选修4-4坐标系导学案
- 格式:doc
- 大小:553.00 KB
- 文档页数:8
新课标人教A 版选修4-4 第一讲 坐标系 导学案§4.1.1—第一课 平面直角坐标系本课提要:本节课的重点是体会坐标法的作用,掌握坐标法的解题步骤,会运用坐标法解决实际问题与几何问题.一、 温故而知新1.到两个定点A (-1,0)与B (0,1)的距离相等的点的轨迹是什么?2.在⊿ABC 中,已知A (5,0),B (-5,0),且6=-BC AC ,求顶点C 的轨迹方程.二、 重点、难点都在这里【问题1】:某信息中心接到位于正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到一声巨响,正东观测点听到巨响的时间比它们晚4s.已知各观测点到中心的距离都是1020m.试确定巨响发生的位置.(假定声音传播的速度为340m/s ,各观测点均在同一平面上.)(详解见课本)练一练:3.有三个信号检测中心A 、B 、C ,A 位于B 的正东,相距6千米,C 在B 的北偏西300,相距4千米.在A 测得一信号,4秒后B 、C 同时测得同一信号.试求信号源P 相对于信号A 的位置(假设信号传播速度为1千米/秒).【问题2】:已知⊿ABC 的三边c b a ,,满足2225a c b =+,BE ,CF 分别为边AC ,AB 上的中线,建立适当的平面直角坐标系探究BE 与CF 的位置关系.三、 懂了,不等于会了4.两个定点的距离为6,点M 到这两个定点的距离的平方和为26,求点M 的轨迹.5.求直线0532=+-y x 与曲线xy 1=的交点坐标.7.已知A (-2,0),B (2,0),则以AB 为斜边的直角三角形的顶点C 的轨迹方程 是 .8.已知A (-3,0),B (3,0),直线AM 、BM 相交于点M ,且它们的斜率之积为94,则 点M 的轨迹方程是 .平面直角坐标系中的伸缩变换【基础知识导学】1、 坐标系包括平面直角坐标系、极坐标系、柱坐标系、球坐标系。
2、 “坐标法”解析几何学习的始终,同学们在不断地体会“数形结合”的思想方法并自始至终强化这一思想方法。
选修4――4坐标系教案【篇一:选修4矩阵与坐标系参数方程】选修4矩阵与坐标系参数方程(1)1.在直角坐标系xoy中,直线l的参数方程是??x=t+5,?y=-4-t(t为参数), 圆c的参数方程是面积的最大值.2.已知圆锥曲线?(1)3(1)求经过点f2且垂直地于直线af1的直线l的参数方程;(2)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,求直线af2的极坐标方程.?1??m0?3.设矩阵a=?,若矩阵的属于特征值1的一个特征向量为a?0?,属于特征值2的一个?0n?????0?特征向量为??,求实数m, n的值.1??? 33??1?? cd??1?? 3??.求矩阵a,并写出a的逆矩阵. ?-2?选修4矩阵与坐标系参数方程(1)答案4222大,最大值为2+1. 2化为普通方程,222【答案】解:(1)圆锥曲线所以f1(﹣1,0),f2(1,0),则直线af1的斜率于是经过点f2垂直于直线af1的直线l的斜率所以直线l的参数方程是,(t为参数),即(t为参数).……6分(2)直线af2的斜率所以直线af2的极坐标方程:??m????03【答案】由题意得???m??0??0??1??1?=1 ?0??0?,n??????0??0??0?=2 ?1??1?,n??????……10分?m=1,?0?n=0, ?m=1,?化简得?所以? 、0?m=0, n=2.??? ?n=2,?1??1?? 33??1??1?? ??=6??,? cd??1??1?? 3?? 33?? 3?? 3?,可得??? ??=??,?-2?? cd??-2??-2?21 -??32? 33??c=2,??即3c-2d=-2,解得?即a=?. ?, a的逆矩阵是?d=4.11? 24?? -??32?选修4矩阵与坐标系参数方程(2)??x=3+22t1在平面直角坐标系xoy中,直线m的参数方程为?(t为参数);在以o 为极点、2?y=-3?2a、b两点,求线段ab的长.2.在极坐标系中,圆c是以点c(2,-)为圆心、2为半径的圆. 6(1)求圆c的极坐标方程;?x??x??x+2y?o3.已知点a在变换t:??→??=?作用后,再绕原点逆时针旋转90,得到点b.若??y??y??y?点b的坐标为(—3,4),求点a的坐标.?21??10?24矩阵与变换已知矩阵a=?,向量b=??.求向量a,使得aa=b. ? ?01??2?选修4矩阵与坐标系参数方程(2)答案1【答案】解:直线m的普通方程为x-y=6曲线c的普通方程为y2=8x由题设直线m与曲线c交于a、b两点,可令a(x1,y1),b(x2,y2). ?y2=8x联立方程?,解得y2=8(y+6),则有y1+y2=8,y1?y2=-48.[来?x-y=6于是ab===故 ab=22【答案】选修4—4:坐标系与参数方程而得到的圆,所以圆c的极坐标方6123【答案】?21??21??43?4【答案】b 解:a=???01?=?01?,01??????2设a=??,由a?x??y?2a=b得??43??x??10?=??, ????01??y??2?即??4x+3y=10?x=1?1?, 解得?,所以a=???2??y=2?y=2【篇二:选修4-4:参数方程教案】曲线的参数方程教学目标知识与技能:弄清理解曲线参数方程的概念.过程与方法:能选取适当的参数,求简单曲线的参数方程情感、态度与价值观:初步了解如何应用参数方程来解决某些具体问题,在问题解决的过程中,形成数学抽象思维能力,初步体验参数的基本思想。
选修4-4 坐标系与参数方程第一节 坐标系[考纲传真] 1.理解坐标系的作用,了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.2.了解极坐标的基本概念,会在极坐标系中用极坐标刻画点的位置,能进行极坐标和直角坐标的互化.3.能在极坐标系中给出简单图形表示的极坐标方程.1.平面直角坐标系中的坐标伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎨⎧x ′=λx ,λ>0,y ′=μy ,μ>0的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换.2.极坐标系的概念 (1)极坐标系如图1所示,在平面内取一个定点O ,叫作极点,从O 点引一条射线Ox ,叫作极轴,选定一个单位长度和角的正方向(通常取逆时针方向).这样就确定了一个平面极坐标系,简称为极坐标系.图1(2)极坐标①极径:设M 是平面内任意一点,用ρ表示线段OM 的长,ρ叫作点M 的极径.②极角:以极轴Ox 为始边,射线OM 为终边的角xOM 叫作点M 的极角,记为θ.③极坐标:有序实数对(ρ,θ)叫作点M 的极坐标,记作M (ρ,θ). 3.极坐标与直角坐标的互化设M 是平面内任意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ),则它们之间的关系为:⎩⎨⎧x =ρcos θ,y =ρsin θ;⎩⎪⎨⎪⎧ρ2=x 2+y 2,t an θ=yx (x ≠0).4.圆的极坐标方程曲线图形 极坐标方程 圆心在极点,半径为r 的圆ρ=r (0≤θ<2π) 圆心为(r,0),半径为r 的圆ρ=2r cos_θ⎝ ⎛⎭⎪⎫-π2≤θ≤π2 圆心为⎝ ⎛⎭⎪⎫r ,π2,半径为r 的圆ρ=2r sin_θ(0≤0<π)(1)直线l 过极点,且极轴到此直线的角为α,则直线l 的极坐标方程是θ=α(ρ∈R ).(2)直线l 过点M (a,0)且垂直于极轴,则直线l 的极坐标方程为ρcos θ=a ⎝ ⎛⎭⎪⎫-π2<θ<π2. (3)直线过M ⎝ ⎛⎭⎪⎫b ,π2且平行于极轴,则直线l 的极坐标方程为ρsin_θ=b (0<θ<π).1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)平面直角坐标系内的点与坐标能建立一一对应关系,在极坐标系中点与坐标也是一一对应关系.( )(2)若点P 的直角坐标为(1,-3),则点P 的一个极坐标是⎝ ⎛⎭⎪⎫2,-π3.( )(3)在极坐标系中,曲线的极坐标方程不是唯一的. ( ) (4)极坐标方程θ=π(ρ≥0)表示的曲线是一条直线. ( )[答案] (1)× (2)√ (3)√ (4)×2.(教材改编)若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段y =1-x (0≤x ≤1)的极坐标方程为( )【导学号:57962483】A .ρ=1cos θ+sin θ,0≤θ≤π2B .ρ=1cos θ+sin θ,0≤θ≤π4C .ρ=cos θ+sin θ,0≤θ≤π2 D .ρ=cos θ+sin θ,0≤θ≤π4 A [∵y =1-x (0≤x ≤1),∴ρsin θ=1-ρcos θ(0≤ρcos θ≤1), ∴ρ=1sin θ+cos θ⎝⎛⎭⎪⎫0≤θ≤π2.]3.(教材改编)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.若曲线C 的极坐标方程为ρ=2sin θ,则曲线C 的直角坐标方程为________.x 2+y 2-2y =0 [由ρ=2sin θ,得ρ2=2ρsin θ. 所以曲线C 的直角坐标方程为x 2+y 2-2y =0.]4.已知直线l 的极坐标方程为2ρsin ⎝ ⎛⎭⎪⎫θ-π4=2,点A 的极坐标为A ⎝ ⎛⎭⎪⎫22,7π4,则点A 到直线l 的距离为________.522 [由2ρsin ⎝ ⎛⎭⎪⎫θ-π4=2,得2ρ⎝ ⎛⎭⎪⎫22sin θ-22cos θ=2, ∴y -x =1.由A ⎝ ⎛⎭⎪⎫22,7π4,得点A 的直角坐标为(2,-2).∴点A 到直线l 的距离d =|2+2+1|2=522.]5.(·江苏高考)已知圆C 的极坐标方程为ρ2+22ρsin ⎝ ⎛⎭⎪⎫θ-π4-4=0,求圆C的半径.[解] 以极坐标系的极点为平面直角坐标系的原点O ,以极轴为x 轴的正半轴,建立直角坐标系xOy .2分 圆C 的极坐标方程可化为ρ2+22ρ⎝ ⎛⎭⎪⎫22sin θ-22cos θ-4=0,4分 化简,得ρ2+2ρsin θ-2ρcos θ-4=0.6分则圆C 的直角坐标方程为x 2+y 2-2x +2y -4=0, 即(x -1)2+(y +1)2=6, 所以圆C 的半径为 6.10分平面直角坐标系中的伸缩变换将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C .(1)求曲线C 的方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.[解] (1)设(x 1,y 1)为圆上的点,在已知变换下变为曲线C 上的点(x ,y ),依题意,得⎩⎨⎧x =x 1,y =2y 1.2分由x 21+y 21=1得x 2+⎝ ⎛⎭⎪⎫y 22=1,故曲线C 的方程为x 2+y 24=1.5分(2)由⎩⎪⎨⎪⎧x 2+y 24=1,2x +y -2=0,解得⎩⎨⎧ x =1,y =0或⎩⎨⎧x =0,y =2.6分不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝ ⎛⎭⎪⎫12,1,所求直线斜率为k =12,8分于是所求直线方程为y -1=12⎝ ⎛⎭⎪⎫x -12,化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3, 故所求直线的极坐标方程为ρ=34sin θ-2cos θ.10分 [规律方法] 1.解答该类问题应明确两点:一是根据平面直角坐标系中的伸缩变换公式的意义与作用;二是明确变换前的点P (x ,y )与变换后的点P ′(x ′,y ′)的坐标关系,利用方程思想求解.2.求交点坐标,得直线方程,最后化为极坐标方程,其实质是将x =ρcos θ,y =ρsin θ代入转化.[变式训练1] 在平面直角坐标系中,已知伸缩变换φ:⎩⎨⎧x ′=3x ,2y ′=y .(1)求点A ⎝ ⎛⎭⎪⎫13,-2经过φ变换所得点A ′的坐标;(2)求直线l :y =6x 经过φ变换后所得直线l ′的方程. [解] (1)设点A ′(x ′,y ′),由伸缩变换 φ:⎩⎨⎧x ′=3x ,2y ′=y ,得⎩⎪⎨⎪⎧x ′=3x ,y ′=y2, 2分∴x ′=13×3=1,y ′=-22=-1. ∴点A ′的坐标为(1,-1).5分(2)设P ′(x ′,y ′)是直线l ′上任意一点.由伸缩变换φ:⎩⎨⎧x ′=3x ,2y ′=y ,得⎩⎪⎨⎪⎧x =x ′3,y =2y ′,8分代入y =6x ,得2y ′=6·x ′3=2x ′, ∴y ′=x ′为所求直线l ′的方程.10分极坐标与直角坐标的互化122+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.[解] (1)因为x =ρcos θ,y =ρsin θ,所以C 1的极坐标方程为ρcos θ=-2,C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0.4分 (2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0,得 ρ2-32ρ+4=0,解得ρ1=22,ρ2= 2. 8分 故ρ1-ρ2=2,即|MN |= 2.