定义,得(x+1)2+x 2=(x+1)2,解得x=4或x =0(舍去),故三数为连续整数的勾股数只有一组(3,4,5);类似有3n,4n,5n (n 是正整数)都是勾股数 。
二、后两数为连续整数的勾股数易知:(5,12,13),(9,40,41),(113,6338,6385),…,都是勾股数,如此许许多多的后两数为连续整数的勾股数,它的一般形式究竟是什么呢?a=2n+1,b=2n 2+2n,c=2n 2+2n+1(其特点是斜边与其中一股的差为1).分别取n =1,2,3,…就得勾股数组(3,4,5),(5,12,13),(7,24,25),…三、前两数为连续整数的勾股数你知道(20,21,29),(119,120,169),(4059,4060,5741)…,这些都是前两数为连续整数的勾股数组。
其公式为:(x ,x +1,1222++x x )(x 为正整数)。
设前两数为连续整数的勾股数组为(x ,x +1,y ),y=1222++x x 则()2221y x x =++(*) 整理,得1222++x x =2y ,化为()121222-=-+y x ,即()y x 212++()y x 212-+=-1, 又()()2121-+=-1,∴()1221++n ()1221+-n =-1(n∈N), 故取()y x 212++=()1221++n ,()y x 212-+=()1221+-n ,解之,得x =41〔()1221++n +()1221+-n -2〕,y =42〔()1221++n -()1221+-n 〕, 故前两数为连续整数的勾股数组是(41〔()1221++n +()1221+-n -2〕,41〔()1221++n +()1221+-n -2〕+1,42〔()1221++n -()1221+-n 〕).四、后两数为连续奇数的勾股数如(8,15,17), (12,35,37) …其公式为:4(n+1),4(n+1)2-1,4(n+1)2+1(n 是正整数) .五、其它的勾股数组公式:1.a=2m,b=m 2-1,c=m 2+1(m 大于1的整数).2.a=21(m 2-n 2),b=mn,c= 21(m 2+n 2)(其中m>n 且是互质的奇数).3.a=2m,b=m 2-n 2,c=m 2+n 2(m>n,互质且一奇一偶的任意正整数).下面我们把100以内的勾股数组列出来,供同学们参考:3 4 5;5 12 13;6 8 10;7 24 25;8 15 17;9 12 15;9 40 41;10 24 26;11 60 61;12 16 20;12 35 37;13 84 85;14 48 50;15 20 25;15 36 39;15 112 113;16 30101;21 28 3521 72 75;21 220 221;22 120 122;23 264 265;24 32 40;24 4551;24 70 74;24 143 14525 60 65;25 312 313;26 168 170;27 36 45;27 120 123;27 364365;28 45 53;28 96 10028 195 197;29 420 421;30 40 50;30 72 78;30 224 226;31 480481;32 60 68;32 126 13032 255 257;33 44 55;33 56 65;33 180 183;33 544 545;34 288290;35 84 91;35 120 12535 612 613;36 48 60;36 77 85;36 105 111;36 160 164;36 323325;37 684 685;38 360 36239 52 65;39 80 89;39 252 255;39 760 761;40 42 58;40 7585;40 96 104;40 198 20240 399 401;41 840 841;42 56 70;42 144 150;42 440 442;43924 925;44 117 125;44 240 24444 483 485;45 60 75;45 108 117;45 200 205;45 336 339;46528 530;48 55 73;48 64 8048 90 102;48 140 148;48 189 195;48 286 290;48 575577;49 168 175;50 120 130;50 624 62651 68 85;51 140 149;51 432 435;52 165 173;52 336 340;52675 677;54 72 90;54 240 24654 728 730;55 132 143;55 300 305;56 90 106;56 105119;56 192 200;56 390 394;56 783 78557 76 95;57 176 185;57 540 543;58 840 842;60 63 87;60 80100;60 91 109;60 144 15660 175 185;60 221 229;60 297 303;60 448 452;60 899901;62 960 962;63 84 105;63 216 22563 280 287;63 660 663;64 120 136;64 252 260;64 510514;65 72 97;65 156 169;65 420 42566 88 110;66 112 130;66 360 366;68 285 293;68 576580;69 92 115;69 260 269;69 792 79570 168 182;70 240 250;72 96 120;72 135 153;72 154170;72 210 222;72 320 328;72 429 43572 646 650;75 100 125;75 180 195;75 308 317;75 560565;75 936 939;76 357 365;76 720 72477 264 275;77 420 427;78 104 130;78 160 178;78 504510;80 84 116;80 150 170;80 192 20880 315 325;80 396 404;80 798 802;81 108 135;81 360369;84 112 140;84 135 159;84 187 20584 245 259;84 288 300;84 437 445;84 585 591;84 880884;85 132 157;85 204 221;85 720 72587 116 145;87 416 425;88 105 137;88 165 187;88 234250;88 480 488;88 966 970;90 120 15090 216 234;90 400 410;90 672 678;91 312 325;91 588595;92 525 533;93 124 155;93 476 48595 168 193;95 228 247;95 900 905;96 110 146;96 128160;96 180 204;96 247 265;96 280 296100 105 145;100 240 260;100 495 505;100 621 629.以下是大于100的勾股数:第223组:102 136 170第224组:102 280 298第225组:102 864 870第226组:104 153 185第227组:104 195 221第228组:104 330 346第229组:104 672 680第230组:105 140 175第231组:105 208 233第232组:105 252 273第233组:105 360 375第234组:105 608 617第235组:105 784 791第236组:108 144 180第237组:108 231 255第238组:108 315 333第239组:108 480 492第240组:108 725 733第241组:108 969 975第242组:110 264 286第243组:110 600 610第244组:111 148 185第245组:111 680 689第246组:112 180 212第247组:112 210 238第248组:112 384 400第249组:112 441 455第250组:112 780 788第251组:114 152 190第252组:114 352 370第253组:115 252 277第254组:115 276 299第255组:116 837 845第256组:117 156 195第257组:117 240 267第258组:117 520 533第259组:117 756 765第260组:119 120 169第261组:119 408 425第262组:120 126 174第263组:120 160 200第264组:120 182 218第265组:120 209 241第266组:120 225 255第267组:120 288 312第270组:120 442 458 第271组:120 594 606 第272组:120 715 725 第273组:120 896 904 第274组:121 660 671 第275组:123 164 205 第276组:123 836 845 第277组:124 957 965 第278组:125 300 325 第279组:126 168 210 第280组:126 432 450 第281组:126 560 574 第282组:128 240 272 第283组:128 504 520 第284组:129 172 215 第285组:129 920 929 第286组:130 144 194 第287组:130 312 338 第288组:130 840 850 第289组:132 176 220 第290组:132 224 260 第291组:132 351 375 第292组:132 385 407 第293组:132 475 493 第294组:132 720 732 第295组:133 156 205 第296组:133 456 475 第297组:135 180 225 第298组:135 324 351 第299组:135 352 377 第300组:135 600 615 第301组:136 255 289 第302组:136 273 305 第303组:136 570 586 第304组:138 184 230 第305组:138 520 538 第306组:140 147 203 第307组:140 171 221 第308组:140 225 265 第309组:140 336 364 第310组:140 480 500 第311组:140 693 707 第312组:140 975 985 第313组:141 188 235 第314组:143 780 793 第315组:143 924 935 第316组:144 165 219第322组:144 640 656 第323组:144 858 870 第324组:145 348 377 第325组:145 408 433 第326组:147 196 245 第327组:147 504 525 第328组:150 200 250 第329组:150 360 390 第330组:150 616 634 第331组:152 285 323 第332组:152 345 377 第333组:152 714 730 第334组:153 204 255 第335组:153 420 447 第336组:153 680 697 第337组:154 528 550 第338组:154 840 854 第339组:155 372 403 第340组:155 468 493 第341组:156 208 260 第342组:156 320 356 第343组:156 455 481 第344组:156 495 519 第345组:156 667 685 第346组:159 212 265 第347组:160 168 232 第348组:160 231 281 第349组:160 300 340 第350组:160 384 416 第351组:160 630 650 第352组:160 792 808 第353组:161 240 289 第354组:161 552 575 第355组:162 216 270 第356组:162 720 738 第357组:165 220 275 第358组:165 280 325 第359组:165 396 429 第360组:165 532 557 第361组:165 900 915 第362组:168 224 280 第363组:168 270 318 第364组:168 315 357 第365组:168 374 410第371组:170 264 314 第372组:170 408 442 第373组:171 228 285 第374组:171 528 555 第375组:171 760 779 第376组:174 232 290 第377组:174 832 850 第378组:175 288 337 第379组:175 420 455 第380组:175 600 625 第381组:176 210 274 第382组:176 330 374 第383组:176 468 500 第384组:176 693 715 第385组:176 960 976 第386组:177 236 295 第387组:180 189 261 第388组:180 240 300 第389组:180 273 327 第390组:180 299 349 第391组:180 385 425 第392组:180 432 468 第393组:180 525 555 第394组:180 663 687 第395组:180 800 820 第396组:180 891 909 第397组:182 624 650 第398组:183 244 305 第399组:184 345 391 第400组:184 513 545 第401组:185 444 481 第402组:185 672 697 第403组:186 248 310 第404组:186 952 970 第405组:189 252 315 第406组:189 340 389 第407组:189 648 675 第408组:189 840 861 第409组:190 336 386 第410组:190 456 494 第411组:192 220 292 第412组:192 256 320 第413组:192 360 408 第414组:192 494 530第420组:195 468 507 第421组:195 748 773 第422组:196 315 371 第423组:196 672 700 第424组:198 264 330 第425组:198 336 390 第426组:198 880 902 第427组:200 210 290 第428组:200 375 425 第429组:200 480 520 第430组:200 609 641 第431组:201 268 335 第432组:203 396 445 第433组:203 696 725 第434组:204 253 325 第435组:204 272 340 第436组:204 560 596 第437组:204 595 629 第438组:204 855 879 第439组:205 492 533 第440组:205 828 853 第441组:207 224 305 第442组:207 276 345 第443组:207 780 807 第444组:207 920 943 第445组:208 306 370 第446组:208 390 442 第447组:208 660 692 第448组:208 819 845 第449组:210 280 350 第450组:210 416 466 第451组:210 504 546 第452组:210 720 750 第453组:213 284 355 第454组:215 516 559 第455组:215 912 937 第456组:216 288 360 第457组:216 405 459 第458组:216 462 510 第459组:216 630 666 第460组:216 713 745 第461组:216 960 984 第462组:217 456 505 第463组:217 744 775第469组:222 296 370 第470组:224 360 424 第471组:224 420 476 第472组:224 768 800 第473组:224 882 910 第474组:225 272 353 第475组:225 300 375 第476组:225 540 585 第477组:225 924 951 第478组:228 304 380 第479组:228 325 397 第480组:228 665 703 第481组:228 704 740 第482组:230 504 554 第483组:230 552 598 第484组:231 308 385 第485组:231 392 455 第486组:231 520 569 第487组:231 792 825 第488组:232 435 493 第489组:232 825 857 第490组:234 312 390 第491组:234 480 534 第492组:235 564 611 第493组:237 316 395 第494组:238 240 338 第495组:238 816 850 第496组:240 252 348 第497组:240 275 365 第498组:240 320 400 第499组:240 364 436 第500组:240 418 482 第501组:240 450 510 第502组:240 551 601 第503组:240 576 624 第504组:240 700 740 第505组:240 782 818 第506组:240 884 916 第507组:240 945 975 第508组:243 324 405 第509组:245 588 637 第510组:245 840 875 第511组:246 328 410 第512组:248 465 527第518组:252 405 477 第519组:252 539 595 第520组:252 561 615 第521组:252 735 777 第522组:252 864 900 第523组:255 340 425 第524组:255 396 471 第525组:255 612 663 第526组:255 700 745 第527组:256 480 544 第528组:258 344 430 第529组:259 660 709 第530组:259 888 925 第531组:260 273 377 第532组:260 288 388 第533组:260 624 676 第534组:260 651 701 第535组:260 825 865 第536组:261 348 435 第537组:261 380 461 第538组:264 315 411 第539组:264 352 440 第540组:264 448 520 第541组:264 495 561 第542组:264 702 750 第543组:264 770 814 第544组:264 950 986 第545组:265 636 689 第546组:266 312 410 第547组:266 912 950 第548组:267 356 445 第549组:270 360 450 第550组:270 648 702 第551组:270 704 754 第552组:272 510 578 第553组:272 546 610 第554组:273 364 455 第555组:273 560 623 第556组:273 736 785 第557组:273 936 975 第558组:275 660 715 第559组:276 368 460 第560组:276 493 565 第561组:276 805 851第567组:280 450 530 第568组:280 525 595 第569组:280 672 728 第570组:280 759 809 第571组:280 960 1000 第572组:282 376 470 第573组:285 380 475 第574组:285 504 579 第575组:285 684 741 第576组:285 880 925 第577组:287 816 865 第578组:288 330 438 第579组:288 384 480 第580组:288 540 612 第581组:288 616 680 第582组:288 741 795 第583组:288 840 888 第584组:290 696 754 第585组:290 816 866 第586组:291 388 485 第587组:294 392 490 第588组:295 708 767 第589组:296 555 629 第590组:297 304 425 第591组:297 396 495 第592组:297 504 585 第593组:300 315 435 第594组:300 400 500 第595组:300 455 545 第596组:300 589 661 第597组:300 720 780 第598组:300 875 925 第599组:301 900 949 第600组:303 404 505 第601组:304 570 646 第602组:304 690 754 第603组:305 732 793 第604组:306 408 510 第605组:306 840 894 第606组:308 435 533 第607组:308 495 583 第608组:308 819 875 第609组:309 412 515 第610组:310 744 806第614组:312 585 663 第615组:312 640 712 第616组:312 910 962 第617组:315 420 525 第618组:315 572 653 第619组:315 624 699 第620组:315 756 819 第621组:318 424 530 第622组:319 360 481 第623组:320 336 464 第624组:320 462 562 第625组:320 600 680 第626组:320 768 832 第627组:321 428 535 第628组:322 480 578 第629组:324 432 540 第630组:324 693 765 第631组:324 945 999 第632组:325 360 485 第633组:325 780 845 第634组:327 436 545 第635组:328 615 697 第636组:330 440 550 第637组:330 560 650 第638组:330 792 858 第639组:333 444 555 第640组:333 644 725 第641组:335 804 871 第642组:336 377 505 第643组:336 385 511 第644组:336 448 560 第645组:336 527 625 第646组:336 540 636 第647组:336 630 714 第648组:336 748 820 第649组:336 850 914 第650组:339 452 565 第651组:340 357 493 第652组:340 528 628 第653组:340 816 884 第654组:341 420 541 第655组:342 456 570 第656组:344 645 731 第657组:345 460 575 第658组:345 756 831 第659组:345 828 897第664组:351 468 585 第665组:351 720 801 第666组:352 420 548 第667组:352 660 748 第668组:352 936 1000 第669组:354 472 590 第670组:355 852 923 第671组:357 360 507 第672组:357 476 595 第673组:360 378 522 第674组:360 480 600 第675组:360 546 654 第676组:360 598 698 第677组:360 627 723 第678组:360 675 765 第679组:360 770 850 第680组:360 864 936 第681组:363 484 605 第682组:363 616 715 第683组:364 585 689 第684组:364 627 725 第685组:365 876 949 第686组:366 488 610 第687组:368 465 593 第688组:368 690 782 第689组:369 492 615 第690组:369 800 881 第691组:370 888 962 第692组:372 496 620 第693组:372 925 997 第694组:375 500 625 第695组:375 900 975 第696组:376 705 799 第697组:378 504 630 第698组:378 680 778 第699组:380 399 551 第700组:380 672 772 第701组:380 912 988 第702组:381 508 635 第703组:384 440 584 第704组:384 512 640 第705组:384 720 816 第706组:385 552 673 第707组:387 516 645 第708组:387 884 965第714组:393 524 655 第715组:396 403 565 第716组:396 528 660 第717组:396 672 780 第718组:396 847 935 第719组:399 468 615 第720组:399 532 665 第721组:400 420 580 第722组:400 561 689 第723组:400 750 850 第724组:402 536 670 第725组:405 540 675 第726组:406 792 890 第727组:407 624 