由于C 2的半径为1,所以△C 2MN 的面积为12.10分 [迁移探究1] 若本例条件不变,求直线C 1与C 2的交点的极坐标. [解] 联立方程⎩⎪⎨⎪⎧ρcos θ=-2,θ=π4,解得θ=π4且ρ=-2 2.6分 所以交点的极坐标为⎝ ⎛⎭⎪⎫-22,π4.10分[迁移探究2] 本例条件不变,求圆C 2关于极点的对称圆的方程. [解] 因为点(ρ,θ)与点(-ρ,θ)关于极点对称, 设点(ρ,θ)为对称圆上任意一点,则(-ρ,θ)在圆C 2上, 所以(-ρ)2+2ρcos θ+4ρsin θ+4=0.6分故所求圆C 2关于极点的对称圆的方程为x 2+y 2+2x +4y +4=0.10分[规律方法] 1.进行极坐标方程与直角坐标方程互化的关键是灵活应用互化公式:x =ρcos θ,y =ρsin θ,ρ2=x 2+y 2,t an θ=yx (x ≠0).2.进行极坐标方程与直角坐标方程互化时,要注意ρ,θ的取值范围及其影响;要善于对方程进行合理变形,并重视公式的逆向与变形使用;要灵活运用代入法和平方法等方法.[变式训练2] (·北京高考改编)在极坐标系中,已知极坐标方程C 1:ρcos θ-3ρsin θ-1=0,C 2:ρ=2cos θ.(1)求曲线C 1,C 2的直角坐标方程,并判断两曲线的形状; (2)若曲线C 1,C 2交于A ,B 两点,求两交点间的距离. [解] (1)由C 1:ρcos θ-3ρsin θ-1=0, ∴x -3y -1=0,表示一条直线. 2分由C 2:ρ=2cos θ,得ρ2=2ρcos θ, ∴x 2+y 2=2x ,则(x -1)2+y 2=1. ∴C 2是圆心为(1,0),半径r =1的圆. 4分 (2)由(1)知点(1,0)在直线x -3y -1=0上, 因此直线C 1过圆C 2的圆心.6分 ∴两交点A ,B 的连线段是圆C 2的直径. 因此两交点A ,B 间的距离|AB |=2r =2.10分 直线与圆的极坐标方程的应用1⎩⎨⎧x =a cos t ,y =1+a sin t(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足t an α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .[解] (1)消去参数t 得到C 1的普通方程为x 2+(y -1)2=a 2,则C 1是以(0,1)为圆心,a 为半径的圆.2分将x =ρcos θ,y =ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0.4分(2)曲线C 1,C 2的公共点的极坐标满足方程组 ⎩⎨⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ. 若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0, 由已知t an θ=2,得16cos 2θ-8sin θcos θ=0, 8分 从而1-a 2=0,解得a =-1(舍去)或a =1.当a =1时,极点也为C 1,C 2的公共点,且在C 3上. 所以a =1.10分 [规律方法] 1.第(1)问将曲线C 1的参数方程先化为普通方程,再化为极坐标方程,考查学生的化归与转化能力.第(2)问中关键是理解极坐标方程,有意识地将问题简单化,进而求解.2.由极坐标方程求曲线交点、距离等几何问题时,如果不能直接用极坐标方程解决,可先转化为直角坐标方程,然后求解.[变式训练3] (·太原市质检)已知曲线C 1:x +3yy =3和C 2:⎩⎨⎧x =6cos φ,y =2sin φ(φ为参数).以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,且两种坐标系中取相同的长度单位.(1)把曲线C 1和C 2的方程化为极坐标方程;(2)设C 1与x ,y 轴交于M ,N 两点,且线段MN 的中点为P .若射线OP 与C 1,C 2交于P ,Q 两点,求P ,Q 两点间的距离.【导学号:57962484】[解] (1)曲线C 1化为ρcos θ+3ρsin θ= 3. ∴ρsin ⎝ ⎛⎭⎪⎫θ+π6=32. 2分曲线C 2化为x 26+y 22=1.(*) 将x =ρcos θ,y =ρsin θ代入(*)式得ρ26cos 2θ+ρ22sin 2θ=1,即ρ2(cos 2θ+3sin 2θ)=6.∴曲线C 2的极坐标方程为ρ2=61+2sin 2θ.4分(2)∵M (3,0),N (0,1),∴P ⎝ ⎛⎭⎪⎫32,12,∴OP 的极坐标方程为θ=π6,6分把θ=π6代入ρsin ⎝ ⎛⎭⎪⎫θ+π6=32得ρ1=1,P ⎝ ⎛⎭⎪⎫1,π6.把θ=π6代入ρ2=61+2sin 2θ得ρ2=2,Q ⎝ ⎛⎭⎪⎫2,π6. 8分 ∴|PQ |=|ρ2-ρ1|=1,即P ,Q 两点间的距离为1.10分[思想与方法]1.曲线的极坐标方程与直角坐标方程互化:对于简单的可以直接代入公式ρcos θ=x ,ρsin θ=y ,ρ2=x 2+y 2,但有时需要作适当的变化,如将式子的两边同时平方,两边同乘以ρ等.2.确定极坐标方程的四要素:极点、极轴、长度单位、角度单位及其正方向,四者缺一不可. [易错与防范]1.平面上点的直角坐标的表示形式是唯一的,但点的极坐标的表示形式不唯一.极坐标与P 点之间不是一一对应的,所以我们又规定ρ≥0,0≤θ<2π,来使平面上的点与它的极坐标之间是一一对应的,但仍然不包括极点.2.进行极坐标方程与直角坐标方程互化时,应注意两点: (1)注意ρ,θ的取值范围及其影响.(2)重视方程的变形及公式的正用、逆用、变形使用.。
§1.2.(1、2)极坐标及其与直角坐标的关系学习目标1.通过具体实例引入确定点的位置的新形式,即极坐标。
2.能够建立极坐标系并描出系中点的位置,在极坐标系中观察一些对称点的坐标关系。
学习过程【任务一】问题分析问题1:一艘军舰在海面上巡逻,发现附近水域里有一片水雷,如何确定它们的位置以便将它们引爆?问题2:思考解决上述问题的关键因素是什么?【任务二】新知理解1.极坐标系:在平面上取一个定点O ,由O 点出发的一条 ,一个 及计算 的正方向(通常 ),合称为一个 。
2.在下图极坐标系中,O 点称为 ,Ox 称为 。
3.图中点M 的位置可以由线段OM 的长度ρ和从Ox 到OM 的角度θ来刻画,这两个数组成的有序数对 称为点M 的极坐标。
其中ρ称为 ,θ称为 。
【任务三】典型例题分析例1:在同一个极坐标系中,画出以下点:)62(π,A )66(π-,B )321(π,C )4(π,D )05(,E )4(π-,F注意:1.一般限定0≥ρ。
特别地:⎩⎨⎧<=,00ρρ, 2.与直角坐标不同,给定点的极坐标),(θρ,唯一确定平面上点,但是平面上点的极坐标并不唯一,比如例1中的 ,如何限定则除极点外一一对应?例2:建立极坐标系描出点)22()63(ππ,,,B A ,分别求点A 关于极轴,直线OB ,极点的对称点的极坐标。
小结:点),(θρ关于极轴的对称点是 ,关于某直线的对称点是 ,关于极点的对称点是 。
思考:极坐标系中,ρ恒为1的点的集合构成什么样的曲线?θ恒为4π的点呢? 【任务四】探究极坐标与直角坐标的关系如图,在平面上取定一个极坐标系,一极轴作为直角坐标系的x 轴的正半轴,以2πθ=的射线作为y1.用θρ,表示y x ,。
2.用y x ,表示θρtan ,。
例3:把点M 的极坐标)65,3(π化为直角坐标形式。
例4:把点M 的直角坐标)1,1(-化为极坐标形式(限定πθπρ≤<-≥,0)【任务五】课后作业教材P10习题1-2,附纸交。
数学选修4-4 坐标系与参数方程导学案本章考试说明要求:1.坐标系的有关概念 2.简单图形(如过极点的直线、过极点或圆心在极点的圆)的极坐标方程 3.极坐标方程与直角坐标方程的互化 4.参数方程 5.直线、圆和椭圆的参数方程 6.参数方程与普通方程的互化 7.参数方程的简单应用 本章具体内容:一、坐标系的有关概念1.平面直角坐标系的建立:在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系.2.空间直角坐标系的建立:在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系.3.极坐标系的建立:在平面上取一个定点O ,自点O 引一条射线OX ,同时确定一个单位长度和计算角度的正方向(通常取 方向为正方向),这样就建立了一个极坐标系。
(其中O 称为 ,射线OX 称为 )如图,设M 是平面上的任一点,ρ表示OM 的长度,θ表示以射线OX 为始边,射线OM 为终边所成的角。
那么有序数对(,)ρθ称为点M 的极坐标。
其中ρ称为 ,θ称为 . 由极径的意义可知0ρ≥.当极角θ的取值范围是[)0,2π时,平面上的点(除去极点)就与极坐标()(),0ρθρ≠建立一一对应的关系.约定:极点的极坐标是ρ=0,θ可以取任意角. 4.极坐标的统一形式一般地,如果(),ρθ是点M 的极坐标,那么 或 ()k Z ∈,都可以作为点M 的极坐标. 二、简单图形的极坐标方程1.直线的极坐标方程:若直线过点00(,)M ρθ,且极轴到此直线的角为α,则它的方程为: .注:几个特殊位置的直线的极坐标方程 (1)直线过极点方程: 图:(2)直线过点)0,(a M 且垂直于极轴 方程: 图:(3)直线过(,)2M b π且平行于极轴方程: 图: 练习:按下列条件写出直线的极坐标方程:①经过极点,且倾斜角为6π的直线; ②经过点2,4A π⎛⎫⎪⎝⎭,且垂直于极轴的直线; ③经过点3,3B π⎛⎫-⎪⎝⎭,且平行于极轴的直线; ④经过点()4,0C ,且倾斜角为34π的直线. 2.圆的极坐标方程: 若圆心为00(,)M ρθ,半径为r 的圆方程为: .注:几个特殊位置的圆的极坐标方程 (1)当圆心位于极点方程: 图: (2)当圆心位于(,0)M r方程: 图: (3)当圆心位于(,)2M r π方程: 图: 练习:按下列条件写出圆的极坐标方程: ①以()2,0A 为圆心,2为半径的圆; ②以4,2B π⎛⎫⎪⎝⎭为圆心,4为半径的圆; ③以()5,C π为圆心,且过极点的圆;④以4D π⎫⎪⎭为圆心,1为半径的圆. 三、极坐标方程与直角坐标方程的互化以直角坐标系的O 为极点,x 轴正半轴为极轴,且在两坐标系中取相同的单位长度平面内的任一点P 的直角坐标极坐标分别为(x ,y )和(,)ρθ,则x =2ρ=y = tan θ=练习:①将下列各点的极坐标化为直角坐标:4π⎫⎪⎭= ; 6,3π⎛⎫- ⎪⎝⎭= ; 112,6π⎛⎫- ⎪⎝⎭= ; ()5,π= ; 34,2π⎛⎫- ⎪⎝⎭= ; 34π⎛⎫- ⎪⎝⎭= . ②将下列各点的直角坐标化为极坐标:)= ;()1,1--= ;()3,0-= ;()0,5= ;(4,-= ;()= .考点1 极坐标与直角坐标互化例1 在极坐标中,求两点)4,2(),4,2(ππ-QP之间的距离以及过它们的直线的极坐标方程.练习1 已知圆C:22(1)(1x y++=,则圆心C的极坐标为__(0,02)ρθπ>≤<练习2 在极坐标中,求两点间的距离:(1))215,12(),35,5(00BA(2))125,8(),12,3(ππBA(3))0,0)(,(),,(212211>>ρρθρθρBA练习3 (1)在极坐标中,点),(θρP关于极轴的对称点的坐标为;(2)在极坐标中,求点)6,5(πM关于直线4πθ=的对称点的坐标为.考点2 极坐标方程与直角坐标方程互化例2 已知曲线C的极坐标方程是4sinρθ=.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的方程是40x y--=,点P是曲线C上的动点,点Q是直线l上的动点,求PQ的最小值.练习1 在极坐标系中,圆2cos=θρ与直线1cos=θρ的位置关系是.练习2 在极坐标系中,圆2ρ=上的点到直线()6sin3cos=+θθρ的距离的最小值是_____ .练习3在极坐标系中,过点4π⎛⎫⎪⎝⎭作圆4sinρθ=的切线,则切线的极坐标方程是.练习4 设过原点O的直线与圆C:22(1)1x y-+=的一个交点为P,点M为线段OP的中点.(1)求圆C的极坐标方程;(2)求点M轨迹的极坐标方程,并说明它是什么曲线.极坐标系强化训练1.点M的直角坐标是(1-,则点M的极坐标为()A.(2,)3πB.(2,)3π-C.2(2,)3πD.(2,2),()3k k Zππ+∈2.极坐标方程cos2sin2ρθθ=表示的曲线为()A.一条射线和一个圆B.两条直线C.一条直线和一个圆D.一个圆3.在极坐标系中,直线24sin=⎪⎭⎫⎝⎛+πθρ被圆4=ρ截得的弦长为__ .4.设(A2,32π),(B3,3π)是极坐标系上两点,则AB= _.5.已知某圆锥曲线C的极坐标方程是22225916cosρθ=+,则曲线C的离心率为()A.45B.53C.35D.456.在极坐标系中,已知曲线)3,1(.cos4:)3cos(:21-∈==+mCmC若和θρπθρ,则曲线C1与C2的位置关系是A.相切B.相交C.相离D.不确定7.在极坐标系中,直线21cos=θρ与曲线θρcos2=相交于A、B两点,O为极点,则∠AOB= 23π8.与曲线01cos=+θρ关于4πθ=对称的曲线的极坐标方程是01sin=+θρ9.以坐标原点为极点,横轴的正半轴为极轴的极坐标系下,有曲线C:4cosρθ=,过极点的直线θϕ=(Rϕ∈且ϕ是参数)交曲线C于两点AO,,令OA的中点为M.(1)求点M在此极坐标下的轨迹方程(极坐标形式).(2)当53πϕ=时,求M点的直角坐标.10.已知直线lkkCl若直线和圆),0)(4cos(2:4)4sin(:≠+⋅==-πθρπθρ上的点到圆C上的点的最小距离等于2。