745 第728组:408 506 650 第729组:408 544 680 第730组:408 765 867 第731组:408 819 915 第732组:411 548 685 第733组:414 448 610 第734组:414 552 690 第735组:416 612 740 第736组:416 780 884 第737组:417 556 695 第738组:420 441 609 第739组:420 513 663 第740组:420 560 700 第741组:420 637 763 第742组:420 675 795 第743组:420 832 932 第744组:420 851 949 第745组:423 564 705 第746组:424 795 901 第747组:425 660 785 第748组:426 568 710 第749组:429 460 629 第750组:429 572 715 第751组:429 700 821 第752组:429 728 845 第753组:429 880 979 第754组:432 495 657 第755组:432 576 720 第756组:432 665 793 第757组:432 810 918第763组:441 588 735 第764组:444 592 740 第765组:447 596 745 第766组:448 720 848 第767组:448 840 952 第768组:450 544 706 第769组:450 600 750 第770组:451 780 901 第771组:453 604 755 第772组:455 504 679 第773组:455 528 697 第774组:456 608 760 第775组:456 650 794 第776组:456 855 969 第777组:459 612 765 第778组:460 483 667 第779组:462 616 770 第780组:462 784 910 第781组:464 777 905 第782组:464 870 986 第783组:465 620 775 第784组:468 595 757 第785组:468 624 780 第786组:471 628 785 第787组:473 864 985 第788组:474 632 790 第789组:475 840 965 第790组:476 480 676 第791组:476 765 901 第792组:477 636 795 第793组:480 504 696 第794组:480 550 730 第795组:480 640 800 第796组:480 693 843 第797组:480 728 872 第798组:480 836 964 第799组:481 600 769 第800组:483 644 805 第801组:483 720 867 第802组:486 648 810 第803组:489 652 815 第804组:492 656 820 第805组:495 660 825 第806组:495 840 975第811组:504 672 840 第812组:504 703 865 第813组:504 810 954 第814组:507 676 845 第815组:510 680 850 第816组:510 792 942 第817组:513 684 855 第818组:516 688 860 第819组:519 692 865 第820组:520 546 754 第821组:520 576 776 第822组:520 765 925 第823组:522 696 870 第824组:522 760 922 第825组:525 700 875 第826组:528 605 803 第827组:528 630 822 第828组:528 704 880 第829组:531 708 885 第830组:532 624 820 第831组:533 756 925 第832组:534 712 890 第833组:537 716 895 第834组:540 567 783 第835组:540 629 829 第836组:540 720 900 第837组:540 819 981 第838组:543 724 905 第839组:546 728 910 第840组:549 732 915 第841组:552 736 920 第842组:555 572 797 第843组:555 740 925 第844组:558 744 930 第845组:560 588 812 第846组:560 684 884 第847组:560 702 898 第848组:561 748 935 第849组:564 752 940 第850组:567 756 945 第851组:570 760 950 第852组:573 764 955 第853组:576 660 876 第854组:576 768 960 第855组:579 772 965第858组:582 776 970 第859组:585 648 873 第860组:585 780 975 第861组:588 784 980 第862组:591 788 985 第863组:594 608 850 第864组:594 792 990 第865组:595 600 845 第866组:597 796 995 第867组:600 630 870 第868组:600 800 1000 第869组:612 759 975 第870组:615 728 953 第871组:616 663 905 第872组:616 735 959 第873组:620 651 899 第874组:621 672 915 第875组:624 715 949 第876组:638 720 962 第877组:640 672 928 第878组:650 720 970 第879组:660 693 957 第880组:680 714 986 第881组:696 697 985。
数学勾股定理公式大全勾股定理的证明方法数学勾股定理公式是asup2;+bsup2;=csup2;。
勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。
中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
数学勾股定理公式大全数学勾股定理公式是asup2;+bsup2;=csup2;。
勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。
中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。
勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
在中国,周朝时期的商高提出了勾三股四弦五的勾股定理的特例。
在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他们用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
勾股定理的证明方法做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们拼成两个正方形。
可以看到,这两个正方形的边长都是a+b,所以面积相等.即a的平方加b的平方,加4乘以二分之一ab等于c的平方,加4乘以二分之一ab,整理得a的平方加b的平方等于c的平方。
勾股定理,是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。
中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。
勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
勾股定理常用数组根号及规律一、基本原理勾股定理中,直角边的平方和等于斜边的平方,即c2 = a2 + b2。
如果已知其中任意两个量,就可以求出剩下的一个量。
举个例子,已知直角边a和斜边c的长度,便可通过勾股定理计算出直角边b的长度,即b = √(c2 - a2)。
同理,已知直角边b和斜边c的长度,也可以计算出直角边a的长度。
另外,勾股定理还可以用于判定三角形是否为直角三角形。
如果已知三角形三边长度,若满足c2 = a2 + b2,则该三角形为直角三角形。
二、勾股数勾股数指的是满足勾股定理的正整数数对,如(3,4,5)、(5,12,13)等。
勾股数是勾股定理的经典应用,也是直角三角形中最简单、最常见的形态。
具体而言,勾股数有以下性质:1. 勾股数一定存在。
根据欧几里得算法,任意两个正整数a 和b(a>b)都可以表示成a = k·b + r的形式,其中k、r为正整数,r n>0。
2. 勾股数有无限多组。
因为可以取不同的整数m和n,得到不同组的勾股数。
3. 勾股数中,斜边是两直角边的算术平均数。
即c =(a+b)/2,这是勾股定理的另一种表述形式。
4. 每个奇数都可以表示成两个平方数之差。
根据勾股数的通式,若n为奇数,则取n=2k+1,即可得到a=k2-(k+1)2,b=2k(k+1),c=k2+(k+1)2。
因此,每个奇数都可以表示成两个平方数之差。
三、根号的运算在勾股定理的运算中,根号起到了举足轻重的作用。
根据勾股定理的通式c = √(a2 + b2),可以将根号的运算归纳为以下几种:1. 带根式的加减法。
如√2 + √3、√5 - √2等。
2. 带根式的乘法。
如√2·√3、(√2 + √3)·(√2 - √3)等。
3. 带根式的除法。
如√10/√2、(√6+√2)/(√6-√2)等。
4. 同底数根式的加减法。
如3√2 + 2√2、4√3 - 2√3等。
5. 平方根的运算。
史仲夏勾股数组通解公式及(3≤a≤100)常⽤勾股数组表史仲夏勾股数组通解公式及(3≤a≤100)常⽤勾股数组表公式:a^2+b^2=(b+k)^2,k=1.2.3.……令a=mk,b=k(m^2-1)/2。
规律:当a=质数时,k=1且只有⼀组勾股数组。
当a=质数的2倍时,k=2,也只有⼀组勾股数组。
k必须是整数,m通常是奇数或分数。
除⾮k与m同是偶数。
k为奇数时,为分母的平⽅。
k为偶数时,为分母的⽴⽅。
a=mk=3,k=1,m=3,b=k(m^2-1)/2=4,3^2+4^2=5^2a=mk=4,k=2,m=2,b=k(m^2-1)/2=3,4^2+3^2=5^2*a=mk=5,k=1,m=5,b=k(m^2-1)/2=12,5^2+12^2=13^2a=mk=6,k=2,m=3,b=k(m^2-1)/2=8,6^2+8^2=10^2a=mk=7,k=1,m=7,b=k(m^2-1)/2=24,7^2+24^2=25^2a=mk=8,k=2,m=4,b=k(m^2-1)/2=15,8^2+15^2=17^2a=mk=8,k=4,m=2,b=k(m^2-1)/2=6,8^2+6^2=10^2*a=mk=9,k=1,m=9,b=k(m^2-1)/2=40,9^2+40^2=41^2a=mk=9,k=3,m=3,b=k(m^2-1)/2=12,9^2+12^2=15^2a=mk=10,k=2,m=5,b=k(m^2-1)/2=24,10^2+24^2=26^2a=mk=11,k=1,m=11,b=k(m^2-1)/2=60,11^2+60^2=61^2a=mk=12,k=2,m=6,b=k(m^2-1)/2=35,12^2+35^2=37^2a=mk=12,k=4,m=3,b=k(m^2-1)/2=16,12^2+16^2=20^2a=mk=12,k=6,m=2,b=k(m^2-1)/2=9,12^2+9^2=15^2*a=mk=12,k=8,m=3/2,b=k(m^2-1)/2=5,12^2+5^2=13^2*a=mk=13,k=1,m=13,b=k(m^2-1)/2=84,13^2+84^2=85^2a=mk=14,k=2,m=7,b=k(m^2-1)/2=48,14^2+48^2=50^2a=mk=15,k=1,m=15,b=k(m^2-1)/2=112,15^2+112^2=113^2a=mk=15,k=3,m=5,b=k(m^2-1)/2=36,15^2+36^2=39^2a=mk=15,k=5,m=3,b=k(m^2-1)/2=20,15^2+20^2=25^2a=mk=15,k=9,m=5/3,b=k(m^2-1)/2=72,15^2+72^2=81^2a=mk=16,k=2,m=8,b=k(m^2-1)/2=63,16^2+63^2=65^2a=mk=16,k=8,m=2,b=k(m^2-1)/2=12,16^2+12^2=20^2*a=mk=16,k=4,m=4,b=k(m^2-1)/2=30,16^2+30^2=34^2a=mk=17,k=1,m=17,b=k(m^2-1)/2=44,17^2+44^2=45^2a=mk=18,k=2,m=9,b=k(m^2-1)/2=80,18^2+80^2=82^2a=mk=18,k=6,m=3,b=k(m^2-1)/2=24,18^2+24^2=30^2a=mk=19,k=1,m=19,b=k(m^2-1)/2=180,19^2+180^2=181^2a=mk=20,k=2,m=10,b=k(m^2-1)/2=99,20^2+99^2=101^2a=mk=20,k=4,m=5,b=k(m^2-1)/2=48,20^2+48^2=52^2a=mk=20,k=8,m=5/2,b=k(m^2-1)/2=21,20^2+21^2=29^2a=mk=20,k=10,m=2,b=k(m^2-1)/2=15,20^2+15^2=25^2*a=mk=21,k=1,m=21,b=k(m^2-1)/2=220,21^2+220^2=221^2a=mk=21,k=3,m=7,b=k(m^2-1)/2=72,21^2+72^2=75^2a=mk=21,k=7,m=3,b=k(m^2-1)/2=28,21^2+28^2=35 ^2a=mk=21,k=9,m=7/3,b=k(m^2-1)/2=20,21^2+20^2=29^2*a=mk=22,k=2,m=11,b=k(m^2-1)/2=120,22^2+120^2=122^2a=mk=23,k=1,m=23,b=k(m^2-1)/2=264,23^2+264^2=265^2a=mk=24,k=2,m=12,b=k(m^2-1)/2=143,24^2+143^2=145^2a=mk=24,k=4,m=6,b=k(m^2-1)/2=70,24^2+70^2=74^2a=mk=24,k=6,m=4,b=k(m^2-1)/2=45,24^2+45^2=51^2a=mk=24,k=8,m=3,b=k(m^2-1)/2=32,24^2+32^2=40^2a=mk=24,k=12,m=2,b=k(m^2-1)/2=18,24^2+18^2=30^2*a=mk=24,k=16,m=3/2,b=k(m^2-1)/2=10,24^2+10^2=26^2*a=mk=24,k=18,m=4/3,b=k(m^2-1)/2=7,24^2+7^2=25^2*a=mk=25,k=1,m=25,b=k(m^2-1)/2=112,25^2+612^2=613^2a=mk=25,k=5,m=5,b=k(m^2-1)/2=,25^2+60^2=65^2a=mk=28,k=8,m=7/2,b=k(m^2-1)/2=45,28^2+45^2=53^2a=mk=28,k=14,m=2,b=k(m^2-1)/2=21,28^2+21^2=35^2*a=mk=29,k=1,m=29,b=k(m^2-1)/2=420,29^2+420^2=421^2a=mk=30,k=2,m=15,b=k(m^2-1)/2=224,30^2+224^2=226^2a=mk=30,k=6,m=5,b=k(m^2-1)/2=72,30^2+72^2=78^2a=mk=30,k=10,m=3,b=k(m^2-1)/2=40,30^2+40^2=50^2a=mk=30,k=18,m=5/3,b=k(m^2-1)/2=16,30^2+16^2=34^2*a=mk=31,k=1,m=31,b=k(m^2-1)/2=480,31^2+480^2=481^2a=mk=32,k=2,m=16,b=k(m^2-1)/2=255,32^2+255^2=257^2a=mk=32,k=4,m=8,b=k(m^2-1)/2=126,32^2+126^2=130^2a=mk=32,k=8,m=4,b=k(m^2-1)/2=60,32^2+60^2=68^2a=mk=32,k=16,m=2,b=k(m^2-1)/2=,32^2+24^2=40^2*a=mk=33,k=1,m=33,b=k(m^2-1)/2=544,33^2+544^2=545^2a=mk=33,k=3,m=11,b=k(m^2-1)/2=180,33^2+180^2=183^2a=mk=33,k=9,m=11/3,b=k(m^2-1)/2=56,33^2+56^2=65^2a=mk=33,k=11,m=3,b=k(m^2-1)/2=44,33^2+44^2=55^2a=mk=34,k=2,m=17,b=k(m^2-1)/2=288,34^2+288^2=290^2a=mk=35,k=1,m=35,b=k(m^2-1)/2=612,35^2+612^2=613^2a=mk=35,k=5,m=7,b=k(m^2-1)/2=120,35^2+120^2=125^2a=mk=35,k=7,m=5,b=k(m^2-1)/2=84,35^2+84^2=95^2a=mk=35,k=25,m=7/5,b=k(m^2-1)/2=12,35^2+12^2=37^2a=mk=36,k=2,m=18,b=k(m^2-1)/2=323,36^2+323^2=325^2a=mk=36,k=6,m=6,b=k(m^2-1)/2=105,36^2+105^2=111^2a=mk=36,k=8,m=9/2,b=k(m^2-1)/2=77,36^2+77^2=85^2a=mk=36,k=12,m=3,b=k(m^2-1)/2=48,36^2+48^2=60^2a=mk=36,k=18,m=2,b=k(m^2-1)/2=27,36^2+27^2=35^2*a=mk=37,k=1,m=37,b=k(m^2-1)/2=684,37^2+684^2=685^2a=mk=38,k=2,m=19,b=k(m^2-1)/2=360,38^2+360^2=361^2a=mk=39,k=1,m=39,b=k(m^2-1)/2=760,39^2+760^2=761^2a=mk=39,k=3,m=13,b=k(m^2-1)/2=252,39^2+252^2=255^2a=mk=39,k=9,m=13/3,b=k(m^2-1)/2=80,39^2+80^2=89^2a=mk=40,k=2,m=20,b=k(m^2-1)/2=399,40^2+399^2=401^2a=mk=40,k=4,m=10,b=k(m^2-1)/2=198,40^2+198^2=202^2a=mk=40,k=8,m=5,b=k(m^2-1)/2=96,40^2+96^2=104^2a=mk=40,k=10,m=4,b=k(m^2-1)/2=75,40^2+75^2=85^2a=mk=40,k=32,m=5/4,b=k(m^2-1)/2=9,40^2+9^2=41^2*a=mk=41,k=1,m=41,b=k(m^2-1)/2=840,41^2+840^2=841^2a=mk=42,k=2,m=21,b=k(m^2-1)/2=440,42^2+440^2=442^2a=mk=42,k=6,m=7,b=k(m^2-1)/2=144,42^2+144^2=150^2a=mk=42,k=14,m=3,b=k(m^2-1)/2=56,42^2+56^2=70^2a=mk=42,k=18,m=7/3,b=k(m^2-1)/2=40,42^2+40^2=58^2a=mk=43,k=1,m=43,b=k(m^2-1)/2=924,43^2+924^2=925^2a=mk=44,k=2,m=22,b=k(m^2-1)/2=483,44^2+483^2=485^2a=mk=44,k=4,m=11,b=k(m^2-1)/2=240,44^2+240^2=244^2a=mk=44,k=8,m=11/2,b=k(m^2-1)/2=117,44^2+117^2=125^2 a=mk=44,k=22,m=2,b=k(m^2-1)/2=33,44^2+33^2=55^2*a=mk=45,k=1,m=45,b=k(m^2-1)/2=1012,45^2+1012^2=1013^2 a=mk=45,k=3,m=15,b=k(m^2-1)/2=336,45^2+336^2=339^2a=mk=45,k=5,m=9,b=k(m^2-1)/2=200,45^2+200^2=205^2a=mk=45,k=9,m=5,b=k(m^2-1)/2=108,45^2+108^2=117^2a=mk=45,k=15,m=3,b=k(m^2-1)/2=60,45^2+60^2=75^2a=mk=45,k=27,m=5/3,b=k(m^2-1)/2=24,45^2+24^2=51^2*a=mk=46,k=2,m=23,b=k(m^2-1)/2=528,46^2+528^2=530^2a=mk=47,k=1,m=47,b=k(m^2-1)/2=1104,47^2+1104^2=1105^2 a=mk=48,k=2,m=24,b=k(m^2-1)/2=575,48^2+575^2=577^2a=mk=48,k=4,m=12,b=k(m^2-1)/2=286,48^2+286^2=290^2a=mk=49,k=1,m=49,b=k(m^2-1)/2=1200,49^2+1200^2=1201^2 a=mk=49,k=7,m=7,b=k(m^2-1)/2=168,49^2+168^2=175^2a=mk=50,k=2,m=25,b=k(m^2-1)/2=624,50^2+624^2=626^2a=mk=50,k=10,m=5,b=k(m^2-1)/2=120,50^2+120^2=130^2a=mk=51,k=1,m=51,b=k(m^2-1)/2=1300,51^2+1300^2=1301^2 a=mk=51,k=3,m=17,b=k(m^2-1)/2=432,51^2+432^2=435^2a=mk=51,k=9,m=17/3,b=k(m^2-1)/2=140,51^2+140^2=149^2 a=mk=51,k=17,m=3,b=k(m^2-1)/2=68,51^2+68^2=85^2a=mk=52,k=2,m=26,b=k(m^2-1)/2=675,52^2+675^2=677^2a=mk=52,k=4,m=13,b=k(m^2-1)/2=336,52^2+336^2=340^2a=mk=52,k=8,m=13/2,b=k(m^2-1)/2=165,52^2+165^2=173^2 a=mk=52,k=26,m=2,b=k(m^2-1)/2=39,52^2+39^2=65^2*a=mk=53,k=1,m=53,b=k(m^2-1)/2=1404,53^2+1404^2=1405^2 a=mk=54,k=2,m=27,b=k(m^2-1)/2=728,54^2+728^2=730^2a=mk=54,k=6,m=9,b=k(m^2-1)/2=240,54^2+240^2=246^2a=mk=54,k=18,m=3,b=k(m^2-1)/2=72,54^2+72^2=90^2a=mk=55,k=1,m=55,b=k(m^2-1)/2=1512,55^2+1512^2=1513^2 a=mk=55,k=5,m=11,b=k(m^2-1)/2=300,55^2+300^2=305^2a=mk=55,k=11,m=5,b=k(m^2-1)/2=132,55^2+132^2=143^2a=mk=55,k=25,m=11/5,b=k(m^2-1)/2=48,55^2+48^2=73^2*a=mk=56,k=2,m=28,b=k(m^2-1)/2=783,56^2+783^2=785^2a=mk=56,k=4,m=14,b=k(m^2-1)/2=390,56^2+390^2=394^2a=mk=56,k=8,m=7,b=k(m^2-1)/2=192,56^2+192^2=200^2a=mk=56,k=14,m=4,b=k(m^2-1)/2=105,56^2+105^2=119^2a=mk=56,k=32,m=7/4,b=k(m^2-1)/2=33,56^2+33^2=65^2*a=mk=57,k=1,m=57,b=k(m^2-1)/2=1624,57^2+1624^2=1625^2 a=mk=57,k=3,m=19,b=k(m^2-1)/2=540,57^2+540^2=543^2a=mk=57,k=9,m=19/3,b=k(m^2-1)/2=176,57^2+176^2=185^2 a=mk=57,k=19,m=3,b=k(m^2-1)/2=76,57^2+76^2=95^2a=mk=58,k=2,m=29,b=k(m^2-1)/2=840,58^2+840^2=842^2a=mk=59,k=1,m=59,b=k(m^2-1)/2=1740,59^2+1740^2=1741^2 a=mk=60,k=2,m=30,b=k(m^2-1)/2=899,60^2+899^2=901^2a=mk=60,k=4,m=15,b=k(m^2-1)/2=448,60^2+448^2=452^2a=mk=60,k=6,m=10,b=k(m^2-1)/2=297,60^2+297^2=303^2a=mk=60,k=8,m=15/2,b=k(m^2-1)/2=221,60^2+221^2=229^2 a=mk=60,k=12,m=5,b=k(m^2-1)/2=144,60^2+144^2=156^2a=mk=60,k=24,m=5/2,b=k(m^2-1)/2=63,60^2+63^2=87^2a=mk=61,k=1,m=61,b=k(m^2-1)/2=1860,61^2+2860^2=1861^2 a=mk=62,k=2,m=31,b=k(m^2-1)/2=960,62^2+960^2=962^2a=mk=63,k=1,m=63,b=k(m^2-1)/2=1984,63^2+1984^2=1985^2 a=mk=63,k=3,m=21,b=k(m^2-1)/2=220,63^2+220^2=223^2a=mk=63,k=7,m=9,b=k(m^2-1)/2=280,63^2+280^2=287^2a=mk=63,k=9,m=7,b=k(m^2-1)/2=216,63^2+216^2=225^2a=mk=63,k=21,m=3,b=k(m^2-1)/2=84,63^2+84^2=105^2a=mk=63,k=27,m=7/3,b=k(m^2-1)/2=60,63^2+60^2=87^2*a=mk=64,k=2,m=32,b=k(m^2-1)/2=1023,64^2+1023^2=1025^2 a=mk=64,k=4,m=16,b=k(m^2-1)/2=514,64^2+514^2=518^2a=mk=64,k=8,m=8,b=k(m^2-1)/2=252,64^2+252^2=260^2a=mk=64,k=16,m=4,b=k(m^2-1)/2=120,64^2+120^2=136^2a=mk=64,k=32,m=2,b=k(m^2-1)/2=48,64^2+48^2=80^2*a=mk=65,k=5,m=13,b=k(m^2-1)/2=420,65^2+420^2=425^2a=mk=65,k=13,m=5,b=k(m^2-1)/2=156,65^2+156^2=169^2a=mk=65,k=25,m=13/5,b=k(m^2-1)/2=84,65^2+84^2=105^2a=mk=66,k=2,m=33,b=k(m^2-1)/2=544,66^2+544^2=546^2a=mk=66,k=6,m=11,b=k(m^2-1)/2=360,66^2+360^2=366^2a=mk=66,k=22,m=3,b=k(m^2-1)/2=88,66^2+88^2=110^2a=mk=69,k=1,m=69,b=k(m^2-1)/2=2380,69^2+2380^2=2381^2 a=mk=69,k=3,m=23,b=k(m^2-1)/2=792,69^2+792^2=795^2a=mk=69,k=9,m=23/3,b=k(m^2-1)/2=260,69^2+260^2=269^2 a=mk=70,k=2,m=35,b=k(m^2-1)/2=1224,70^2+1224^2=1226^2 a=mk=70,k=10,m=7,b=k(m^2-1)/2=240,70^2+240^2=250^2a=mk=70,k=50,m=7/5,b=k(m^2-1)/2=24,70^2+24^2=74^2a=mk=71,k=1,m=71,b=k(m^2-1)/2=2520,71^2+2520^2=2521^2 a=mk=72,k=2,m=36,b=k(m^2-1)/2=1295,72^2+1295^2=1297^2 a=mk=72,k=4,m=18,b=k(m^2-1)/2=646,72^2+646^2=650^2a=mk=72,k=6,m=12,b=k(m^2-1)/2=429,72^2+429^2=435^2a=mk=72,k=8,m=9,b=k(m^2-1)/2=320,72^2+320^2=328^2a=mk=72,k=24,m=3,b=k(m^2-1)/2=96,72^2+96^2=120^2a=mk=72,k=36,m=2,b=k(m^2-1)/2=54,72^2+54^2=90^2*a=mk=72,k=48,m=3/2,b=k(m^2-1)/2=30,72^2+30^2=78^2*a=mk=73,k=1,m=73,b=k(m^2-1)/2=2664,73^2+2664^2=2665^2 a=mk=74,k=2,m=37,b=k(m^2-1)/2=1368,74^2+1368^2=1370^2 a=mk=75,k=1,m=75,b=k(m^2-1)/2=2812,75^2+2812^2=2813^2 a=mk=75,k=3,m=25,b=k(m^2-1)/2=936,75^2+936^2=939^2a=mk=75,k=5,m=15,b=k(m^2-1)/2=560,75^2+560^2=565^2a=mk=75,k=15,m=5,b=k(m^2-1)/2=180,75^2+180^2=195^2a=mk=75,k=25,m=3,b=k(m^2-1)/2=100,75^2+100^2=125^2a=mk=76,k=2,m=38,b=k(m^2-1)/2=1443,76^2+1443^2=1445^2 a=mk=76,k=4,m=19,b=k(m^2-1)/2=720,76^2+720^2=724^2a=mk=76,k=8,m=19/2,b=k(m^2-1)/2=357,76^2+357^2=365^2 a=mk=76,k=38,m=2,b=k(m^2-1)/2=57,76^2+57^2=95^2*a=mk=77,k=1,m=77,b=k(m^2-1)/2=2964,77^2+2964^2=2965^2 a=mk=77,k=7,m=11,b=k(m^2-1)/2=420,77^2+420^2=427^2a=mk=77,k=11,m=7,b=k(m^2-1)/2=264,77^2+264^2=275^2a=mk=77,k=49,m=11/7,b=k(m^2-1)/2=36,77^2+36^2=85^2*a=mk=78,k=2,m=39,b=k(m^2-1)/2=1520,78^2+1520^2=1522^2 a=mk=78,k=6,m=13,b=k(m^2-1)/2=504,78^2+504^2=510^2a=mk=78,k=18,m=13/3,b=k(m^2-1)/2=160,78^2+160^2=178^2 a=mk=78,k=26,m=3,b=k(m^2-1)/2=104,78^2+104^2=130^2a=mk=79,k=1,m=79,b=k(m^2-1)/2=3120,79^2+3120^2=3121^2 a=mk=80,k=2,m=40,b=k(m^2-1)/2=1599,80^2+1599^2=1601^2 a=mk=80,k=4,m=20,b=k(m^2-1)/2=798,80^2+798^2=802^2a=mk=80,k=8,m=10,b=k(m^2-1)/2=396,80^2+396^2=404^2a=mk=80,k=10,m=8,b=k(m^2-1)/2=315,80^2+315^2=325^2a=mk=80,k=16,m=5,b=k(m^2-1)/2=192,80^2+192^2=208^2a=mk=80,k=20,m=4,b=k(m^2-1)/2=150,80^2+150^2=170^2a=mk=80,k=40,m=2,b=k(m^2-1)/2=60,80^2+60^2=100^2*a=mk=80,k=64,m=5/4,b=k(m^2-1)/2=18,80^2+18^2=82^2*a=mk=81,k=1,m=81,b=k(m^2-1)/2=3280,81^2+3280^2=3281^2 a=mk=81,k=3,m=27,b=k(m^2-1)/2=1092,81^2+1092^2=1095^2 a=mk=81,k=9,m=9,b=k(m^2-1)/2=360,81^2+360^2=369^2a=mk=81,k=27,m=3,b=k(m^2-1)/2=108,81^2+108^2=135^2a=mk=82,k=2,m=41,b=k(m^2-1)/2=1680,82^2+1680^2=1682^2 a=mk=83,k=1,m=83,b=k(m^2-1)/2=3444,83^2+3444^2=3445^2 a=mk=84,k=2,m=42,b=k(m^2-1)/2=1763,84^2+1763^2=1765^2 a=mk=84,k=4,m=21,b=k(m^2-1)/2=880,^842+880^2=884^2a=mk=84,k=6,m=14,b=k(m^2-1)/2=585,84^2+585^2=591^2a=mk=84,k=8,m=21/2,b=k(m^2-1)/2=437,84^2+437^2=445^2 a=mk=84,k=14,m=6,b=k(m^2-1)/2=245,84^2+245^2=259^2a=mk=84,k=42,m=2,b=k(m^2-1)/2=63,84^2+63^2=105^2*a=mk=85,k=1,m=85,b=k(m^2-1)/2=3612,85^2+3612^2=3613^2 a=mk=85,k=5,m=17,b=k(m^2-1)/2=720,85^2+720^2=725^2a=mk=85,k=25,m=17/5,b=k(m^2-1)/2=132,85^2+132^2=157^2a=mk=87,k=9,m=29/3,b=k(m^2-1)/2=416,87^2+416^2=425^2a=mk=87,k=29,m=3,b=k(m^2-1)/2=116,87^2+116^2=145^2a=mk=88,k=2,m=44,b=k(m^2-1)/2=1935,88^2+1935^2=1936^2 a=mk=88,k=4,m=22,b=k(m^2-1)/2=966,88^2+966^2=970^2a=mk=88,k=8,m=11,b=k(m^2-1)/2=480,88^2+480^2=488^2a=mk=88,k=16,m=11/2,b=k(m^2-1)/2=234,88^2+234^2=250^2 a=mk=88,k=22,m=4,b=k(m^2-1)/2=165,88^2+165^2=187^2a=mk=88,k=44,m=2,b=k(m^2-1)/2=66,88^2+66^2=110^2*a=mk=89,k=1,m=89,b=k(m^2-1)/2=3960,89^2+3960^2=3961^2 a=mk=90,k=2,m=45,b=k(m^2-1)/2=2024,90^2+2024^2=2026^2 a=mk=90,k=10,m=9,b=k(m^2-1)/2=400,90^2+400^2=410^2a=mk=90,k=18,m=5,b=k(m^2-1)/2=216,90^2+216^2=234^2a=mk=90,k=54,m=5/3,b=k(m^2-1)/2=48,90^2+48^2=102^2*a=mk=91,k=1,m=91,b=k(m^2-1)/2=4140,91^2+4140^2=4141^2 a=mk=92,k=2,m=46,b=k(m^2-1)/2=2115,92^2+2115^2=2117^2 a=mk=92,k=4,m=23,b=k(m^2-1)/2=1056,92^2+1056^2=1060^2 a=mk=92,k=8,m=23/2,b=k(m^2-1)/2=525,92^2+525^2=533^2a=mk=92,k=46,m=2,b=k(m^2-1)/2=69,92^2+69^2=115^2*a=mk=93,k=1,m=93,b=k(m^2-1)/2=4324,93^2+4324^2=4325^2 a=mk=93,k=3,m=31,b=k(m^2-1)/2=480,93^2+480^2=483^2a=mk=93,k=9,m=31/3,b=k(m^2-1)/2=476,93^2+476^2=485^2a=mk=93,k=31,m=3,b=k(m^2-1)/2=124,93^2+124^2=155^2a=mk=94,k=2,m=47,b=k(m^2-1)/2=2208,94^2+2208^2=2210^2 a=mk=95,k=1,m=95,b=k(m^2-1)/2=4512,95^2+4512^2=4513^2 a=mk=95,k=5,m=19,b=k(m^2-1)/2=900,95^2+900^2=905^2a=mk=95,k=19,m=5,b=k(m^2-1)/2=228,95^2+228^2=247^2a=mk=95,k=25,m=19/5,b=k(m^2-1)/2=168,95^2+168^2=193^2 a=mk=96,k=2,m=48,b=k(m^2-1)/2=2303,96^2+2303^2=2305^2 a=mk=96,k=4,m=24,b=k(m^2-1)/2=1150,96^2+1150^2=1154^2 a=mk=96,k=6,m=16,b=k(m^2-1)/2=765,96^2+765^2=771^2a=mk=96,k=8,m=12,b=k(m^2-1)/2=572,96^2+572^2=580^2a=mk=96,k=12,m=8,b=k(m^2-1)/2=378,96^2+378^2=390^2a=mk=96,k=18,m=16/3,b=k(m^2-1)/2=247,96^2+247^2=265^2 a=mk=96,k=24,m=4,b=k(m^2-1)/2=180,96^2+180^2=204^2a=mk=96,k=32,m=3,b=k(m^2-1)/2=128,96^2+128^2=160^2a=mk=96,k=48,m=2,b=k(m^2-1)/2=72,96^2+72^2=120^2*a=mk=96,k=72,m=4/3,b=k(m^2-1)/2=28,96^2+28^2=100^2*a=mk=97,k=1,m=97,b=k(m^2-1)/2=4704,97^2+4704^2=4705^2 a=mk=98,k=2,m=49,b=k(m^2-1)/2=2400,98^2+2400^2=2402^2 a=mk=98,k=14,m=7,b=k(m^2-1)/2=336,98^2+336^2=350^2a=mk=99,k=1,m=99,b=k(m^2-1)/2=4900,99^2+4900^2=4901^2 a=mk=99,k=3,m=33,b=k(m^2-1)/2=1632,99^2+1632^2=1635^2 a=mk=99,k=9,m=11,b=k(m^2-1)/2=540,99^2+540^2=549^2a=mk=99,k=11,m=9,b=k(m^2-1)/2=440,99^2+440^2=451^2a=mk=99,k=27,m=11/3,b=k(m^2-1)/2=168,99^2+168^2=195^2 a=mk=99,k=33,m=3,b=k(m^2-1)/2=132,99^2+132^2=165^2a=mk=100,k=2,m=50,b=k(m^2-1)/2=2499,100^2+2499^2=2501^2 a=mk=100,k=4,m=25,b=k(m^2-1)/2=1248,100^2+1248^2=1252^2 a=mk=100,k=8,m=25/2,b=k(m^2-1)/2=621,100^2+621^2=629^2 a=mk=100,k=10,m=10,b=k(m^2-1)/2=495,100^2+495^2=505^2 a=mk=100,k=20,m=5,b=k(m^2-1)/2=240,100^2+240^2=250^2a=mk=100,k=50,m=2,b=k(m^2-1)/2=75,100^2+75^2=125^2*总共289组,其中重复的有34组。