1.2.1.极坐标系的概念【学习目标】1.理解极坐标的概念,弄清极坐标系的结构;2.理解极坐标系下点的极坐标(,)ρθ与点之间的多对一的对应关系; 3.已知一点的极坐标会在极坐标系中描点,以及已知点能写出它的极坐标.【重点难点】重点:理解极坐标的意义. 难点:能够在极坐标系中用极坐标确定点位置.【学习过程】一.课前预习二.课堂学习与研讨(一)知识梳理1.建立极坐标的方法:在平面内取一个定点O ,叫做 ;自 O 引一条射线Ox ,叫做 ;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.2.极坐标系中点的极坐标的规定:设M 是平面内任意一点,极点O 与点M 的距离OM 叫做点M的 ,记为ρ;以极轴Ox 为始边,射线OM 为终边的角∠xOM 叫做点M 的 ,记为θ.有序数对(,)ρθ就叫做M 的极坐标. 一般地, 0ρ≥,θ为任意实数.特别地,极点的极坐标为 .3. 在极坐标系中点与它的极坐标的对应关系:(1)已知极坐标),(θρ,在平面上可以确定 点M .(2)给定平面上一点M ,却有无数个极坐标,点M 的极坐标统一的表达式为 .(3)如果规定0>ρ,)2,0[πθ∈,那么除极点外,极坐标系中的点与极坐标是 对应.(二)例题分析例1.写出右图中各点的极坐标,并回答下面的问题:(1)平面上一点的极坐标是否唯一?(2)若不唯一,那有多少种表示方法?(3)坐标不唯一是由什么因素引起的?练习1. 在极坐标系里描出下列各点:(3,0)A ,(6,2)B π,(3,)2C π,4(5,)3D π,5(3,)6E π,(4,)F π,5(6,)3G π.例2.在极坐标系中,(1)已知两点5(5,)4P π,(1,)4Q π,求线段PQ 的长度; (2)已知M 的极坐标为(,)ρθ且3πθ=,R ρ∈,说明满足上述条件的点M 的位置.练习2. 若ABC ∆的的三个顶点为5(5,)2A π,5(8,)6B π,)34,3(πC ,判断三角形的形状.三.达标检测 A 基础巩固1.在极坐标系中,与点(8,)6π关于极点对称的点的一个坐标是( ) A.(8,)6π- B.5(8,)6π- C.5(8,)6π D.2(8,)3π 2.两点(2,)3M π,4(5,)3N π之间的距离是( ) A.3 B.4 C.7 D.83.P 与(,)Q ρθ关于极轴对称,则P 的坐标是( )A.(,)ρθ-B.(,)ρπθ-C.(,)ρπθ+D.(,2)ρπθ+B 提升练习4.如图,写出极坐标系中的边长为a 正方形OABC 的三个顶点 A 、B 、C 的坐标A ( );B ( );C ( )C5.在极坐标系中,如果等边ABC ∆的两个顶点是(2,)4A π,5(2,)4B π,求第三个顶点C 的坐标.四.拓展延伸与巩固6. 若ABC ∆的的三个顶点为5(5,)2A π,5(8,)6B π,7(3,)6C π,则三角形的形状为 .7. 已知两点)3,2(π,)2,3(π,求两点间的距离.。
信息中心·O·CB··A观测点观测点观测点1.1.1 平面直角坐标系【学习目标】1.理解平面直角坐标系的意义,掌握在平面直角坐标系中描述点或线的方法. 2.掌握坐标法解决几何问题的方法步骤. 3.体会坐标系的作用.【重点难点】重点:建立坐标系解决几何问题的方法步骤.难点:应用坐标法解决问题.一.课前预习阅读教材42~P P 的内容,体会平面直角坐标系在解决实际问题和几何问题中的作用,并自主解决下列问题:1. 到两个定点A (-1,0)与B (0,1)的距离相等的点的轨迹是什么?并求其轨迹方程。
2.在⊿ABC 中,已知A (5,0),B (-5,0),且6=-BC AC ,求顶点C 的轨迹和轨迹方程.3.求直线0532=+-y x 与曲线xy 1=的交点坐标. 二.课堂学习与研讨 (一)合作探索声响定位问题某信息中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到一声巨响,正东观测点听到巨响的时间比其他两个观测点晚4s ,已知各观测点到信息中心的距离都是1020m ,试确定该巨响的位置.(假定当时声音传播的速度为340m/s ,各相关点均在同一平面上)设发出响声的位置为P ,正东、正西、正北方向 三个观测点分别为C B A ,,,阅读上面材料并 回答下列问题:由上述可知响声的位置就是 和 的交点3.建立适当的坐标系,通过推理、计算求得响声的位置P 距离信息中心O 为 ; 方向在信息中心的 . (二)知识梳理1.建立坐标系解决几何问题的方法步骤:(1)建立平面直角坐标系 (2)设点(点与坐标的对应) (3)列式(方程与坐标的对应) (4)化简 (5)说明2.根据几何特点建立适当的平面直角坐标系的规则是: (1)如果图形有对称中心,可以选择 为坐标原点; (2)如果图形有对称轴,可以选择 为坐标轴; (3)使图形上的 点尽可能地在坐标轴上. 例题分析例1.已知△ABC 的三边c b a ,,满足,2225a c b =+,BE,CF 分别为边AC,AB 上的中线,建立适当的平面直角坐标系探究BE 与CF 的位置关系.练习2. 教材 习题1.1 3 课堂归纳小结(1)利用坐标法可以把平面几何问题转化为代数问题,以代数运算代替几何证明;对于某些几何问题,用坐标法有明显的优势;(2)建立直角坐标系要尽可能选择适当的直角坐标系的一些规则:如果图形有对称中心,可以选对称中心为坐标原点;如果图形有对称轴,可以选择对称轴为坐标轴;使图形上的特殊点尽可能多的在坐标轴上. 达标检测A 基础巩固1.原点在直线l 上的射影是(2,1)P -,则l 的方程为( ) A. 20x y += B.240x y +-= C. 250x y -+=D .230x y ++=2. 直线0x +=被圆224x y +=截得的弦长是 .3.已知正方形的一个顶点为(1,0)A -,一边所在的直线方程为350x y +-=,则以A 为端点的两边所在直线的方程分别是 .B 提升练习4.圆22420x y x y F +-++=与y 轴交于,A B 两点,圆心为C ,若90ACB ∠=,则F 的值是 ( )A.-B.3 D.3-5.若直线y x b =+与曲线x =则实数b 的取值范围是 .拓展延伸与巩固6.课本习题1.1 第2题已知点A 为定点,线段BC 在定直线l 上滑动,已知4=BC ,点A 到直线l 的距离为3,求ABC ∆的外心的轨迹方程.。
选修4-4 坐标系与参数方程第一节 坐标系[基础梳理] 1.坐标系 (1)坐标变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎨⎧x ′=λ·x (λ>0),y ′=μ·y (μ>0)的作用下,点P (x ,y )对应到点(λx ,μy ),称φ为坐标系中的伸缩变换. (2)极坐标系在平面内取一个定点O ,叫作极点;自极点O 引一条射线Ox ,叫作极轴;再选一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.设M 是平面内任意一点,极点O 与点M 的距离|OM |叫作点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫作点M 的极角,记为θ,有序数对(ρ,θ)叫作点M 的极坐标,记为M (ρ,θ). 2.直角坐标与极坐标的互化把直角坐标系的原点作为极点,x 轴正半轴作为极轴,且在两坐标系中取相同的长度单位.设M 是平面内的任意一点,它的直角坐标、极坐标分别为(x ,y )和(ρ,θ),则⎩⎨⎧x =ρcos θ,y =ρsin θ,⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=yx (x ≠0).3.常用简单曲线的极坐标方程 曲线图形极坐标方程圆心在极点,半径为r 的圆ρ=r圆心为(r ,0),半径为r 的圆ρ=2r cos θ⎝ ⎛⎭⎪⎫-π2<θ≤π2 圆心为⎝ ⎛⎭⎪⎫r ,π2,半径为r 的圆ρ=2r sin θ (0≤θ<π)1.明辨两个坐标伸缩变换关系式⎩⎪⎨⎪⎧x ′=λx (λ>0),y ′=μy (μ>0),点(x ,y )在原曲线上,点(x ′,y ′)在变换后的曲线上,因此点(x ,y )的坐标满足原来的曲线方程,点(x ′,y ′)的坐标满足变换后的曲线方程. 2.极坐标方程与直角坐标方程互化(1)公式代入:直角坐标方程化为极坐标方程公式x =ρcos θ及y =ρsin θ直接代入并化简.(2)整体代换:极坐标方程化为直角坐标方程,变形构造形如ρcos θ,ρsin θ,ρ2的形式,进行整体代换. [四基自测]1.点P 的直角坐标为(1,-3),则点P 的极坐标为______. 答案:(2,-π3)2.在极坐标系中,圆心在()2,π且过极点的圆的方程为________. 答案:ρ=-2 2 cos θ3.在极坐标系中,直线ρcos θ-3ρsin θ-1=0与圆ρ=2cos θ交于A ,B 两点,则|AB |=________. 答案:24.在极坐标系中,圆ρ=8sin θ上的点到直线θ=π3(ρ∈R )距离的最大值是________. 答案:65.已知圆C 的极坐标方程为ρ2+22ρsin ⎝ ⎛⎭⎪⎫θ-π4-4=0,则圆C 的半径为________.答案: 6考点一 伸缩变换◄考基础——练透[例1] (1)在同一平面直角坐标系中经过伸缩变换⎩⎨⎧x ′=5x ,y ′=3y 后,曲线C 变为曲线2x ′2+8y ′2=1,求曲线C 的方程.解析:把⎩⎪⎨⎪⎧x ′=5xy ′=3y 代入曲线2x ′2+8y ′2=1,可得2(5x )2+8(3y )2=1,化为50x 2+72y 2=1,即为曲线C 的方程.(2)在同一直角坐标系中,求满足下列图形变换的伸缩变换:由曲线4x 2+9y 2=36变成曲线x ′2+y ′2=1.解析:法一:设变换为φ:⎩⎪⎨⎪⎧x ′=λx (λ>0),y ′=μy (μ>0),可将其代入x ′2+y ′2=1,得λ2x 2+μ2y 2=1.将4x 2+9y 2=36变形为x 29+y 24=1,比较系数得λ=13,μ=12.所以⎩⎪⎨⎪⎧x ′=13x ,y ′=12y .故将椭圆4x 2+9y 2=36上的所有点的横坐标变为原来的13,纵坐标变为原来的12,可得到圆x ′2+y ′2=1.法二:利用配凑法将4x 2+9y 2=36化为⎝ ⎛⎭⎪⎫x 32+⎝ ⎛⎭⎪⎫y 22=1,与x ′2+y ′2=1对应项比较即可得⎩⎪⎨⎪⎧x ′=x3,y ′=y 2.故将椭圆4x 2+9y 2=36上的所有点的横坐标变为原来的13,纵坐标变为原来的12,可得到圆x ′2+y ′2=1.1.平面上的曲线y =f (x )在变换φ:⎩⎪⎨⎪⎧x ′=λx (λ>0),y ′=μy (μ>0)的作用下的变换方程的求法是将⎩⎪⎨⎪⎧x =x ′λ,y =y ′μ代入y =f (x ),得y ′μ=f ⎝ ⎛⎭⎪⎫x ′λ,整理之后得到y ′=h (x ′),即为所求变换之后的方程.2.应用伸缩变换时,要分清变换前的点的坐标(x ,y )与变换后的坐标(x ′,y ′).1.(2019·池州模拟)求曲线x 2+y 2=1经过φ:⎩⎨⎧x ′=3x ,y ′=4y变换后得到的新曲线的方程.解析:曲线x 2+y 2=1经过φ:⎩⎪⎨⎪⎧x ′=3x ,y ′=4y 变换后,即将⎩⎪⎨⎪⎧x =x ′3,y =y ′4代入圆的方程,可得x ′29+y ′216=1,即所求新曲线方程为:x 29+y 216=1.2.求正弦曲线y =sin x 按:φ:⎩⎪⎨⎪⎧x ′=13x ,y ′=12y 变换后的函数解析式.解析:设点P (x ,y )为正弦曲线y =sin x 上的任意一点, 在变换φ:⎩⎪⎨⎪⎧x ′=13x ,y ′=12y 的作用下,点P (x ,y )对应到点P ′(x ′,y ′).即φ⎩⎪⎨⎪⎧x =3x ′,y =2y ′,代入y =sin x 得2y ′=sin 3x ′,所以y ′=12sin3x ′,即y =12sin 3x 为所求.考点二 极坐标与直角坐标的互化◄考能力——知法[例2] (1)(2017·高考全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρcos θ=4.①M 为曲线C 1上的动点,点P 在线段OM 上,且满足|OM |·|OP |=16,求点P 的轨迹C 2的直角坐标方程;②设点A 的极坐标为⎝ ⎛⎭⎪⎫2,π3,点B 在曲线C 2上,求△OAB 面积的最大值.解析:①设P 的极坐标为(ρ,θ)(ρ>0),M 的极坐标为(ρ1,θ)(ρ1>0). 由题设知|OP |=ρ,|OM |=ρ1=4cos θ.由|OM |·|OP |=16得C 2的极坐标方程为ρ=4cos θ(ρ>0). 因此C 2的直角坐标方程为(x -2)2+y 2=4(x ≠0). ②设点B 的极坐标为(ρB ,α)(ρB >0).由题设知|OA |=2,ρB =4cos α,于是△OAB 的面积 S =12|OA |·ρB ·sin ∠AOB =4cos α·|sin ⎝ ⎛⎭⎪⎫α-π3|=2|sin ⎝ ⎛⎭⎪⎫2α-π3-32|≤2+ 3.当α=-π12时,S 取得最大值2+ 3. 所以△OAB 面积的最大值为2+ 3.