常见的勾股数及公式武安市黄冈实验学校 翟升华搜集整理我们知道,如果∠C=90°,a 、b 、c 是直角三角形的三边,则由勾股定理,得a 2+b 2=c 2;反之,若三角形的三边a 、b 、c 满足a 2+b 2=c 2,则该三角形是直角三角形,c 为斜边.与此相类似,如果三个正整数a 、b 、c 满足a 2+b 2=c 2,则称a 、b 、c 为勾股数,记为(a ,b ,c ).勾股数有无数多组,下面向同学们介绍几种:一、三数为连续整数的勾股数(3,4, 5)是我们所熟悉的一组三数为连续整数的勾股数,除此之外是否还有第二组或更多组呢?设三数为连续整数的勾股数组为(x -1,x ,x +1),则由勾股数的定义,得(x+1)2+x 2=(x+1)2,解得x=4或x =0(舍去),故三数为连续整数的勾股数只有一组(3,4,5);类似有3n,4n,5n (n 是正整数)都是勾股数 。
二、后两数为连续整数的勾股数易知:(5,12,13),(9,40,41),(113,6338,6385),…,都是勾股数,如此许许多多的后两数为连续整数的勾股数,它的一般形式究竟是什么呢?a=2n+1,b=2n 2+2n,c=2n 2+2n+1(其特点是斜边与其中一股的差为1).分别取n =1,2,3,…就得勾股数组(3,4,5),(5,12,13),(7,24,25),…三、前两数为连续整数的勾股数你知道(20,21,29),(119,120,169),(4059,4060,5741)…,这些都是前两数为连续整数的勾股数组。
其公式为:(x ,x +1,1222++x x )(x 为正整数)。
设前两数为连续整数的勾股数组为(x ,x +1,y ),y=1222++x x 则()2221y x x =++(*) 整理,得1222++x x =2y ,化为()121222-=-+y x ,即()y x 212++()y x 212-+=-1, 又()()2121-+=-1,∴()1221++n ()1221+-n =-1(n∈N), 故取()y x 212++=()1221++n ,()y x 212-+=()1221+-n ,解之,得x =41〔()1221++n +()1221+-n -2〕,y =42〔()1221++n -()1221+-n 〕, 故前两数为连续整数的勾股数组是(41〔()1221++n +()1221+-n -2〕,41〔()1221++n +()1221+-n -2〕+1,42〔()1221++n -()1221+-n 〕).四、后两数为连续奇数的勾股数如(8,15,17), (12,35,37) …其公式为:4(n+1),4(n+1)2-1,4(n+1)2+1(n 是正整数) .五、其它的勾股数组公式:1.a=2m,b=m 2-1,c=m 2+1(m 大于1的整数).2.a=21(m 2-n 2),b=mn,c= 21(m 2+n 2)(其中m>n 且是互质的奇数).3.a=2m,b=m 2-n 2,c=m 2+n 2(m>n,互质且一奇一偶的任意正整数).下面我们把100以内的勾股数组列出来,供同学们参考:3 4 5;5 12 13;6 8 10;7 24 25;8 15 17;9 12 15;9 40 41;10 24 26;11 60 61;12 16 20;12 35 37;13 84 85;14 48 50;15 20 25;15 36 39;15 112 113;16 30101;21 28 3521 72 75;21 220 221;22 120 122;23 264 265;24 32 40;24 4551;24 70 74;24 143 14525 60 65;25 312 313;26 168 170;27 36 45;27 120 123;27 364365;28 45 53;28 96 10028 195 197;29 420 421;30 40 50;30 72 78;30 224 226;31 480481;32 60 68;32 126 13032 255 257;33 44 55;33 56 65;33 180 183;33 544 545;34 288290;35 84 91;35 120 12535 612 613;36 48 60;36 77 85;36 105 111;36 160 164;36 323325;37 684 685;38 360 36239 52 65;39 80 89;39 252 255;39 760 761;40 42 58;40 7585;40 96 104;40 198 20240 399 401;41 840 841;42 56 70;42 144 150;42 440 442;43924 925;44 117 125;44 240 24444 483 485;45 60 75;45 108 117;45 200 205;45 336 339;46528 530;48 55 73;48 64 8048 90 102;48 140 148;48 189 195;48 286 290;48 575577;49 168 175;50 120 130;50 624 62651 68 85;51 140 149;51 432 435;52 165 173;52 336 340;52675 677;54 72 90;54 240 24654 728 730;55 132 143;55 300 305;56 90 106;56 105119;56 192 200;56 390 394;56 783 78557 76 95;57 176 185;57 540 543;58 840 842;60 63 87;60 80100;60 91 109;60 144 15660 175 185;60 221 229;60 297 303;60 448 452;60 899901;62 960 962;63 84 105;63 216 22563 280 287;63 660 663;64 120 136;64 252 260;64 510514;65 72 97;65 156 169;65 420 42566 88 110;66 112 130;66 360 366;68 285 293;68 576580;69 92 115;69 260 269;69 792 79570 168 182;70 240 250;72 96 120;72 135 153;72 154170;72 210 222;72 320 328;72 429 43572 646 650;75 100 125;75 180 195;75 308 317;75 560565;75 936 939;76 357 365;76 720 72477 264 275;77 420 427;78 104 130;78 160 178;78 504510;80 84 116;80 150 170;80 192 20880 315 325;80 396 404;80 798 802;81 108 135;81 360369;84 112 140;84 135 159;84 187 20584 245 259;84 288 300;84 437 445;84 585 591;84 880884;85 132 157;85 204 221;85 720 72587 116 145;87 416 425;88 105 137;88 165 187;88 234250;88 480 488;88 966 970;90 120 15090 216 234;90 400 410;90 672 678;91 312 325;91 588595;92 525 533;93 124 155;93 476 48595 168 193;95 228 247;95 900 905;96 110 146;96 128160;96 180 204;96 247 265;96 280 296100 105 145;100 240 260;100 495 505;100 621 629.以下是大于100的勾股数:第223组:102 136 170第224组:102 280 298第225组:102 864 870第226组:104 153 185第227组:104 195 221第228组:104 330 346第229组:104 672 680第230组:105 140 175第231组:105 208 233第232组:105 252 273第233组:105 360 375第234组:105 608 617第235组:105 784 791第236组:108 144 180第237组:108 231 255第238组:108 315 333第239组:108 480 492第240组:108 725 733第241组:108 969 975第242组:110 264 286第243组:110 600 610第244组:111 148 185第245组:111 680 689第246组:112 180 212第247组:112 210 238第248组:112 384 400第249组:112 441 455第250组:112 780 788第251组:114 152 190第252组:114 352 370第253组:115 252 277第254组:115 276 299第255组:116 837 845第256组:117 156 195第257组:117 240 267第258组:117 520 533第259组:117 756 765第260组:119 120 169第261组:119 408 425第262组:120 126 174第263组:120 160 200第264组:120 182 218第265组:120 209 241第266组:120 225 255第267组:120 288 312第270组:120 442 458 第271组:120 594 606 第272组:120 715 725 第273组:120 896 904 第274组:121 660 671 第275组:123 164 205 第276组:123 836 845 第277组:124 957 965 第278组:125 300 325 第279组:126 168 210 第280组:126 432 450 第281组:126 560 574 第282组:128 240 272 第283组:128 504 520 第284组:129 172 215 第285组:129 920 929 第286组:130 144 194 第287组:130 312 338 第288组:130 840 850 第289组:132 176 220 第290组:132 224 260 第291组:132 351 375 第292组:132 385 407 第293组:132 475 493 第294组:132 720 732 第295组:133 156 205 第296组:133 456 475 第297组:135 180 225 第298组:135 324 351 第299组:135 352 377 第300组:135 600 615 第301组:136 255 289 第302组:136 273 305 第303组:136 570 586 第304组:138 184 230 第305组:138 520 538 第306组:140 147 203 第307组:140 171 221 