(2)(2016·高考全国卷Ⅰ)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =a cos t ,y =1+a sin t ,(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.①说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;②直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .解析:①消去参数t 得到C 1的普通方程x 2+(y -1)2=a 2.C 1是以(0,1)为圆心,a 为半径的圆.将x =ρcos θ,y =ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0.②曲线C 1,C 2的公共点的极坐标满足方程组⎩⎪⎨⎪⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ.若ρ≠0,由方程组得16cos 2 θ-8sin θcos θ+1-a 2=0, 由已知tan θ=2,可得16cos 2 θ-8sin θcos θ=0, 从而1-a 2=0,解得a =-1(舍去)或a =1. a =1时,极点也为C 1,C 2的公共点,在C 3上. 所以a =1.将本例(2)曲线C 1变为ρ=cos θ+sin θ,曲线C 2变为ρsin ⎝ ⎛⎭⎪⎫θ-π4=22.(1)求C 1和C 2的直角坐标方程;(2)当θ∈(0,π)时,求C 1与C 2公共点的一个极坐标. 解析:(1)曲线C 1:ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ,曲线C 1的直角坐标方程为:x 2+y 2=x +y ,即x 2+y 2-x -y =0,曲线C 2:ρsin ⎝ ⎛⎭⎪⎫θ-π4=22,即ρsin θ-ρcos θ=1,则曲线C 2的直角坐标方程为:y -x =1,即x -y +1=0.(2)由⎩⎪⎨⎪⎧x 2+y 2-x -y =0,x -y +1=0,得⎩⎪⎨⎪⎧x =0,y =1,C 1与C 2公共点的一个极坐标为⎝ ⎛⎭⎪⎫1,π2.1.极坐标方程与普通方程的互化技巧(1)将极坐标方程两边同乘ρ或同时平方,将极坐标方程构造成含有ρcos θ,ρsin θ,ρ2的形式,然后利用公式代入化简得到普通方程.(2)巧借两角和差公式,转化ρsin(θ±α)或ρcos(θ±α)的结构形式,进而利用互化公式得到普通方程.(3)将直角坐标方程中的x 转化为ρcos θ,将y 换成ρsin θ,即可得到其极坐标方程. 2.涉及圆的极坐标方程的解决方法方法一:先把涉及的直线或圆的极坐标方程化为直角坐标方程,再根据直角坐标系中的相关知识进行求解;方法二:直接利用极坐标的相关知识进行求解,其关键是将已知条件表示成ρ和θ之间的关系.这一过程需要用到解三角形的知识,并需要掌握直线和圆的极坐标方程.(2018·高考全国卷Ⅰ)在直角坐标系xOy中,曲线C1的方程为y=k|x|+2.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2+2ρcos θ-3=0.(1)求C2的直角坐标方程;(2)若C1与C2有且仅有三个公共点,求C1的方程.解析:(1)由x=ρcos θ,y=ρsin θ得C2的直角坐标方程为(x+1)2+y2=4.(2)由(1)知C2是圆心为A(-1,0),半径为2的圆.由题设知,C1是过点B(0,2)且关于y轴对称的两条射线.记y轴右边的射线为l1,y 轴左边的射线为l2.由于点B 在圆C 2的外面,故C 1与C 2有且仅有三个公共点等价于l 1与C 2只有一个公共点且l 2与C 2有两个公共点,或l 2与C 2只有一个公共点且l 1与C 2有两个公共点.当l 1与C 2只有一个公共点时,点A 到l 1所在直线的距离为2,所以|-k +2|k 2+1=2,故k=-43或k =0.经检验,当k =0时,l 1与C 2没有公共点;当k =-43时,l 1与C 2只有一个公共点,l 2与C 2有两个公共点. 当l 2与C 2只有一个公共点时,点A 到l 2所在直线的距离为2,所以|k +2|k 2+1=2,故k=0或k =43.经检验,当k =0时,l 1与C 2没有公共点; 当k =43时,l 2与C 2没有公共点. 综上,所求C 1的方程为y =-43|x |+2.考点三 极坐标方程的应用◄考基础——练透[例3] (2019·山西太原模拟)点P 是曲线C 1:(x -2)2+y 2=4上的动点,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,以极点O 为中心,将点P 逆时针旋转90°得到点Q ,设点Q 的轨迹为曲线C 2. (1)求曲线C 1,C 2的极坐标方程;(2)射线θ=π3(ρ>0)与曲线C 1,C 2分别交于A ,B 两点,定点M (2,0),求△MAB 的面积.解析:(1)由曲线C 1的直角坐标方程(x -2)2+y 2=4可得曲线C 1的极坐标方程为ρ=4cos θ.设Q (ρ,θ),则P ⎝ ⎛⎭⎪⎫ρ,θ-π2,则有ρ=4cos ⎝ ⎛⎭⎪⎫θ-π2=4sin θ.所以曲线C2的极坐标方程为ρ=4sin θ.(2)M到射线θ=π3(ρ>0)的距离d=2sinπ3=3,|AB|=ρB-ρA=4⎝⎛⎭⎪⎫sinπ3-cos π3=2(3-1),则S△MAB=12|AB|×d=12×2(3-1)×3=3- 3.判断位置关系和求最值问题的方法(1)已知极坐标方程讨论位置关系时,可以先化为直角坐标方程,化陌生为熟悉再进行解答.(2)已知极坐标方程解答最值问题时,通常可转化为三角函数模型求最值问题,比直角坐标系中求最值的运算量小.提醒:在曲线的方程进行互化时,一定要注意变量的范围,注意转化的等价性.在极坐标系中,判断直线4ρcos(θ-π6)+1=0与圆ρ=2sin θ的公共点的个数. 解析:直线方程可化为2ρsin θ+23ρcos θ+1=0,即23x +2y +1=0,圆为x 2+(y -1)2=1,因为圆心到直线的距离d =34<1,所以有两个交点.课时规范练 A 组 基础对点练1.已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-22ρcos ⎝ ⎛⎭⎪⎫θ-π4=2.(1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程. (2)求经过两圆交点的直线的极坐标方程. 解析:(1)ρ=2⇒ρ2=4,所以x 2+y 2=4;因为ρ2-22ρcos ⎝ ⎛⎭⎪⎫θ-π4=2,所以ρ2-22ρ⎝ ⎛⎭⎪⎫cos θcos π4+sin θsin π4=2,所以x 2+y 2-2x -2y -2=0.(2)将两圆的直角坐标方程相减,得经过两圆交点的直线方程为x +y =1.化为极坐标方程为ρcos θ+ρsin θ=1, 即ρsin ⎝ ⎛⎭⎪⎫θ+π4=22.2.在直角坐标系xOy 中,圆C 的方程为(x -3)2+(y +1)2=9,以O 为极点,x 轴的正半轴为极轴建立极坐标系. (1)求圆C 的极坐标方程.(2)直线OP :θ=π6(ρ∈R )与圆C 交于点M ,N ,求线段MN 的长. 解析:(1)(x -3)2+(y +1)2=9可化为x 2+y 2-23x +2y -5=0, 故其极坐标方程为ρ2-23ρcos θ+2ρsin θ-5=0. (2)将θ=π6代入ρ2-23ρcos θ+2ρsin θ-5=0,得 ρ2-2ρ-5=0,所以ρ1+ρ2=2,ρ1ρ2=-5, 所以|MN |=|ρ1-ρ2|=4+20=2 6.3.在极坐标系中,已知圆C 经过点P (2,π4),圆心为直线ρsin ⎝ ⎛⎭⎪⎫θ-π3=-32与极轴的交点,求圆C 的极坐标方程.解析:因为点P (2,π4),所以x =2cos π4=1,y =2sin π4=1,所以点P (1,1).因为直线ρsin ⎝ ⎛⎭⎪⎫θ-π3=-32,展开为12ρsin θ-32ρcos θ=-32,所以y -3x =-3,令y =0,则x =1,所以直线与x 轴的交点为C (1,0).所以圆C 的半径r =|PC |=(1-1)2+(1-0)2=1,所以圆C 的方程为(x -1)2+y 2=1,展开为x 2-2x +1+y 2=1,化为极坐标方程ρ2-2ρcos θ=0,即ρ=2 cos θ,所以圆C 的极坐标方程为ρ=2cos θ.4.在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25.(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程; (2)直线l 的参数方程是⎩⎨⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.解析:(1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程ρ2+12ρcos θ+11=0. (2)在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R ).设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得ρ2+12ρcos α+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11. |AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=144cos 2α-44.由|AB |=10得cos 2α=38,tan α=±153.所以l 的斜率为153或-153.B 组 能力提升练5.已知在平面直角坐标系xOy 中,以坐标原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,曲线C 1的极坐标方程为ρ=4cos θ,直线l 的参数方程为⎩⎪⎨⎪⎧x =1-255t ,y =1+55t(t 为参数). (1)求曲线C 1的直角坐标方程及直线l 的普通方程;(2)若曲线C 2的参数方程为⎩⎨⎧x =2cos α,y =sin α(α为参数),曲线C 1上点P 的极角为π4,Q为曲线C 2上的动点,求PQ 的中点M 到直线l 距离的最大值. 解析:(1)曲线C 1的极坐标方程为ρ=4cos θ, 即ρ2=4ρcos θ,可得直角坐标方程:C 1:x 2+y 2-4x =0.直线l 的参数方程为⎩⎪⎨⎪⎧x =1-255t ,y =1+55t (t 为参数),消去参数t 可得普通方程:x +2y -3=0.(2)P ⎝ ⎛⎭⎪⎫22,π4,直角坐标为(2,2),Q (2cos α,sin α),M ⎝ ⎛⎭⎪⎫1+cos α,1+12sin α,∴M 到l 的距离为d =|1+cos α+2+sin α-3|5=105⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α+π4≤105, 从而最大值为105. 6.在直角坐标系xOy 中,曲线C 1:⎩⎨⎧x =t cos α,y =t sin α(t 为参数,t ≠0), 其中0≤α≤π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ. (1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值.解析:(1)曲线C 2的直角坐标方程为x 2+y 2-2y =0,曲线C 3的直角坐标方程x 2+y 2-23x =0.联立⎩⎪⎨⎪⎧x 2+y 2-2y =0,x 2+y 2-23x =0,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =32,y =32.所以C 2与C 3交点的直角坐标为(0,0)和⎝ ⎛⎭⎪⎫32,32.(2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中0≤α≤π. 因此A 的极坐标为(2sin α,α),B 的极坐标为(2 3 cos α,α). 所以|AB |=|2sin α-23cos α|=4⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α-π3.当α=5π6时,|AB |取得最大值,最大值为4.第二节 参数方程[基础梳理] 1.曲线的参数方程在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数⎩⎨⎧x =f (t ),y =g (t ),并且对于t 的每一个允许值,由这个方程组所确定的点M (x ,y )都在这条曲线上,那么这个方程组就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程F (x ,y )=0叫普通方程. 2.参数方程和普通方程的互化(1)参数方程化普通方程:利用两个方程相加、减、乘、除或者代入法消去参数. (2)普通方程化参数方程:如果x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),则得曲线的参数方程⎩⎨⎧x =f (t ),y =g (t ).3.直线、圆与椭圆的普通方程和参数方程1.参数方程化普通方程(1)常用技巧:代入消元、加减消元、平方后加减消元等. (2)常用公式:cos 2θ+sin 2θ=1,1+tan 2θ=1cos 2θ. 2.