第308组:140 225 265 第309组:140 336 364 第310组:140 480 500 第311组:140 693 707 第312组:140 975 985 第313组:141 188 235 第314组:143 780 793 第315组:143 924 935 第316组:144 165 219第322组:144 640 656 第323组:144 858 870 第324组:145 348 377 第325组:145 408 433 第326组:147 196 245 第327组:147 504 525 第328组:150 200 250 第329组:150 360 390 第330组:150 616 634 第331组:152 285 323 第332组:152 345 377 第333组:152 714 730 第334组:153 204 255 第335组:153 420 447 第336组:153 680 697 第337组:154 528 550 第338组:154 840 854 第339组:155 372 403 第340组:155 468 493 第341组:156 208 260 第342组:156 320 356 第343组:156 455 481 第344组:156 495 519 第345组:156 667 685 第346组:159 212 265 第347组:160 168 232 第348组:160 231 281 第349组:160 300 340 第350组:160 384 416 第351组:160 630 650 第352组:160 792 808 第353组:161 240 289 第354组:161 552 575 第355组:162 216 270 第356组:162 720 738 第357组:165 220 275 第358组:165 280 325 第359组:165 396 429 第360组:165 532 557 第361组:165 900 915 第362组:168 224 280 第363组:168 270 318 第364组:168 315 357 第365组:168 374 410第371组:170 264 314 第372组:170 408 442 第373组:171 228 285 第374组:171 528 555 第375组:171 760 779 第376组:174 232 290 第377组:174 832 850 第378组:175 288 337 第379组:175 420 455 第380组:175 600 625 第381组:176 210 274 第382组:176 330 374 第383组:176 468 500 第384组:176 693 715 第385组:176 960 976 第386组:177 236 295 第387组:180 189 261 第388组:180 240 300 第389组:180 273 327 第390组:180 299 349 第391组:180 385 425 第392组:180 432 468 第393组:180 525 555 第394组:180 663 687 第395组:180 800 820 第396组:180 891 909 第397组:182 624 650 第398组:183 244 305 第399组:184 345 391 第400组:184 513 545 第401组:185 444 481 第402组:185 672 697 第403组:186 248 310 第404组:186 952 970 第405组:189 252 315 第406组:189 340 389 第407组:189 648 675 第408组:189 840 861 第409组:190 336 386 第410组:190 456 494 第411组:192 220 292 第412组:192 256 320 第413组:192 360 408 第414组:192 494 530第420组:195 468 507 第421组:195 748 773 第422组:196 315 371 第423组:196 672 700 第424组:198 264 330 第425组:198 336 390 第426组:198 880 902 第427组:200 210 290 第428组:200 375 425 第429组:200 480 520 第430组:200 609 641 第431组:201 268 335 第432组:203 396 445 第433组:203 696 725 第434组:204 253 325 第435组:204 272 340 第436组:204 560 596 第437组:204 595 629 第438组:204 855 879 第439组:205 492 533 第440组:205 828 853 第441组:207 224 305 第442组:207 276 345 第443组:207 780 807 第444组:207 920 943 第445组:208 306 370 第446组:208 390 442 第447组:208 660 692 第448组:208 819 845 第449组:210 280 350 第450组:210 416 466 第451组:210 504 546 第452组:210 720 750 第453组:213 284 355 第454组:215 516 559 第455组:215 912 937 第456组:216 288 360 第457组:216 405 459 第458组:216 462 510 第459组:216 630 666 第460组:216 713 745 第461组:216 960 984 第462组:217 456 505 第463组:217 744 775第469组:222 296 370 第470组:224 360 424 第471组:224 420 476 第472组:224 768 800 第473组:224 882 910 第474组:225 272 353 第475组:225 300 375 第476组:225 540 585 第477组:225 924 951 第478组:228 304 380 第479组:228 325 397 第480组:228 665 703 第481组:228 704 740 第482组:230 504 554 第483组:230 552 598 第484组:231 308 385 第485组:231 392 455 第486组:231 520 569 第487组:231 792 825 第488组:232 435 493 第489组:232 825 857 第490组:234 312 390 第491组:234 480 534 第492组:235 564 611 第493组:237 316 395 第494组:238 240 338 第495组:238 816 850 第496组:240 252 348 第497组:240 275 365 第498组:240 320 400 第499组:240 364 436 第500组:240 418 482 第501组:240 450 510 第502组:240 551 601 第503组:240 576 624 第504组:240 700 740 第505组:240 782 818 第506组:240 884 916 第507组:240 945 975 第508组:243 324 405 第509组:245 588 637 第510组:245 840 875 第511组:246 328 410 第512组:248 465 527第518组:252 405 477 第519组:252 539 595 第520组:252 561 615 第521组:252 735 777 第522组:252 864 900 第523组:255 340 425 第524组:255 396 471 第525组:255 612 663 第526组:255 700 745 第527组:256 480 544 第528组:258 344 430 第529组:259 660 709 第530组:259 888 925 第531组:260 273 377 第532组:260 288 388 第533组:260 624 676 第534组:260 651 701 第535组:260 825 865 第536组:261 348 435 第537组:261 380 461 第538组:264 315 411 第539组:264 352 440 第540组:264 448 520 第541组:264 495 561 第542组:264 702 750 第543组:264 770 814 第544组:264 950 986 第545组:265 636 689 第546组:266 312 410 第547组:266 912 950 第548组:267 356 445 第549组:270 360 450 第550组:270 648 702 第551组:270 704 754 第552组:272 510 578 第553组:272 546 610 第554组:273 364 455 第555组:273 560 623 第556组:273 736 785 第557组:273 936 975 第558组:275 660 715 第559组:276 368 460 第560组:276 493 565 第561组:276 805 851第567组:280 450 530 第568组:280 525 595 第569组:280 672 728 第570组:280 759 809 第571组:280 960 1000 第572组:282 376 470 第573组:285 380 475 第574组:285 504 579 第575组:285 684 741 第576组:285 880 925 第577组:287 816 865 第578组:288 330 438 第579组:288 384 480 第580组:288 540 612 第581组:288 616 680 第582组:288 741 795 第583组:288 840 888 第584组:290 696 754 第585组:290 816 866 第586组:291 388 485 第587组:294 392 490 第588组:295 708 767 第589组:296 555 629 第590组:297 304 425 第591组:297 396 495 第592组:297 504 585 第593组:300 315 435 第594组:300 400 500 第595组:300 455 545 第596组:300 589 661 第597组:300 720 780 第598组:300 875 925 第599组:301 900 949 第600组:303 404 505 第601组:304 570 646 第602组:304 690 754 第603组:305 732 793 第604组:306 408 510 第605组:306 840 894 第606组:308 435 533 第607组:308 495 583 第608组:308 819 875 第609组:309 412 515 第610组:310 744 806第614组:312 585 663 第615组:312 640 712 第616组:312 910 962 第617组:315 420 525 第618组:315 572 653 第619组:315 624 699 第620组:315 756 819 第621组:318 424 530 第622组:319 360 481 第623组:320 336 464 第624组:320 462 562 第625组:320 600 680 第626组:320 768 832 第627组:321 428 535 第628组:322 480 578 第629组:324 432 540 第630组:324 693 765 第631组:324 945 999 第632组:325 360 485 第633组:325 780 845 第634组:327 436 545 第635组:328 615 697 第636组:330 440 550 第637组:330 560 650 第638组:330 792 858 第639组:333 444 555 第640组:333 644 725 第641组:335 804 871 第642组:336 377 505 第643组:336 385 511 第644组:336 448 560 第645组:336 527 625 第646组:336 540 636 第647组:336 630 714 第648组:336 748 820 第649组:336 850 914 第650组:339 452 565 第651组:340 357 493 第652组:340 528 628 第653组:340 816 884 第654组:341 420 541 第655组:342 456 570 第656组:344 645 731 第657组:345 460 575 第658组:345 756 831 第659组:345 828 897第664组:351 468 585 第665组:351 720 801 第666组:352 420 548 第667组:352 660 748 第668组:352 936 1000 第669组:354 472 590 第670组:355 852 923 第671组:357 360 507 第672组:357 476 595 第673组:360 378 522 第674组:360 480 600 第675组:360 546 654 第676组:360 598 698 第677组:360 627 723 第678组:360 675 765 第679组:360 770 850 第680组:360 864 936 第681组:363 484 605 第682组:363 616 715 第683组:364 585 689 第684组:364 627 725 第685组:365 876 949 第686组:366 488 610 第687组:368 465 593 第688组:368 690 782 第689组:369 492 615 第690组:369 800 881 第691组:370 888 962 第692组:372 496 620 第693组:372 925 997 第694组:375 500 625 第695组:375 900 975 第696组:376 705 799 第697组:378 504 630 第698组:378 680 778 第699组:380 399 551 第700组:380 672 772 第701组:380 912 988 第702组:381 508 635 第703组:384 440 584 第704组:384 512 640 第705组:384 720 816 第706组:385 552 673 第707组:387 516 645 第708组:387 884 965第714组:393 524 655 第715组:396 403 565 第716组:396 528 660 第717组:396 672 780 第718组:396 847 935 第719组:399 468 615 第720组:399 532 665 第721组:400 420 580 第722组:400 561 689 第723组:400 750 850 第724组:402 536 670 第725组:405 540 675 第726组:406 792 890 第727组:407 624 745 第728组:408 506 650 第729组:408 544 680 第730组:408 765 867 第731组:408 819 915 第732组:411 548 685 第733组:414 448 610 第734组:414 552 690 第735组:416 612 740 第736组:416 780 884 第737组:417 556 695 第738组:420 441 609 第739组:420 513 663 第740组:420 560 700 第741组:420 637 763 第742组:420 675 795 第743组:420 832 932 第744组:420 851 949 第745组:423 564 705 第746组:424 795 901 第747组:425 660 785 第748组:426 568 710 第749组:429 460 629 第750组:429 572 715 第751组:429 700 821 第752组:429 728 845 第753组:429 880 979 第754组:432 495 657 第755组:432 576 720 第756组:432 665 793 第757组:432 810 918第763组:441 588 735 第764组:444 592 740 第765组:447 596 745 第766组:448 720 848 第767组:448 840 952 第768组:450 544 706 第769组:450 600 750 第770组:451 780 901 第771组:453 604 755 第772组:455 504 679 第773组:455 528 697 第774组:456 608 760 第775组:456 650 794 第776组:456 855 969 第777组:459 612 765 第778组:460 483 667 第779组:462 616 770 第780组:462 784 910 第781组:464 777 905 第782组:464 870 986 第783组:465 620 775 第784组:468 595 757 第785组:468 624 780 第786组:471 628 785 第787组:473 864 985 第788组:474 632 790 第789组:475 840 965 第790组:476 480 676 第791组:476 765 901 第792组:477 636 795 第793组:480 504 696 第794组:480 550 730 第795组:480 640 800 第796组:480 693 843 第797组:480 728 872 第798组:480 836 964 第799组:481 600 769 第800组:483 644 805 第801组:483 720 867 第802组:486 648 810 第803组:489 652 815 第804组:492 656 820 第805组:495 660 825 第806组:495 840 975第811组:504 672 840 第812组:504 703 865 第813组:504 810 954 第814组:507 676 845 第815组:510 680 850 第816组:510 792 942 第817组:513 684 855 第818组:516 688 860 第819组:519 692 865 第820组:520 546 754 第821组:520 576 776 第822组:520 765 925 第823组:522 696 870 第824组:522 760 922 第825组:525 700 875 第826组:528 605 803 第827组:528 630 822 第828组:528 704 880 第829组:531 708 885 第830组:532 624 820 第831组:533 756 925 第832组:534 712 890 第833组:537 716 895 第834组:540 567 783 第835组:540 629 829 第836组:540 720 900 第837组:540 819 981 第838组:543 724 905 第839组:546 728 910 第840组:549 732 915 第841组:552 736 920 第842组:555 572 797 第843组:555 740 925 第844组:558 744 930 第845组:560 588 812 第846组:560 684 884 第847组:560 702 898 第848组:561 748 935 第849组:564 752 940 第850组:567 756 945 第851组:570 760 950 第852组:573 764 955 第853组:576 660 876 第854组:576 768 960 第855组:579 772 965第858组:582 776 970 第859组:585 648 873 第860组:585 780 975 第861组:588 784 980 第862组:591 788 985 第863组:594 608 850 第864组:594 792 990 第865组:595 600 845 第866组:597 796 995 第867组:600 630 870 第868组:600 800 1000 第869组:612 759 975 第870组:615 728 953 第871组:616 663 905 第872组:616 735 959 第873组:620 651 899 第874组:621 672 915 第875组:624 715 949 第876组:638 720 962 第877组:640 672 928 第878组:650 720 970 第879组:660 693 957 第880组:680 714 986 第881组:696 697 985。
初二数学勾股定理常用的11个公式常见的勾股数及几种通式有(1) (3,4,5),(6,8,10) … …3n,4n,5n (n是正整数)(2) (5,12,13) ,( 7,24,25),( 9,40,41) … …2n + 1,2n^2 + 2n,2n^2 + 2n + 1 (n是正整数)(3) (8,15,17),(12,35,37) … …2^2*(n+1),[2(n+1)]^2-1,[2(n+1)]^2+1 (n是正整数)(4)m^2-n^2,2mn,m^2+n^2 (m、n均是正整数,m>n)勾股定理常见知识点1过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12 两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180"18 推论1直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角勾股定理内容直角三角形(等腰直角三角形也算在内)两直角边(即“勾”“股”短的为勾,长的为股)边长平方和等于斜边(即“弦”)边长的平方。
也就是说设直角三角形两直角边为a和b,斜边为c,那么a的平方+b的平方=c的平方a²+b²=c²。
勾股定理现发现约有500种证明方法,是数学定理中证明方法最多的定理之一。
中国古代著名数学家商高说:“若勾三,股四,则弦五。
常见的勾股数组公式 YKK standardization office【 YKK5AB- YKK08- YKK2C-
常见的公法股数公式整理
<一>、22n m a -=,mn b 2=,22n m c +=,)1(≥n m 证明:略
含了所有的勾股数组;(估计是包含了)
2)这组勾股数组经过一定的变换便可得到许多变式的勾股数组的公式; 3)此组中有不少是三个数有公约数的;
4)三个数中要么两奇数一偶数,要么三个都是偶数;(至少有一个偶数)
<二>、当第一组中的n=1时,有12-=m a ,m b 2=,12+=m c ,)1( m ,这说明它与第一组是特殊与一般的关系。
1)这组勾股数的b 是连续偶数;
2)b-a=2,即第三个数比第一个数大2; 3)此组中有不少是三个数有公约数的;
4)这组只是第一组中的n=1部分;它不包含第一组中的n=2、3、4、5……;
5) 如果我们对这一组再进行一些变形代换,还可以得到不同的勾股数组; <三>、当第一组中的n=m-1, 有
12)1(22-=--=m m m a ,m m m m b 22)1(22-=-=,
122)1(222+-=-+=m m m m c ,)1( m ,这说明它与第一组是是特殊与一
般的关系。
1)此组中的b 是4的倍数,且为4的1、3、6、……、2
)
1(+k k 倍(k 是正整数);
2)此组中有b-c=1,即c 比b 大1;
3)此组中的a 是不小于3的连续奇数;
<四>、当第一组中的m=n+1时, 有
12)1(22+=-+=m n n a ,n n n n b 22)1(22+=+=,
122)1(222++=++=n n n n c ,)1(≥n ,这说明它与第一组是是特殊与一般
的关系。
1) 从此组中数据可以看出,它与第3组是一样的,但我没有找到相互的代换方法;
2)此组中的a不小于3连续奇数;
3)c-b=1,即c比b大1;
4)此组中的b是4的倍数,且为4的1、3、6、……、
2)1
(
k
k
倍(k是正整数);
<五>、当第一组中的m=2
k
,n=1时,有
142-=k a ,k b =,14
2+=k c ,)2(的偶数 k ,这说明它与第一组是是特殊与一
般的关系
1) 此组中的b 是不小于4的连续偶数; 2)c 比a 大1,c-a=1;
3) 让此式中的k =2n ,便得到a=n 2-1,b=2n,c=n 2+1, )1( n P 这正是第二组;
以上五组是我在教学和辅导中见到的公式,下面我再试写几组:
<六>、当第五组中的k=4n时,有a=4n,b=4n2-1,c=4n2+1,(n>0),这说明它与第五组是是特殊与一般的关系
1)a是4的k倍;
2)这是一组一偶二奇的勾股数组;
3)c-b=2,c比b大2;
<七>、当第一组中的m=n+2时,有
a=4(n+1),b=2n2+4n,c=2n2+4n+4,(n>0),这说明它与第一组是是特殊与一般的关系
<八>、当第一组中的m=2n+1时,有
a=3n2+4n+1,b=4n2+2n,c=5n2+4n+1,(n>0),这说明它与第一组是是特殊与一般的关系
当然我们还可以写出很多的勾股公式来,这里不在举例了。
对于勾股定理我们的认识远远达不到皮毛,还须深入学习,细心研讨,通过网络查找资料,相互交流,逐步认识。