直线参数方程的标准形式的应用过点M 0(x 0,y 0),倾斜角为α的直线l 的参数方程是⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α.若M 1,M 2是l 上的两点,其对应参数分别为t 1,t 2,则 (1)|M 1M 2|=|t 1-t 2|.(2)若线段M 1M 2的中点M 所对应的参数为t ,则t =t 1+t 22,中点M 到定点M 0的距离|MM 0|=|t |=⎪⎪⎪⎪⎪⎪t 1+t 22. (3)若M 0为线段M 1M 2的中点, 则t 1+t 2=0. [四基自测]1.直线y =x 与曲线⎩⎨⎧x =3cos α,y =3sin α(α为参数)的交点个数为( )A .0B .1C .2D .3 答案:C2.若直线的参数方程为⎩⎨⎧x =1+t ,y =2-3t (t 为参数),则直线的斜率为________.答案:-33.曲线C 的参数方程为⎩⎨⎧x =sin θ,y =cos 2θ-1(θ为参数),则曲线C 的普通方程为________.答案:y =-2x 2(-1≤x ≤1)4.椭圆C 的参数方程为⎩⎨⎧x =5cos φ,y =3sin φ(φ为参数),过左焦点F 1的直线l 与C 相交于A ,B 两点,则|AB |min =________. 答案:1855.椭圆⎩⎨⎧x =2cos θ,y =5sin θ(θ为参数)的离心率为________.答案:215考点一 直线的参数方程◄考基础——练透[例1] (2017·高考全国卷Ⅲ)在直角坐标系xOy 中,直线l 1的参数方程为⎩⎨⎧x =2+t ,y =kt (t 为参数),直线l 2的参数方程为⎩⎪⎨⎪⎧x =-2+m ,y =m k (m 为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ)-2=0,M 为l 3与C 的交点,求M 的极径.解析:(1)消去参数t 得l 1的普通方程l 1:y =k (x -2);消去参数m 得l 2的普通方程l 2:y =1k (x +2).设P (x ,y ),由题设得⎩⎨⎧y =k (x -2),y =1k (x +2),消去k 得x 2-y 2=4(y ≠0).所以C 的普通方程为x 2-y 2=4(y ≠0).(2)C 的极坐标方程为ρ2(cos 2θ-sin 2θ)=4(0<θ<2π,θ≠π).联立⎩⎪⎨⎪⎧ρ2(cos 2θ-sin 2θ)=4,ρ(cos θ+sin θ)-2=0得cos θ-sin θ=2(cos θ+sin θ).故tan θ=-13,从而cos 2θ=910,sin 2θ=110.代入ρ2(cos 2θ-sin 2θ)=4得ρ2=5,所以交点M 的极径为 5.1.直线的参数方程有两种常见形式: (1)点角式⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(α为倾斜角).(2)点斜式⎩⎪⎨⎪⎧x =x 0+aty =y 0+bt(参数都是t )2.使用方法:消参数(三角公式法、相除法)化为普通方程或者利用参数法 (1)若M 1,M 2是直线l 上的两个点,对应的参数分别为t 1,t 2,则|M 0M 1→||M 0M 2→|=|t 1t 2|,|M 1M 2→|=|t 2-t 1|=(t 2+t 1)2-4t 1t 2.(2)若线段M 1M 2的中点为M 3,点M 1,M 2,M 3对应的参数分别为t 1,t 2,t 3,则t 3=t 1+t 22. (3)若直线l 上的线段M 1M 2的中点为M 0(x 0,y 0),则t 1+t 2=0,t 1t 2<0.(2019·唐山模拟)在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-22t ,y =5+22t(t 为参数).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=25sin θ. (1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A ,B ,若点P 的坐标为(3,5),求|P A |+|PB |. 解析:(1)由ρ=25sin θ,得ρ2=25ρsin θ. ∴x 2+y 2=25y ,即x 2+(y -5)2=5.(2)将l 的参数方程代入圆C 的直角坐标方程.得⎝ ⎛⎭⎪⎫3-22t 2+⎝ ⎛⎭⎪⎫22t 2=5,即t 2-32t +4=0.由于Δ=(32)2-4×4=2>0,故可设t 1,t 2是上述方程的两实根,所以⎩⎪⎨⎪⎧t 1+t 2=32,t 1·t 2=4. 又直线l 过点P (3,5),故由上式及t 的几何意义得|P A |+|PB |=|t 1|+|t 2|=t 1+t 2=3 2. 考点二 圆的参数方程◄考能力——知法[例2] 在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎢⎡⎦⎥⎤0,π2.(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.解析:(1)C 的普通方程为(x -1)2+y 2=1(0≤y ≤1). 可得C 的参数方程为⎩⎪⎨⎪⎧x =1+cos t ,y =sin t(t 为参数,0≤t ≤π).(2)设D (1+cos t ,sin t ),由(1)知C 是以G (1,0)为圆心,1为半径的半圆.因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同,tan t =3,t =π3. 故D 的直角坐标为(1+cos π3,sin π3),即(32,32).1.圆的参数方程可利用三角公式消参数后再应用.2.解决与圆上的动点有关的距离取值范围以及最大值和最小值问题,通常可以转化为点与圆、直线与圆的位置关系.3.求距离的问题,通过设圆的参数方程,就转化为求三角函数的值域问题.(2019·河北保定一中模拟)在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎨⎧x =-5+2cos t ,y =3+2sin t(t 为参数),在以 原点O 为极点,x 轴的非负半轴为极轴建立的极坐标系中,直线l 的极坐标方程为22ρcos(θ+π4)=-1.(1)求圆C 的普通方程和直线l 的直角坐标方程;(2)设直线l 与x 轴,y 轴分别交于A ,B 两点,点P 是圆C 上任一点,求A ,B 两点的极坐标和△P AB 面积的最小值.解析:(1)由⎩⎪⎨⎪⎧x =-5+2cos t ,y =3+ 2 sin t 消去参数t ,得(x +5)2+(y -3)2=2,所以圆C 的普通方程为(x +5)2+(y -3)2=2.由22ρcos(θ+π4)=-1,得ρcos θ-ρsin θ=-2, 所以直线l 的直角坐标方程为x -y +2=0.(2)直线l 与x 轴,y 轴的交点分别为A (-2,0),B (0,2),则点A ,B 的极坐标分别为(2,π+2k π)(k ∈Z ),(2,π2+2k π)(k ∈Z ).设点P 的坐标为(-5+2cos α,3+ 2 sin α),则点P 到直线l 的距离d =|-5+2cos α-3-2sin α+2|2=|-6+2cos (α+π4)|2,所以d min =42=22,又|AB |=22,所以△P AB 面积的最小值S =12×d min ×|AB |=12×22×22=4. 考点三 椭圆的参数方程◄考基础——练透[例3] (2017·高考全国卷Ⅰ)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧x =3cos θ,y =sin θ(θ为参数),直线l 的参数方程为⎩⎨⎧x =a +4t ,y =1-t (t 为参数). (1)若a =-1,求C 与l 的交点坐标; (2)若C 上的点到l 距离的最大值为17,求a . 解析:(1)曲线C 的普通方程为x 29+y 2=1. 当a =-1时,直线l 的普通方程为x +4y -3=0,由⎩⎨⎧x +4y -3=0,x 29+y 2=1解得⎩⎪⎨⎪⎧x =3,y =0或⎩⎪⎨⎪⎧x =-2125,y =2425.从而C 与l 的交点坐标为(3,0),⎝ ⎛⎭⎪⎫-2125,2425.(2)直线l 的普通方程为x +4y -a -4=0,故C 上的点(3cos θ,sin θ)到l 的距离为d =|3cos θ+4sin θ-a -4|17.当a ≥-4时,d 的最大值为a +917.由题设得a +917=17,所以a =8;当a <-4时,d 的最大值为-a +117.由题设得-a +117=17,所以a =-16.综上,a =8或a =-16.1.区分椭圆的参数方程的参数的几何意义是离心角,与圆的参数方程的参数不同.2.椭圆的参数方程消参数时,先变为xa=cos θ,yb=sin θ,再利用cos2θ+sin2θ=1求解.已知曲线C :x 24+y 29=1,直线l :⎩⎨⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|P A |的最大值与最小值.解析:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θy =3sin θ(θ为参数).直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为d =55|4cos θ+3sin θ-6|.则|P A |=d sin 30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|P A |取得最大值,最大值为2255.当sin(θ+α)=1时,|P A |取得最小值,最小值为255.课时规范练 A 组 基础对点练1.已知直线l 的参数方程为⎩⎨⎧x =t ,y =mt (t 为参数),圆C 的参数方程为⎩⎨⎧x =cos α,y =1+sin α(α为参数).(1)若直线l 与圆C 的相交弦长不小于2,求实数m 的取值范围.(2)若点A 的坐标为(2,0),动点P 在圆C 上,试求线段P A 的中点Q 的轨迹方程. 解析:(1)直线l 的参数方程为⎩⎪⎨⎪⎧x =t ,y =mt(t 为参数),普通方程为y =mx ,圆C 的参数方程为⎩⎪⎨⎪⎧x =cos α,y =1+sin α(α为参数),普通方程为x 2+(y -1)2=1.圆心到直线l 的距离d =1m 2+1,相交弦长=21-1m 2+1, 所以21-1m 2+1≥2,所以m ≤-1或m ≥1. (2)设P (cos α,1+sin α),Q (x ,y ),则 x =12(cos α+2),y =12(1+sin α),消去α,整理可得线段P A 的中点Q 的轨迹方程(x -1)2+(y -12)2=14.2.已知曲线C 的极坐标方程是ρ=4cos θ,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是⎩⎨⎧x =1+t cos α,y =t sin α(t 是参数).(1)将曲线C 的极坐标方程化为直角坐标方程.(2)若直线l 与曲线C 相交于A ,B 两点,且|AB |=14,求直线l 的倾斜角α的值. 解析:(1)因为ρcos θ=x ,ρsin θ=y ,ρ2=x 2+y 2,所以曲线C 的极坐标方程ρ=4cos θ可化为ρ2=4ρcos θ,所以x 2+y 2=4x , 所以(x -2)2+y 2=4.(2)将⎩⎪⎨⎪⎧x =1+t cos α,y =t sin α代入圆的方程(x -2)2+y 2=4得:(t cos α-1)2+(t sin α)2=4,化简得t 2-2t cos α-3=0. 设A ,B 两点对应的参数分别为t 1,t 2, 则⎩⎪⎨⎪⎧t 1+t 2=2cos α,t 1t 2=-3, 所以|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=4cos 2α+12,因为|AB |=14, 所以4cos 2α+12=14.所以cos α=±22. 因为α∈[0,π), 所以α=π4或α=34π.所以直线的倾斜角α=π4或α=34π.3.在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =cos αy =1+sin α(α为参数,α∈R ),在以坐标原点为极点,x 轴非负半轴为极轴的极坐标系中,曲线C 2:ρsin ⎝ ⎛⎭⎪⎫θ-π4= 2.(1)求曲线C 1的普通方程与曲线C 2的直角坐标方程; (2)若曲线C 1和曲线C 2相交于A ,B 两点,求|AB |的值.解析:(1)由⎩⎪⎨⎪⎧x =cos α,y =1+sin α⇒⎩⎪⎨⎪⎧x =cos α,y -1=sin α⇒x 2+(y -1)2=1,由ρsin ⎝ ⎛⎭⎪⎫θ-π4=2⇒22ρsin θ-22ρcos θ=2⇒y -x =2,即C 2:x -y +2=0.(2)∵直线x -y +2=0与圆x 2+(y -1)2=1相交于A ,B 两点, 又x 2+(y -1)2=1的圆心(0,1),半径为1, 故圆心到直线的距离d =|0-1+2|12+(-1)2=22,∴|AB |=212-⎝ ⎛⎭⎪⎫222= 2.B 组 能力提升练4.(2019·合肥模拟)在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos θ,y =2sin θ(θ为参数),在以O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 2的极坐标方程为ρ-2cos θ=0.(1)求曲线C 2的直角坐标方程;(2)若曲线C 1上有一动点M ,曲线C 2上有一动点N ,求|MN |的最小值. 解析:(1)由ρ-2cos θ=0得ρ2-2ρcos θ=0, 由ρ2=x 2+y 2,ρcos θ=x ,得x 2+y 2-2x =0, 即曲线C 2的直角坐标方程为(x -1)2+y 2=1. (2)由(1)可知,圆C 2的圆心为C 2(1,0),半径为1.设曲线C 1上的动点M (3cos α,2sin α),易知点M 在圆C 2外, 由动点N 在圆C 2上可得|MN |min =|MC 2|min -1. 因为|MC 2|=(3cos α-1)2+4sin 2α=5cos 2α-6cos α+5=5(cos α-35)2+165,所以当cos α=35时,|MC 2|min =455,所以|MN |min =|MC 2|min -1=455-1,即|MN |的最小值为455-1.5.在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3sin α-cos α,y =3-23sin αcos α-2cos 2α(α为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.曲线C 2的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ-π4=22m .(1)求曲线C 1的普通方程和曲线C 2的直角坐标方程; (2)若曲线C 1与曲线C 2有公共点,求实数m 的取值范围. 解析:(1)曲线C 1的参数方程为⎩⎪⎨⎪⎧x =3sin α-cos α,y =3-23sin αcos α-2cos 2α,消去参数,可得y =x 2(-2≤x ≤2),由ρsin(θ-π4)=22m ,得22ρsin θ-22ρcos θ=22m ,所以曲线C 2的直角坐标方程为x -y +m =0.(2)由⎩⎪⎨⎪⎧y =x 2,x -y +m =0,可得x 2-x -m =0,∵曲线C 1与曲线C 2有公共点, ∴m =x 2-x =⎝ ⎛⎭⎪⎫x -122-14.∵-2≤x ≤2,∴-14≤m ≤6.。
选修4-4 坐标系与参数方程【知识梳理】一、坐标系1.平面直角坐标系中的坐标伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换(0):(0)x x y y λλϕμμ'=>⎧⎨'=>⎩的作用下,点P (x ,y )对应到点(,)P x y ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 2.极坐标系的概念 (1)极坐标系如图所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系. (2)极坐标设M 是平面内一点,极点O 与点M 的距离|OM |叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ.有序数对(,)ρθ叫做点M 的极坐标,记作(,)M ρθ.一般地,不作特殊说明时,我们认为0,ρ≥θ可取任意实数.特别地,当点M 在极点时,它的极坐标为(0, θ)(θ∈R ).和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定0,02πρθ>≤<,那么除极点外,平面内的点可用唯一的极坐标(,)ρθ表示;同时,极坐标(,)ρθ表示的点也是唯一确定的.3.极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示:(2)互化公式:设M 是坐标平面内任意一点,它的直角坐标是(,)x y ,极坐标是(,)ρθ(0ρ≥),于是极坐标与直角坐标的互化公式如表:在一般情况下,由tan θ确定角时,可根据点M 所在的象限最小正角. 4.常见曲线的极坐标方程注:由于平面上点的极坐标的表示形式不唯一,即(,),(,2π),(,π),(,π),ρθρθρθρθ+-+--+都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程,ρθ=点ππ(,)44M 可以表示为πππππ5π(,2π)(,2π),444444+-或或(-)等多种形式,其中,只有ππ(,)44的极坐标满足方程ρθ=. 二、参数方程 1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标,x y 都是某个变数t 的函数()()x f t y g t =⎧⎨=⎩①,并且对于t 的每一个允许值,由方程组①所确定的点(,)M x y 都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数,x y 的变数t 叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程. 2.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数,x y 中的一个与参数t 的关系,例如()x f t =,把它代入普通方程,求出另一个变数与参数的关系()y g t =,那么()()x f t y g t =⎧⎨=⎩就是曲线的参数方程,在参数方程与普通方程的互化中,必须使,x y 的取值范围保持一致.注:普通方程化为参数方程,参数方程的形式不一定唯一.应用参数方程解轨迹问题,关键在于适当地设参数,如果选用的参数不同,那么所求得的曲线的参数方程的形式也不同.3.圆的参数设圆O 的半径为r ,点M 从初始位置0M 出发,按逆时针方向在圆O 上作匀速圆周运动,设(,)M x y ,则cos ()sin x r y r θθθ=⎧⎨=⎩为参数.这就是圆心在原点O ,半径为r 的圆的参数方程,其中θ的几何意义是0OM 转过的角度. 圆心为(,)a b ,半径为r 的圆的普通方程是222()()x a y b r -+-=,它的参数方程为:cos ()sin x a r y b r θθθ=+⎧⎨=+⎩为参数. 4.椭圆的参数方程以坐标原点O 为中心,焦点在x 轴上的椭圆的标准方程为22221(0),x y a b a b+=>>其参数方程为cos ()sin x a y b ϕϕϕ=⎧⎨=⎩为参数,其中参数ϕ称为离心角;焦点在y 轴上的椭圆的标准方程是22221(0),y x a b a b +=>>其参数方程为cos (),sin x b y a ϕϕϕ=⎧⎨=⎩为参数其中参数ϕ仍为离心角,通常规定参数ϕ的范围为ϕ∈[0,2π).注:椭圆的参数方程中,参数ϕ的几何意义为椭圆上任一点的离心角,要把它和这一点的旋转角α区分开来,除了在四个顶点处,离心角和旋转角数值可相等外(即在0到2π的范围内),在其他任何一点,两个角的数值都不相等.但当π02α≤≤时,相应地也有π02ϕ≤≤,在其他象限内类似. 5.双曲线的参数方程以坐标原点O 为中心,焦点在x 轴上的双曲线的标准议程为22221(0,0),x y a b a b-=>>其参数方程为sec ()tan x a y b ϕϕϕ=⎧⎨=⎩为参数,其中π3π[0,2π),.22ϕϕϕ∈≠≠且焦点在y 轴上的双曲线的标准方程是22221(0,0),y x a b a b-=>>其参数方程为cot ((0,2π)π.csc x b y a ϕϕϕϕϕ=⎧∈≠⎨=⎩为参数,其中且 以上参数ϕ都是双曲线上任意一点的离心角. 6.抛物线的参数方程以坐标原点为顶点,开口向右的抛物线22(0)y px p =>的参数方程为22().2x pt t y pt⎧=⎨=⎩为参数 7.直线的参数方程经过点000(,)M x y ,倾斜角为π()2αα≠的直线l 的普通方程是00tan (),y y x x α-=-而过000(,)M x y ,倾斜角为α的直线l 的参数方程为00cos sin x x t y y t αα=+⎧⎨=+⎩()t 为参数.注:直线参数方程中参数的几何意义:过定点000(,)M x y ,倾斜角为α的直线l 的参数方程为00cos sin x x t y y t αα=+⎧⎨=+⎩()t 为参数,其中t 表示直线l 上以定点0M 为起点,任一点(,)M x y 为终点的有向线段0M M 的数量,当点M 在0M 上方时,t >0;当点M 在0M 下方时,t <0;当点M 与0M 重合时,t =0.我们也可以把参数t 理解为以0M 为原点,直线l 向上的方向为正方向的数轴上的点M 的坐标,其单位长度与原直角坐标系中的单位长度相同.【真题精练】1.【2011年新课标】在直角坐标系xOy 中,曲线C 1的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(α为参数),M 是C 1上的动点,P 点满足=2OP OM ,P 点的轨迹为曲线C 2. (1)求C 2的方程;(2)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线π3θ=与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求|AB |.2.【2012年新课标】已知曲线1C 的参数方程是=2cos =3sin ⎧⎨⎩x y ϕϕ(φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立坐标系,曲线2C 的坐标系方程是2=ρ,正方形ABCD 的顶点都在2C 上,且,,,A B C D 依逆时针次序排列,点A 的极坐标为π(2,)3. (1)求点,,,A B C D 的直角坐标;(2)设P 为1C 上任意一点,求2222PA PB PC PD +++的取值范围.3.【2013年新课标I 】已知曲线C 1的参数方程为45cos ,55sin x t y t =+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ. (1)把C 1的参数方程化为极坐标方程; (2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).4.【2013年新课标II】已知动点P,Q都在曲线C:2cos,2sinx ty t=⎧⎨=⎩(t为参数)上,对应参数分别为t=α与t=2α(0<α<2π),M为PQ的中点.(1)求M的轨迹的参数方程;(2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.5.【2014年新课标II】在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为π2cos,[0,].2ρθθ=∈(1)求C的参数方程;(2)设点D在C上,C在D处的切线与直线:2l y=+垂直,根据(1)中你得到的参数方程,确定D的坐标.6. 【2015年新课标I 】在直角坐标系xOy 中,直线1:2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (1)求12,C C 的极坐标方程. (2)若直线3C 的极坐标方程为()π4R θρ=∈,设23,C C 的交点为,M N ,求2C MN ∆的面积.7. 【2015年新课标II 】在直角坐标系xOy 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩( t 为参数,且0t ≠),其中0πα≤<,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线23:2sin ,:.C C ρθρθ==(1)求2C 与3C 交点的直角坐标;(2)若1C 与 2C 相交于点A ,1C 与3C 相交于点B ,求AB 最大值.8.【2016年新课标I 】在直线坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧+==t a y ta x sin 1cos (t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ. (1)说明C 1是哪种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为0α=θ,其中0α满足tan 0α=2,若曲线C 1与C 2的公共点都在C 3上,求a .9.【2016年新课标II 】在直线坐标系xOy 中,圆C 的方程为()22625x y ++=. (1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数),l 与C 交于A 、B 两点,AB =l的斜率.10.【2016年新课标III 】在直角坐标系xOy 中,曲线C 1的参数方程为 x =qy =sin q ìíïîï为参数,以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为πsin(+)=4ρθ(1)写出C 1的普通方程和C 2的直角坐标方程;(2)设点P 在C 1上,点Q 在C 2上,求|PQ |的最小值及此时P 的直角坐标.11.【2017新课标I 】在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数).(1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到la .12.【2017新课标II 】在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为π(2,)3,点B 在曲线2C 上,求OAB ∆面积的最大值.13.【2017新课标III 】在直角坐标系xOy 中,直线l 1的参数方程为,,x t y kt =2+⎧⎨=⎩(t 为参数),直线l 2的参数方程为,,x m my k =-2+⎧⎪⎨=⎪⎩(m 为参数),设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C .(1)写出C 的普通方程:(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设:(cos sin )l ρθθ3+0,M 为l 3与C 的交点,求M 的极径.【参考答案】【真题精练】1.【解】(1)设P (x , y ),则由条件知(,)22x y M . 由于M 点在C 1上,所以2cos 222sin 2xy αα⎧=⎪⎪⎨⎪=+⎪⎩,即4cos 44sin x y αα=⎧⎨=+⎩,从而C 2的参数方程为4cos 44sin x y αα=⎧⎨=+⎩(α为参数).(2)曲线C 1的极坐标方程为4sin ρθ=,曲线C 2的极坐标方程为8sin ρθ=. 射线π3θ=与C 1的交点A 的极径为1π4sin 3ρ=,射线π3θ=与C 2的交点B 的极径为2π8sin 3ρ=.所以21||||AB ρρ-==2.【解】(1)依题意,点A ,B ,C ,D 的极坐标分别为π5π4π11π(2,),(2,),(2,),(2,)3636. 所以点A ,B ,C ,D的直角坐标分别为、(、(1,-、1)-. (2)设()2cos ,3sin P ϕϕ,则222222||||||||(12cos )3sin )PA PB PC PD ϕϕ+++=-+222222(2cos )(13sin )(12cos )(3sin )2cos )(13sin )ϕϕϕϕϕϕ++-+--+++--[]22216cos 36sin 163220sin 32,52ϕϕϕ=++=+∈.所以2222||||||||PD PC PB PA +++的取值范围为[]32,52.3.【解】(1)将45cos ,55sin x t y t=+⎧⎨=+⎩消去参数t ,化为普通方程(x -4)2+(y -5)2=25,即C 1:x 2+y 2-8x -10y +16=0. 将cos ,sin x y ρθρθ=⎧⎨=⎩代入x 2+y 2-8x -10y +16=0得ρ2-8ρcos θ-10ρsin θ+16=0.所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0. (2)C 2的普通方程为x 2+y 2-2y =0.由2222810160,20x y x y x y y ⎧+--+=⎨+-=⎩解得1,1x y =⎧⎨=⎩或0,2.x y =⎧⎨=⎩所以C 1与C 2交点的极坐标分别为π4⎫⎪⎭,π2,2⎛⎫ ⎪⎝⎭. 4.【解】(1)依题意有P (2cos α,2sin α),Q (2cos 2α,2sin 2α), 因此M (cos α+cos 2α,sin α+sin 2α). M 的轨迹的参数方程为cos cos 2,sin sin 2,x y αααα=+⎧⎨=+⎩(α为参数,0<α<2π).(2)M 点到坐标原点的距离d=<α<2π).当α=π时,d =0,故M 的轨迹过坐标原点.5.【解】(1)C 的普通方程为22(1)1(01)x y y -+=≤≤,可得C 的参数方程为1cos sin x ty t =+⎧⎨=⎩(t 为参数,0πt ≤≤).(2)设(1cos ,sin )D t t +由(1)知C 是以(1,0)G 为圆心,1为半径的上半圆,因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同.πtan 3t t ==,故D 的直角坐标为ππ(1cos ,sin )33+,即3(,22. 6. 【解】(1)因为cos ,sin x y ρθρθ==,所以1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=.(2)将π4θ=代入22cos 4sin 40ρρθρθ--+=,得240ρ-+=,解得12ρρ==故12ρρ-=MN =由于2C 的半径为1,所以2C MN ∆的面积为12. 7. 【解】(1)曲线23:2sin ,:C C ρθρθ==的直角坐标方程是.032:;0:222221=-+=-+x y x C y y x C⎪⎪⎩⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧∴====.23230,0,.23,23.0,021),、()交点的直角坐标为(联立解得C C y x y x (2)曲线C 1的极坐标方程为00πR ∈≠≤ρ=αρρα<.(,,) 因此点A 的极坐标为(2sin α,α),点B 的极坐标为(cos α,α), 所以|AB |=|2sin αα|=4|sin(α-π3)|.所以当α=5π6时,|AB |取得最大值,最大值为4. 8.【解】(1)(均为参数),∴①,∴为以为圆心,为半径的圆.方程为, ∵,∴,即为的极坐标方程. (2)两边同乘得,即②:化为普通方程为,由题意:和的公共方程所在直线即为,①—②得:,即为,∴,∴. 9.【解】(1)整理圆的方程得,由可知圆的极坐标方程为. (2)记直线的斜率为,则直线的方程为,, 即,整理得,则. 10.【解】(1)C 1的普通方程为x 23+y 2=1,C 2的直角坐标方程为x +y -4=0.(2)由题意,可设点P 的直角坐标为(3cos α,sin α),∵C2是直线,∴|PQ |的最小值即为P 到C 2的距离d (α)的最小值, d (a )=|3cos α+sin α-4|2=2⎪⎪⎪⎪sin(α+π3)-2 当且仅当α=2k π+π6(k ∈Z )时,d (α)取得最小值,最小值为2,此时P 的直角坐标为(32,12).11.【解】(1)曲线C 的普通方程为2219x y +=, 当1a =-时,直线l 的普通方程为430x y +-=.cos 1sin x a t y a t=⎧⎨=+⎩t ()2221x y a +-=1C ()01,a 222210x y y a +-+-=222sin x y y ρρθ+==,222sin 10a ρρθ-+-=1C 24cos C ρθ=:ρ22224cos cos x y x ρρθρρθ==+=,224x y x ∴+=()2224x y -+=3C 2y x =1C 2C 3C 24210x y a -+-=3C 210a -=1a =2212110x y +++=222cos sin x y x y ρρθρθ⎧=+⎪=⎨⎪=⎩C 212cos 110ρρθ++=k 0kx y -==22369014k k =+253k =k =由2243019x y x y +-=⎧⎪⎨+=⎪⎩解得30x y =⎧⎨=⎩或21252425x y ⎧=-⎪⎪⎨⎪=⎪⎩,从而C 与l 的交点坐标为(3,0),2124(,)2525-. (2)直线l 的普通方程为440x y a +--=, 故C 上的点(3cos ,sin )θθ到l的距离为d =.当4a ≥-时,d=8a =; 当4a <-时,d.=16a =-. 综上,8a =或16a =-.12.【解】(1)设()()00M P ρθρθ,,,,则0||OM OP ρρ==,.000016cos 4ρρρθθθ=⎧⎪=⎨⎪=⎩,解得4cos ρθ=,化为直角坐标系方程为()2224x y -+=.()0x ≠ (2)连接AC ,易知AOC △为正三角形,||OA 为定值. ∴当高最大时,AOB S △面积最大,如图,过圆心C 作AO 垂线,交AO 于H 点交圆C 于B 点,此时AOB S △最大, max 1||||2S AO HB =⋅()1||||||2AO HC BC =+2=.13.【解】⑴将参数方程转化为一般方程()1:2l y k x =- ……① ()21:2l y x k=+ ……② ①⨯②消k 可得:224x y -=,即P 的轨迹方程为224x y -=;⑵将参数方程转化为一般方程3:0l x y +-= ……③联立曲线C 和3l 2204x y x y ⎧+=⎪⎨-=⎪⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩,由cos sin x y ρθρθ=⎧⎨=⎩解得ρ=,即M.。
4.1《坐标系》导学案(1)4.1.1 直角坐标系学习目标1.回顾在平面直角坐标系中刻画点的位置的方法;2.体会直角坐标系的作用,能够建立适当的直角坐标系,解决数学问题. 学习过程 一、自主学习 【基础知识】阅读教材1P ——2P 的内容,自主完成下面的问题:1.参照系 为了刻画一个几何图形的位置,需要设定一个__________,即以________为标准确定它的相对位置.__________不同,表示几何图形位置的方式也不同.坐标系就是一个________,它是实现__________与__________互相转化的基础.2.数轴 在直线上,取一个点为__________,并确定一个__________和直线的__________,就建立了__________的坐标系,即数轴.它使直线上任一点P 都可以由惟一的实数x 确定,x 称为点P 的__________.3.平面直角坐标系 在_______上,当取定两条__________的直线的交点为_________,并确定了__________和这两条直线的__________,就建立了平面直角坐标系。
它使平面上任一点P 都可以由_______的_______实数对(x ,y )确定,(x ,y )称为点P 的________.4.空间直角坐标系 在_______中,选择__________且__________的三条直线,取定这三条直线的交点为_______,并确定了一个__________和这三条直线的_______,就建立了空间直角坐标系。
它使空间上任一点P 都可以由_______的_______实数组(x ,y ,z )确定,(x ,y ,z )称为点P 的__________.5.建立坐标系是为了确定点的_______,因此,在所建的坐标系中应满足:任意一点都有__________与其对应;反之,依据一个点的坐标就能确定这个点的______.6.在数轴上,直线上所有点的集合与全体实数的集合建立了______对应;在平面直角坐标系中,______________________与____________________________建立一一对应;在空间直角坐标系中,空间所有点的集合与全体三元有序实数组__________的集合建立一一对应.7.确定点的位置就是求出这个点在设定的坐标系中的______. 【牛刀小试】⒈在平面直角坐标系中,已知点P (﹣3,1),分别按下列条件求出点Q 的坐标: ⑴Q 是点P 关于点(2,﹣1)的对称点; ⑵Q 是点P 关于直线y x 的对称点;⑶Q 是点P 关于直线y x =-的对称点; ⑷Q 是点P 关于直线220x y -+=的对称点.⒉你有疑惑之处吗?写出来。
§4.1.1平面直角坐标系本课提要:本节课的重点是体会坐标法的作用,掌握坐标法的解题步骤,会运用坐标法解决实际问题与几何问题.一、1.到两个定点A (-1,0)与B (0,1)的距离相等的点的轨迹是什么?2.在⊿ABC 中,已知A (5,0),B (-5,0),且6=-BC AC ,求顶点C 的轨迹方程.二、【问题1】:某信息中心接到位于正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到一声巨响,正东观测点听到巨响的时间比它们晚4s.已知各观测点到中心的距离都是1020m.试确定巨响发生的位置.(假定声音传播的速度为340m/s ,各观测点均在同一平面上.)(详解见课本)【问题2】:已知⊿ABC 的三边c b a ,,满足2225a c b =+,BE ,CF 分别为边AC ,AB 上的中线,建立适当的平面直角坐标系探究BE 与CF 的位置关系.三、4.两个定点的距离为6,点M 到这两个定点的距离的平方和为26,求点M 的轨迹.5.求直线0532=+-y x 与曲线xy 1=的交点坐标.6.求证:三角形的三条高线交于一点.7.已知A (-2,0),B (2,0),则以AB 为斜边的直角三角形的顶点C 的轨迹方程 是 .8.已知A (-3,0),B (3,0),直线AM 、BM 相交于点M ,且它们的斜率之积为94,则 点M 的轨迹方程是 .9.已知B 村位于A 村的正西方向1公里处,原计划经过B 村沿着北偏东600的方向埋设一条地下管线m.但在A 村的西北方向400米处,发现一古代文物遗址W.根据初步勘察的结果,文物管理部门将遗址W 周围100米范围划为禁区.试问:埋设地下管线m 的计划需要修改吗?课前小测 典型问题技能训练平面直角坐标系中的伸缩变换【基础知识导学】1、 坐标系包括平面直角坐标系、极坐标系、柱坐标系、球坐标系。
2、 “坐标法”解析几何学习的始终,同学们在不断地体会“数形结合”的思想方法并自始至终强化这一思想方法。
3、 坐标伸缩变换与前面学的坐标平移变换都是将平面图形进行伸缩平移的变换,本质是一样的。
【典型例题】 在同一直角坐标系中,求满足下列图形变换的伸缩变换。
(1) 将直线22=-y x 变成直线42='-'y x ,(2) 曲线0222=--x y x 变成曲线0416/22=-'-'x y x【解题能力测试】1、已知x x f x x f ωsin )(,sin )(21==()0>ω)(2x f 的图象可以看作把)(1x f 的图象在其所在的坐标系中的横坐标压缩到原来的31倍(纵坐标不变)而得到的,则ω为( ) A .21 B .2 C.3 D.31 2.在同一直角坐标系中,经过伸缩变换⎩⎨⎧='='yy x x 35后,曲线C 变为曲线18222='+'y x 则曲线C 的方程为( )A .1725022=+y x B.1100922=+y x C .12410=+y x D.19825222=+y x 3.在同一平面坐标系中,经过伸缩变换⎩⎨⎧='='yy x x ,3后,曲线C 变为曲线9922='+'y x ,求曲线C 的方程并画出图象。
【知识要点归纳】(1) 以坐标法为工具,用代数方法研究几何图形是解析几何的主要问题,它的特点是“数形结合”。
(2) 能根据问题建立适当的坐标系又是能否准确解决问题的关键。
(3) 设点P (x,y )是平面直角坐标系中的任意一点,在变换⎩⎨⎧>⋅='>⋅='),0(,),0(,:μμλλϕy y x x 的作用下,点P(x,y)对应到点),(y x P ''',称ϕ为平面直角坐标系中的坐标伸缩变换。
【潜能强化训练】1.在平面直角坐标系中,求下列方程所对应的图形经过伸缩变换⎪⎩⎪⎨⎧='='yy x x 3121后的图形。
(1);025=+y x (2)122=+y x 。
2,已知点A 为定点,线段BC 在定直线l 上滑动,已知|BC|=4,点A 到直线l 的距离为3,求∆ABC 的外心的轨迹方程。
OX1.2.1极坐标系的的概念学习目标1.能在极坐标系中用极坐标刻画点的位置.2.体会在极坐标系和平面直角坐标系中刻画点的位置的区别.学习过程一、学前准备情境1:军舰巡逻在海面上,发现前方有一群水雷,如何确定它们的位置以便将它们引爆?情境2:如图为某校园的平面示意图,假设某同学在教学楼处。
(1)他向东偏60°方向走120M 后到达什么位置?该位置唯一确定吗?(2)如果有人打听体育馆和办公楼的位置,他应如何描述?问题1:为了简便地表示上述问题中点的位置,应创建怎样的坐标系呢?问题2:如何刻画这些点的位置? 二、新课导学◆探究新知(预习教材P 8~P 10,找出疑惑之处)1、如右图,在平面内取一个 O ,叫做 ; 自极点O 引一条射线Ox ,叫做 ;再选定一个 ,一个 (通常取 )及其 (通常取 方向),这样就建立了一个 。
2、设M 是平面内一点,极点O 与M 的距离||OM 叫做点M 的 ,记为 ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的 ,记为 。
有序数对 叫做点M 的 ,记作 。
3、思考:直角坐标系与极坐标系有何异同? ___________________________________________.◆应用示例例题1:(1)写出图中A ,B ,C ,D ,E ,F ,G 各点的极坐标)20,0(πθρ<≤>.(2):思考下列问题,给出解答。
①平面上一点的极坐标是否唯一?②若不唯一,那有多少种表示方法? ③坐标不唯一是由谁引起的?④不同的极坐标是否可以写出统一表达式? ⑤本题点G 的极坐标统一表达式。
答:◆反馈练习在下面的极坐标系里描出下列各点小结:在平面直角坐标系中,一个点对应 个坐标表示,一个直角坐标对应 个点。
极坐标系里的点的极坐标有 种表示,但每个极坐标只能对应 个点。
三、总结提升1.本节学习了哪些内容?答:能在极坐标系中用极坐标刻画点的位置. 1.已知5,3M π⎛⎫⎪⎝⎭,下列所给出的能表示该点的坐标的是 A .⎪⎭⎫⎝⎛-3,5π B .⎪⎭⎫⎝⎛34,5π C .⎪⎭⎫⎝⎛-32,5π D .55,3π⎛⎫- ⎪⎝⎭2、在极坐标系中,与(ρ,θ)关于极轴对称的点是( )A 、),(θρB 、),(θρ-C 、),(πθρ+D 、),(θπρ-3、设点P 对应的复数为-3+3i ,以原点为极点,实轴正半轴为极轴建立极坐标系,则点P的极坐标为( ) A.(23,π43) B. (32,π45) C. (3,π45) D. (3,π43) 4、(课本习题1.2第二题) 1.2.2. 极坐标与直角坐标的互化学习目标),(θρM●ρθOx(3,0)(6,2)(3,)245(5,)(3,)(4,)365(6,)3A B C D E F G ππππππ1.掌握极坐标和直角坐标的互化关系式。
2. 会实现极坐标和直角坐标之间的互化。
学习过程一、学前准备情境1:若点作平移变动时,则点的位置采用直角坐标系描述比较方便; 情境2:若点作旋转变动时,则点的位置采用极坐标系描述比较方便。
问题1:如何进行极坐标与直角坐标的互化?问题2:平面内的一个点的直角坐标是)3,1(,这个点如何用极坐标表示?二、新课导学◆探究新知(预习教材P 11~P 11,找出疑惑之处)直角坐标系的原点O 为极点,x 轴的正半轴为极轴,且在两坐标系中取相同的长度单位。
平面内任意一点P 的指教坐标与极坐标分别为),(y x 和),(θρ,则由三角函数的定义可以得到如下两组公式:{θρθρsin cos ==y x { xy yx =+=θρtan 222 说明:1、上述公式即为极坐标与直角坐标的互化公式 2、通常情况下,将点的直角坐标化为极坐标时,取ρ≥0,0≤θ<π2。
3、互化公式的三个前提条件(1). 极点与直角坐标系的原点重合;(2). 极轴与直角坐标系的x 轴的正半轴重合; (3). 两种坐标系的单位长度相同. ◆应用示例例1.将点M 的极坐标)32,5(π化成直角坐标。
(教材P 11例3) 解:例2.将点M 的直角坐标)1,3(--化成极坐标(教材P 11例4)解:◆反馈练习1.点()3,1-P ,则它的极坐标是 A .⎪⎭⎫ ⎝⎛3,2π B .⎪⎭⎫ ⎝⎛34,2πC .⎪⎭⎫ ⎝⎛-3,2πD .⎪⎭⎫⎝⎛-34,2π 2.点M 的直角坐标是(1,3)-,则点M 的极坐标为( ) A .(2,)3πB .(2,)3π-C .2(2,)3πD .(2,2),()3k k Z ππ+∈三、总结提升1.本节学习了哪些内容?答:极坐标和直角坐标之间的互化。
课后作业1.若A,B ⎪⎭⎫⎝⎛-64π,,则|AB|=___5____,ABO S ∆=_6_________。
(其中O 是极点) 2.已知点的极坐标分别为)4,3(π,)32,2(π,)2,4(π,),23(π,求它们的直角坐标。
3.已知点的直角坐标分别)3,3(,)35,0(-,)0,27(,)32,2(--,为求它们的极坐标。
4.在极坐标系中,已知两点)3,3(π-A ,)32,1(πB ,求B A ,两点间的距离。
5. 已知点()32,,2,,0,024A B O ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,试判断ABO ∆的形状。
(等腰直角三角形) 圆的极坐标方程本课提要:本节课的重点是掌握一些特殊位置下的圆(如过极点或圆心在极点的圆)的极坐标方程.一、 温故而知新1.圆122=+y x 的极坐标方程是 .2.曲线θρcos =的直角坐标方是 . 二 重点、难点都在这里【问题1】:求以点)0)(0,(>a a C 为圆心,a 为半径的圆C 的极坐标方程.3.求圆心在点(3,0),且过极点的圆的极坐标方程.4.求以)2,4(π为圆心,4为半径的圆的极坐标方程.【问题2】:已知圆心的极坐标为),(00θρM ,圆的半径为r ,求圆的极坐标方程.【问题3】:已知一个圆的极坐标方程是θθρsin 5cos 35-=,求圆心的极坐标与半径.三练习 5.在极坐标系中,求适合下列条件的圆的极坐标方程:(1)圆心在)4,1(πA ,半径为1的圆;(2)圆心在)23,(πa ,半径为a 的圆.6.把下列极坐标方程化为直角坐标方程:(1)2=ρ;(2)θρcos 5=.7.求下列圆的圆心的极坐标:(1)θρsin 4=;(2))4cos(2θπρ-=.8.求圆05)sin 3(cos 22=-+-θθρρ的圆心的极坐标与半径.四、试试你的身手呀9.设有半径为4的圆,它在极坐标系内的圆心坐标是),4(π,则这个圆的极坐标方程是 .10.两圆θρcos 2=和θρsin 4=的圆心距是 .11.在圆心的极坐标为)0)(0,(>a a ,半径为a 的圆中,求过极点的弦的中点的轨迹.五、课后作业12.极坐标方程cos()4πρθ=-所表示的曲线是 .13.极坐标方程分别是θρcos =和θρsin =的两个圆的圆心距是 .14.(2000年全国高考题)以极坐标系中的点(1,1)为圆心,1为半径的圆的方程是( ) A.)4cos(2πθρ-= B.)4sin(2πθρ-= C .)1cos(2-=θρ D.)1sin(2-=θρ 直线的极坐标方程本课提要:本节课的重点是掌握一些特殊位置下的直线(如过极点或垂直于极轴的直线)本课小结课前小测典型问题变式训练的极坐标方程.一、1.直线1=+y x 的极坐标方程是 . 2.曲线1cos =θρ的直角坐标方程是 . 二、典型例题【问题1】:求经过极点,从极轴到直线l 的夹角是4π的直线l 的极坐标方程.练一练:3.经过极点,且倾斜角是6π的直线的极坐标方程是 . 4.直线)(43R ∈=ρπρ的直角坐标方程是 .【问题2】:设点P 的极坐标为),(11θρ,直线l 过点P 且与极轴所成的角为α,求直线l 的极坐标方程.三、技能训练5.在极坐标系中,求适合下列条件的直线的极坐标方程: (1)过极点,倾斜角是3π的直线;(2)过点)3,2(π,并且和极轴垂直的直线.6.把下列极坐标方程化为直角坐标方程:(1)2sin =θρ;(2)θρsin 2=.7.求下列直线的倾斜角:(1))(65R ∈=ρπθ;(2)1)4sin(=-πθρ.8.已知直线的极坐标方程为22)4sin(=+πθρ,求点)47,2(πA 到这条直线的距离.四、变式训练9.过点)(42,π,且平行于极轴的直线的极坐标方程为 . 10.直线2cos =θρ关于直线4πθ=对称的直线的极坐标方程为________________五、六、课后作业11. 直线αθ=和直线1)sin(=-αθρ的位置关系是 .12.在极坐标系中,点)3,4(πM 到直线4)sin cos 2(:=+θθρl 的距离=d .13.在极坐标系中,若过点(3,0)且与极轴垂直的直线交曲线θρcos =于A 、B 两点,则=AB .四、本课小结课前小测变式训练9.设M 的球坐标为)45,4,2(ππ,则它的柱坐标为 .10.在球坐标系中, )4,6,3(ππP 与)43,6,3(ππQ 两点间的距离是 .11.球坐标满足方程3=r 的点所构成的图形是什么?并将此方程化为直角坐标方程. 五、 六、12.点A 的柱坐标是)4,6,2(π-,则它的直角坐标是 .13.点M 的球坐标是)65,3,8(ππ,则它的直角坐标是 .14.点P 的直角坐标是)3,3,3(--,则它的柱坐标是 .15.在球坐标系中,)6,4,4(ππM 与)32,4,4(ππN 两点间的距离是 .答案【问题1】解:(1)∵7,6,2===z πθρ, ∴7,1sin ,3cos =====z y x θρθρ,∴点A 的直角坐标是)7,1,3(;(2)∵4,3,1===z y x ,∴4,3tan ,222====+=z xyy x θρ, ∵0,0>>y x,∴3πθ=,∴点B 的柱坐标是)4,3,2(π. 【问题2】解:(1)∵4,4,2πθπϕ===r ,∴1sin sin ,1cos sin ====θϕθϕr y r x,2cos ==ϕr z ,∴点A 的直角坐标是)2,1,1(;(2)∵22,2,2==-=z y x ,∴4222=++=z y x r ,1tan -==xyθ, 22cos ==r z ϕ, ∵0,0,0>><z y x,∴43πθ=,4πϕ=,∴点B 的柱坐标是)43,4,4(ππ.【问题3】解:以正方体的一个顶点为极点,相邻的两条棱所在的射线分别为O X 轴和O Z 轴,建立如图所示的球坐标系,本课小结 试题链接则有),2,2,1(),4,2,2(),0,2,1(),0,0,0(πππππC B A O ),4,33arccos,3(),0,4,2(),0,0,1(ππF E D )2,4,2(ππG . 1.建立柱坐标系,则圆柱侧面上一点的位置可用柱坐标),20,0(),,(R z z ∈<≤≥πθρθρ表示;2.建立球坐标系,则球面上一点的位置可用球坐标)20,0,0(),,(πθπϕθϕ<≤≤≤≥r r 表示;3.)2,32,2(-;4.)2,35,2(π; 5.)3,32,2(),1,1,3(--Q P ;6.)5,0,0(),0,32,2(--B A ;7.),43,8(),4,6,22(ππππN M ; 8.答案不唯一.如图,设底面正⊿ABC 的中心为O ,以O 为极点建立柱坐标系与球坐标系.在柱坐标系中,)6,0,0(),0,34,3(),0,32,3(),0,0,3(D C B A ππ. 在球坐标系中,),32,2,3(),0,2,3(πππB A)0,0,6(),34,2,3(D C ππ;9.)2,45,2(π; 10.223;11.由球坐标系中坐标r 的意义得,球坐标满足方程3=r的点所构成的图形是以原点O 为球心,3为半径的球面,化成直角坐标方程是9222=++z y x ;12.)4,1,3(-;13.)4,32,6(;14.)3,43,23(-π; 15.4.。